LNCS 2668

Vipin Kumar

Marina L. Gavrilova
Chih Jeng Kenneth Tan
Pierre I’ Ecuyer (Eds.)

Computational
Science and Its
Applications -
ICCSA 2003

International Conference
Montreal, Canada, May 2003
Proceedings

F
L

£y =i

¥l

s
f’@; Springer

2

XV Table of Contents, Part 11

Knowledge Acquisition in the Nutri-Fuzzy-ORIXAS Project . . S
V.M. Benjamim Werneck, A. Brito F. Oliveire, R. Serrdo Lumffn?t;
H. Serrio Lanzilotti, E. de Abrew Socares, E. Souza Portella,

S. da Silva Avila
Speech Recognition and Agent Technologies

The Merging Algorithm for an Extraction of Valid Speech-Sounds 509
J.0. Kim, HW. Paek, C.H. Chung, W.Y. Yim, 5.H. Lee

Agent Migration Information System for the Efficient Migration of the

Lot e R S e S R S e e
H.-I. Park

Schematic Aspect for Autonomous Agent iciviiviiirreiaeaes 614
K.5. Tae

Robust Speaker Recognition Against Utterance Variations G624

JoJ. Lee, 1.Y. Rheem, K.Y, Lee

Efficient Speaker Identification Based on Robust VQ-PCA 631
Y. Lee, J. Lee, K. Y. Lec

An Amplitude Warping Approach to Intra-speaker Normalization for Speech
5T 2 AT O e e s e R R R e 639
K.-S. Hong

Computational Theory and Test and Simulation

Scenario Based Testing & Test Plan Metrics Based on a Use Case Approach
for Resl Time UPS (Uninterruptible Power System)ccovviinnon. 646
R.Y.-C. Kim, B.-G. Joo, K.-C. Kim, B.-k. Joen

A Study on Insuring the Full Reliability of Finite State Machine 656
8. Yang, M.J. Kim, J.H. Park, H. Chang

Distributed Multiple-Path Searching Algorithm for Fault Detection....... fi64
5. Kim, 8. Ahn, J W. Chung

An Object-Oriented Simulation System for Air Defense 674
C.-8. Jeong, S.-Y. Choi

Evaluation and Analysis of ffnmpumtiﬂna[Complexity for Secure
Multicast Models B s B
E. Blessing R., R. Uthm‘mm;r

An Algorithm for Diagnosing System with Structured Description........ 695
S. Luan, G. Dai

Scenario Based Testing & Test Plan Metrics Based on a
Use Case Approach for Real Time UPS (Uninterruptible
Power System)

R. Young-Chul Kim!, Bok-Gyu Joo', Kyung-Chul Kim' , and Byung-kook Joen®

! College of Science & Technology, Hongik Univ., Korea
2 Diept. of Computer Inf. management, Wonju Nat'l College, Korea
lhobwow . hongik.ac. kr

Abstract. This paper describes a part of an extended use case approach for real
time object-oriented software development. Its foundation is an ohject-orignted
software design approach which partitions design schema into layered design
component architecture of functional components called “design component
unit”. A use case action matrix contains & collection of related scenarios each
describing a specific variant of an executable sequence of use case action units,
which reflects the behavioral properties of the real time system design. Pro-
posed scenario based testing and test plan metric measure and produce an or-
dering of this scenario set to enhance productivity, and promote and capitalize
on test case reusability of existing scenarios. To illustrate the proposed ap-
proach uses an example of real time UPS {uninterruptible power system).

1 Introduction

This paper focuses on suggest a little solution for real time system, concurrent system,
and telecommunication, based on use case approaches defined by Jacobson [6], UML,
Carlson [3], and Hurlbut [5]. In this time, we are not interested in automatically gen-
erating test data, but providing a framework for test review design in the certain test
criteria. Therefore, focused on the design phase of real time object oriented software
development activities against the traditional software development, we deal with
testing the design for preventing a little problem from propagating it later on, that is,
reducing the cost of testing at the design phase. With extended interaction diagrams
[2,12,13] included ‘Branch’, ‘Fork-Join’, ‘And-Or gate’ notations, we refine Hurl-
burt’s notion of an action unit with a conceptual analysis of the method sequences
found in traditional interaction diagrams to solve real time, concurrent problems.

Our preliminary analysis of this issue has resulted in the introduction of the con-
cept of a “component design unit”. Several definitions [12,13] for the component
designs have emerged from our research for the designer or tester to choose from
depending on the level of abstraction desired and the preference for testing techniques
to be applied. Even some definitions of this component design unit guild to generate
skeleton code through state transition table, and helps to generate test cases with an
action matrix which is converted from the interaction diagram.

V. Kumar et al. (Eds_)y: IOCSA 2003, LNCS 2668, pp. 646-655, 2003
& Springer-VYeriag Berlin Heidelberg 2003

Scenario Based Testing & Test Plan Metrics 647

To provide an automated process by which an action matrix can be produced, thus,
we need to develop an algorithm to produce the action matrix from sequential dia-
grams (called Interaction diagrams). This conversion algerithm[2] is developed to
identify or extract each type of design component unit from the extended interaction
diagram in which deals with single control object or multiple control objects.

The action unit of an action matrix is defined as specific component design units of
the interaction diagram for easily identifying reusable component design and helps
generate test plan and test schema with test plan metrics [14]. Several possible defini-
tions of design units are introduced|14,12,13], each processing different testing char-
acteristics, The scenario based testing and test plan metrics with an action matrix is
defined for the purpose of generating a preliminary test plan.

