AC Transmission Line
Sang Heon Chae, Ngoc-Thanh Quach,
Ho Min Kim, Gae-Myoung Lee, Seong-Bo Oh and Ho-Chan Kim
3125

Thermal Analysis of a Cooling System for a High-Temperature
Superconducting Magnet System
Thanh Dung Le, Ji Hyung Kim,
Su Jin Lee, Gae-Myoung Lee, Se Ho Kim, Ho-Chan Kim and Ho Min Kim
3133

Performance Evaluation Metrics for Event Detections of Intelligent Video
Surveillance Systems
Kyoung Yeon Kim and Yoo-Sung Kim
3141

Development of Gender Classification Scheme Using Facebook Dataset
for Unrestricted Real Environments
Min Wook Kang and Yoo-Sung Kim
3149

Digitally Controlled Temperature-Compensated Crystal Oscillator in
Developing Low-Cost Radio Frequency Modules
Dong Sik Kim, Eunae Lee, Jaejun Han and Jeongmin Lee
3157

The Design of the n-Media Source Recording Framework for a Control
Monitoring System Management
Woon-Yong Kim and Soon Gohn Kim
3167

Design of 3D Geofence Model by Location-aware Mechanism
Byungkook Jeon and Sungkuk Cho
3175

Original IP Detection Method in case of TOR or Proxy Server and Its
Prototype
Byungho Park and Dukyun Kim
3181

Implementation of Polymorphic Malware DB based Dynamic Analysis
System for Android Mobile Applications
Han Seong Lee and Hyung-Woo Lee
3187

Development of Wireless Device for Controlling the Ship Lift Crane
Heon Jeong, Jaehyo Kim and Sang-Hyun Lee
3199

Development of a 3D Scanner and UI using Kinect Sensors
Sang-Hyun Lee, Sang-Joon Lee and Dae-Won Park
3207

Development of Handheld 3D Scanner for Human Bodies based on IR
Sensor
Sang-Hyun Lee
3213

Development of Remote Managing System for Leisure Boat Mooring
Heon Jeong, Hyeong-Sam Park and Sang-Hyun Lee
3219

Development of Non-contact Biological Signal Measurement System
Jeong-Gi Lee, Gwang Lee, Bong-Keun Kim and Jun-Ha Kim
3227

Improving Test Maturity Levels of Test Organizations With Visual Method
Kidu Kim and R. Young Chul Kim
3237

Smartphones Behavior Analysis based on Sequential Pattern Approaches
Improving Test Maturity Levels of Test Organizations With Visual Method

Kaidu Kim*, R. YoungChul Kim**

* Telecommunications Technology Association, Gyeonggi, Korea
E-mail: kdkim@ita.or.kr

** SE Lab., Dept. Of CIC(Computer and Information Communication), Hongik University,
Sejong Campus, 339-701, Korea
E-mail: bob@hongik.ac.kr

Abstract

The present paper concerns the software quality improvement via previously proposed test-related models. Specifically, based on the established method of test process improvement using TMMi and TPI Next, this paper proposes a visual method to enhance test competencies. By mapping TPI Next onto TMMi, unsatisfactory test activities were found in organizations that had been assessed with the TPI Next. The proposed visual method is conducive to improving test competencies by visualizing the unsatisfactory areas of test activities in their test processes for test organizations.

Key Words: TMM (Test Maturity Model), TMMi (Test Maturity Model integration), TPI (Test Process Improvement), TPI(Test Process Improvement) Next

1. Introduction

Now, what users want from software is not just novel functionality but also stability and high quality with fewer faults and errors. There are many ways to develop high-quality software products. First, good developers using good methodologies and processes can make good software programs. Second, performing a complete test on newly developed software helps remove its faults and improve its quality. Third, using software test models in performing test-related activities improves the quality of software. The first option is hard to apply to all organizations. Regarding the second option, it is impossible to perform a perfect test in practice. The authors have delved into using test-related models to develop high-quality software. This paper explores a method of improving the quality using test models. Extending the prior study [1], where the established TMMi and TPI Next were used for test process improvement, the present paper proposes a method to improve the test competencies of test organizations by mapping TMMi and TPI Next onto each other.

2. Related Works

TPI Next[2] originated from TPI[3] developed by a software company SOGETI in 1997 for test process improvement. Based on TPI, the enhanced TPI Next features the Enablers
synchronizing software lifecycle with other processes for test process improvement as well as the structural clusters of checkpoints. TMMi[4] originated in TMM[5][6] developed by IIT (C.R. Carlson, Ilene. Burnstein) to reinforce CMM's test activities. TMMi incorporates the established TMM and other models including CMMI[7] and TPI. <Table 1> compares the characteristics of test-related models.

<table>
<thead>
<tr>
<th>Model</th>
<th>TPI</th>
<th>TPI Next</th>
<th>TMM</th>
<th>TMMi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization</td>
<td>Sogeti</td>
<td>Sogeti</td>
<td>IIT</td>
<td>TMMi Foundation</td>
</tr>
<tr>
<td>Type</td>
<td>Maturity model</td>
<td>Maturity model</td>
<td>Maturity model</td>
<td>Maturity model</td>
</tr>
<tr>
<td>Year</td>
<td>1997</td>
<td>2010</td>
<td>1996</td>
<td>2010</td>
</tr>
<tr>
<td>Levels</td>
<td>14</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Key Area</td>
<td>20</td>
<td>16</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Reference Model</td>
<td>-</td>
<td>TPI, ISTQB</td>
<td>CMM</td>
<td>TMM, CMMI, TPI, ISTQB</td>
</tr>
<tr>
<td>Evaluation Type</td>
<td>Checklist</td>
<td>Checklist</td>
<td>Questionnaire</td>
<td>Questionnaire</td>
</tr>
<tr>
<td>Evaluation Object</td>
<td>Test process level</td>
<td>Test process level</td>
<td>Test execution level</td>
<td>Test execution level & Test process level</td>
</tr>
<tr>
<td>Feature</td>
<td>Test process oriented</td>
<td>Business-driven approach</td>
<td>Weak test process evaluation</td>
<td>Partial test process improvement</td>
</tr>
</tbody>
</table>

3. Improving Test Maturity Level for Test Organizations Based on TPI Next

Since 2005, the authors have researched on mapping the test process model onto the test maturity model, and found TMM(i) and TPI (Next) are mapped onto each other. At the same time, we have presented a method of improving the test process competencies of test organizations via TPI Next.[8] Also, we proposed a method of improving the test process in organizations that had achieved TMMi levels in "A Mechanism to Compare Heterogeneous Maturity Models"[9] in 2012. Here, the inter-model mapping is performed based on previous studies. The mapping follows three steps as below.
Step 1: Identify the items to compare in the inter-model mapping.
Step 2: Extract the mapping rules.
Step 3: Define the method of processing the results from association analysis.
Step 4: Apply the “Vitamin Basket Rule”.

In Step 1, TMMi and TPI Next are selected for mapping. The prior study mapped TPI Next onto TMMi (TMM -> TPI Next) to improve the test process, whereas the present study maps TMMi onto TPI Next (TPI Next -> TMMi). As found in related literature, all heterogeneous models have no identical structures or areas of measurement. Therefore, comparing heterogeneous models is challenging and inappropriate. We have found the models to compare based on the identifiers in their structures. For comparison between TMMi and TPI Next, TMMi’s ‘Specific Practice’ and TPI Next’s ‘Check Points’ are the focus of comparative analysis. Although TMMi’s and TPI Next’s structures use distinct terminology, their areas of measurement are highly comparable. In “Models to Improve Your Test Process”, it was found and described that TPI Next’s ‘Checkpoints’ were included in, and paralleled, TMMi’s ‘Goal’ and ‘Practice’.

In Step 2, a few mapping rules are proposed for the mapping between currently certified models and other heterogeneous models to be acquired in the future. Mapping non-/common areas by comparing simple keywords as in a previous study [Kim 12] has shortfalls, in that the areas cannot be verified up to the level required by a model. To address this issue, a mapping rule is established so that the mapping encompasses the scope of performance and the content signified by the areas to be compared.

<table>
<thead>
<tr>
<th>Correlation score</th>
<th>Analysis result</th>
<th>Mapping process</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No relation</td>
<td>Exclude from the common elements</td>
</tr>
<tr>
<td>1~2</td>
<td>Little relation</td>
<td>Exclude from the common elements</td>
</tr>
<tr>
<td>3</td>
<td>Same relation</td>
<td>Include in the common elements</td>
</tr>
<tr>
<td>4~5</td>
<td>High relation</td>
<td>Include in the common elements</td>
</tr>
</tbody>
</table>

Table 2. Mapping Rule
In Step 3, it is difficult to present a method of reusing the existing efforts with a view to transferring to other certification models based on simple analysis of the association between two models. To address this issue, this paper proposes a method of processing the results from association analysis for the purpose of reusing the assets used for achieving the existing levels. To process the results from association analysis, the areas of non-/commonality are determined based on the non-/commonality scores of the compared areas when selecting non-/common areas. A high score indicates a high likelihood of being reused later on in certifying heterogeneous models.

Table 3 shows the partial results of mapping acquired via step 1~3. As seen in Table 3, not every area is mapped 1:1 between the two models (TPI Next versus TMMi). Also, even in the presence of association, the scores of association are measured in diverse ways (1 ~ 5).

<table>
<thead>
<tr>
<th>Key Area</th>
<th>Level</th>
<th>Seq</th>
<th>Checkpoint</th>
<th>TMMi(Level 2) Mapping(Score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1</td>
<td>The principal stakeholder is defined (not necessarily documented) and known to the testers.</td>
<td>PA2.1-SG1-SP3 : Distribute the test policy to stakeholders(3) PA2.1-SG2-SP3 : Distribute the test strategy to stakeholders(5) PA2.2-SG4-SP3 : Define stakeholder involvement(3) PA2.3-SG1-SP5 : Monitor stakeholder involvement(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Budget for test resources is granted by and negotiable with the principal stakeholder.</td>
<td>PA2.2-SG3-SP2 : Determine estimates for test effort and cost(3) PA2.2-SG5-SP2 : Reconcile work and resource levels(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Stakeholders actually deliver the committed resources.</td>
<td>PA2.2-SG5-SP2 : Reconcile work and resource levels(4) PA2.2-SG3-SP3 : Determine estimates for test effort and cost(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>The principal stakeholder is responsible for a documented product risk analysis (the input for the test strategy)</td>
<td>PA2.1-SG2-SP1 : Perform a generic product risk assessment(5) PA2.2-SG1-SP1 : Define product risk categories and parameters(5) PA2.2-SG1-SP2 : Identify product risks(5) PA2.2-SG4-SP4 : Identify test project risks(5) PA2.1-SG2-SP2 : Define test strategy(5) PA2.2-SG1-SP3 : Analyze product risks(5)</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>All relevant stakeholders are defined (not necessarily documented) and known to the testers.</td>
<td>PA2.2-SG4-SP3 : Plan stakeholder involvement(4) PA2.2-SG4-SP2 : Plan for test staffing(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Stakeholders actively acquire information on the quality of both the test process and the test object.</td>
<td>PA2.2-SG4-SP3 : Plan stakeholder involvement(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Stakeholders proactively take action on aspects that affect the test process. This includes changes in the delivery sequence of the test object and changes in the project scope.</td>
<td>PA2.2-SG5-SP3 : Obtain test plan commitments(5) PA2.5-SG3-SP3 : Coordinate the availability and usage of the test(5)</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>1</td>
<td>Line management acknowledges that test process improvement comes with the need for increased learning time for which resources are provided.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Stakeholders are willing to adapt their way of working to suit the test process. This includes the software development and requirement management.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 4 concerns reinforcing the unsatisfactory parts of test competencies in test organizations based on the results from association analysis and guiding them to improve their test competencies via the "Vitamin Basket Rule". The "Vitamin Basket Rule" refers to a rule that suggests one should evenly take in all the nutrients to stay fit. That is, despite excessive intakes of other nutrients, a paucity of even a single nutrient will disrupt the balance in one's body. This notion is applied to the improvement guide. If even a single area fails to reach a satisfactory level, the total level measured reflects the single unmet level, although most of the other areas reach a high level. That is, to reach a current goal, one should achieve the target levels and above in all areas without ending up in an unsatisfactory level even in a single area.

![Diagram](image)

Figure 1. Vitamin Basket Rule (partial)

Here, the "Vitamin Basket Rule" sheds light on the unsatisfactory performance of such items as Test Strategy (TST), Test Organization (TOZ) and Reporting (REP) in organizations carrying out TPI Next. Moreover, the identified unsatisfactory items were found to possibly rise to the next level of TMMi (Level 3) when the performance met the level required by TMMi.
4. Conclusion

The present paper proposes a method to improve test competencies based on the established test process improvement method. Organizations, whose test process levels are diagnosed through TPI Next, can find out their unsatisfactory areas of test activities via TMMi mapping. Also, the "Vitamin Basket Rule" helps test organizations pinpoint the areas of unsatisfactory test activities, take additional actions and thus enhance their competencies. Yet, the present paper is limited to a partial application of TPI Next and TMMi, which warrants a further study applying all levels of TPI Next in tandem with TMMi.

5. Acknowledgments

This research was supported by Next-Generation Information Computing Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2012M3C4A7033348) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2011601). This article is a revised and expanded version of a paper entitled "Improving Test Maturity Levels of Test Organizations Based on TPI Next" presented at International Joint Conference on Convergence held on February 4-8, Ho Chi Minh City, Vietnam.

References

**Corresponding author: R. Young Chul Kim
Dept. Of Computer and Information Communication (CIC),
Hongik University,
Sejong Campus, 339-701, Korea
E-mail: bob@hongik.ac.kr
Management and Social Sciences

New Subclass of Analytic Functions Defined by q-Differentiation
Anessa Oshah and Maslina Darus 2897

The Robust State Feedback Linearization for the Nonlinear Time-Varying System with Model Uncertainty
Jong-Yong Lee, Kye-dong Jung, Younggi Kim and Seongsoo Cho 2909

Estimation of Valence Distribution in Perovskites Using the Bond-Valence Method
Phan Duc Huyen Yen, Nguyen Thi Hang, Dinh Van Chau, Dinh Van Thuang and Hoang Nam Nhat 2917

The Input/Output Linearization of The Time-varying Nonlinear System with a Model Uncertainty
Young Soo Park, Kye-dong Jung and Jong-Yong Lee 2927

Management and Social Sciences

Web Application of Content Management System
Suman Lata, Kamal Batra, Sindhuri Sarvesh Chitrath and Megha Chaudhary 2935

Research on Development Stage of Service Model in Big Data Industry
Soonduck Yoo and Kwangdon Choi 2943

Automatic Space Information Extraction from Korean Text
Bohyum Kim, Yongmin Park and Jae Sung Lee 2953

A Study on the Economic Efficiency Evaluation of the Lighting System in University Concert Halls
Jungwook Lee, Kyongsok An, Kyungkwan Lee and Hyeokhwan Kwon 2963

A Study on the Application of Special Lighting Design for Church Worship Using the Light Converse
Jungwook Lee, Changhun Kim, Kyongsok An and Hyeokhwan Kwon 2971

A Study on the Integration of IT and CT for the Development of K-POP
Hyunhee Cha and Seongmook Kim 2977

Agriculture and Engineering

Efficient Extraction of Isosurface Components using GPU Acceleration and Cell Decomposition
Bong-Soo Sohn 2983

Investigation of Preprocessing Factors and Clustering Methods on Name-Alias Relationship Identification in Thai News Articles
Thawatchai Suwanaapong, Thararuk Thearamunkong and Ekwat Nantajeewarawat 3001

Heating Treatment Control System based on Internet of Things with Smart Power Regulator and Controller on Welding Process of Huge Steel Structure
Hoom Park and Chang Min Park 3021

Real Time Decision Making Forecasting using Data Mining and Decision Tree
Md. Asaduzzaman, Md. Shahjahan, Fatema Jhorna Ahmed and Kazuyuki Murase 3027

Audio-Visual Emotion Recognition Based on Feature Correlation Analysis
Byungman Oh, Kwangwoo Chung and Kwangseok Hong 3049

Stepped Impedance Resonator Filter for Cognitive Radio System
Bhanu Shrestha, Seongsoo Cho and Seong Ro-Lee 3057

Performance Enhancement of WiMedia Network with a Hybrid Cooperative MAC Protocol
Jin-Woo Kim, Ickho Song, Min-A Jeong and Seong Ro Lee 3063

Dual-Role Device Clustering for Multi-hop N-Screen Services in Home Networks
Kyeong Hur, Min A Jeong and Seong-Ro Lee 3071

A Fair Channel Resource Allocation in ECMA-392 Networks
Seung Beom Lee, Min A Jeong and Seong Ro Lee 3077

A Correlation Function Without Side-Peak for CBBOC(6,1,111) Signal Tracking
Keunhoong Chae, Seong Ro Lee and Soekho Yoon 3083

Web-based Multi-view 3D real-time Display System
Jung-Hwan Ko 3093

Extended System Classification and Specification
Eun-Bog Lee, Kang-moon Park, Suk-Hoon Shin and Sung-Do Chi 3099

A Study on the Shifted LFM Signals Applicable to Co-channel Multisite Radar Operation
Kyong-Whaon Sunh and Jung-Ho Ahn 3105

Development of Electronic Snow Depth Measurement System using a Digital Image Processing and Digital Sensors
JeongHyun Cho, Ahn Cheol Woong, Sang-Min Bae and HyunKi Ryu 3115

Interconnection between Microgrids on Gapa and Mara Islands through AC Transmission Line
Sang Heon Chae, Ngoc-Thinh Quach, Ho Min Kim, Gae-Myoung Lee, Seong-Bo Oh and Ho-Chan Kim 3125

Thermal Analysis of a Cooling System for a High-Temperature Superconducting Magnet System
Thawt Dung Le, Ji Hyung Kim, Su Jin Lee, Gae-Myoung Lee, Se Ho Kim, Ho-Chan Kim and Ho Min Kim (Continued)