The paper is organized as follows: an extended use case interaction diagram is de-
scribed in Section 2. An action matrix produced from the interaction diagram 1s de-
scribed in Section 3. We mention test plan metrics, and scenario based testing with an
application of real time UPS system in Section 4. Conclusion and summary are pgiven
in Section 3.

2 Extended Interaction Diagrams for Real Time UPS

From this point, we will explain with one case study based on a real time * Uninter-
ruptible Power System (UPS)' use case scenarios. Focusing on the actor’s view, there
are five high-level use case scenarios such as the normal status, the normal return, the
service interruption, the failure, and the overhead as follows:

a) Normal status: rectifying part and charging part, which receive normal or pre-
liminary power source, shall supply stable AC power by power inverter that switches
AC to DC, and shall also charge battery.

b) Service interruption: when normal power service is interrupted, the battery,
which has charged by rectifying part and charging part in ordinary time, discharges
power to supply DC power to power inverter so that the load can supply stable AC
power under no power service interruption for specific discharge time.

¢) Normal return; when interrupted normal power is supplied to rectifying part and
charging part again, battery suspends its discharpe automatically, and good quality
normal power is supplied to the load without any service interruption through power
inverter and at the same time discharged battery is charged again,

d) Failure: power inverter automatically synchronizes output frequency, voltage
and normal power. When the equipment is out of order or overload, stable power can
be supplied to the load under synchronous status with normal power by being
switched without any service interruption synchronous switching switch.

e) Overload: power inverter automatically synchronizes output frequency, voltage
and normal power. When the equipment is out of order or overload, stable power can
be supplied to the load under synchronous status with normal power by being
switched without any service interruption synchronous switching switch.

From the requirement specification and the high-level use case scenario analysis,
we can design the extended interaction diagrams through passing several steps. Fig. 1,

648 RY.-C.Kimetal

the extended diagrams for three use cases associated with real time UPS
application. Each use case is described from the point of view of the outside system.
In this paper, we will skip several steps to develop five use case interaction diagrams
from high-level use case scenarios. With these diagrams, we can convert the action
matrix and use case map dialog through producing these diagrams based on high-
level use case scenarios at design stage. Three of these diagrams are ‘normal status’,
‘gervice interruption’, and ‘out-of-order” use cases in Fig. 1, Fig. 2, and Fig. 3 respec-

tively.

2, 3 contain

L) e B T o e T I

=1 =% UFE - || Swikching

s T e | | Comster i e _"J l e

| 1 I T T o
| |

Fig. 1 the Normal Status Interaction Diagram

Note: Or gate on Rectifier means binary branch concept.
"
1, B o pe———m)
% M o [] [] (o | [[
npett

-'\
st

o |

- .e L3 ¥
BOPWER
: = | ik
ol OCPORER| L epouen | i
= 3 -u.-u-'i.'ll'.Tﬂ
EEEE F : prnEty e Ll L
e I e
i O i """““‘“"l """ e

Fig. 2 Service Interruption Inleraction Diagram

FY

- r % ’

|_ﬂu:..tl'ﬂ-f | ﬂa:n:ru1 | [| i : =
|

Fig. 3 Out-of-Order Interaction Diagram

Scenario Based Testing & Test Plan Metrics 649

3 Action Matrix Approach

What is action matrix? Hurlbut [5] noted that an action matrix presents a cross-match
between each action that is included in a use case with each scenario that performs
the action. Scenario includes an ordered set of actions that explains its course of ac-
tions. The use case action matrix is intended to present the scenario designed in a
tabular form as the main course of action as a collection of actions that shows the
coverage of its use case action by all the variant scenarios in Fig. 4. Hurlbut also
mentions that an alternative representation of the matrix is a use case dialog map in
Fig. 5.

Semantics: Each scenario consists of an ordered collection of action units. The ex-
tended action matrix is intended to tabularly represent the scenario designed as the
main course of action unit as a collection of cells that shows the coverage of its use
case action component by all variant scenarios. Each action unit consists of the cluster
of the consecutive messages (methods, the basic actions) triggered, also relates be-
tween the state and next state, and involves the particular objects which send these
MEesSages.

Notation: In The first row of a matrix, each cell is matched to a unique use case ac-
tion unit and scenario combination. The rows of a matnx are assigned as scenarios
and the columns are assigned as action units. [f a use case action unit 1 also included
in the scenario, we make a one-to-one correspondence between cells and integers
which results in sequential ordering of the use case action units in the scenario. When
a single use case action unit appears more than once in a scenario, we can assign
multiple not necessarily contiguous integers in each cell. Since a bunch of the con-
secutive use case action units may appear iteratively in a scenario, we may parenthe-
size a bunch of integers that are related with consecutive use case units,

Presentation Option: An alternative representation of the malrix is possible by con-
verting use case action units into nodes in a direct graph with the Mealy’s and the
Moore’s Finite State Machine as well as Musa’s Operational Profile concept. When
the matrix is presented in this fashion, it may be alternatively refereed to as a use case
dialog map that is mentioned by Hurlbut [Hurl98].

Mapping: Each column maps to a use case action unit. Each row maps to a sce-
nario. In a use case dialog map, we assign each probability of occurrence to each link
as a weighted probability value, which is adopted by Musa’s Operational profile
[9,10]. Musa’s approach is a quantitative characterization of a system, which is re-
tained for the most-used part of the system and is reduced for lesser-used parts with
the amount of reduction related to the difference in usage. That is, Musa’s operational
profile is frequently weighted by criticality that reflects both how the system is being
used and the relative importance of the uses. We may either guess the probability of
oceurrence on each branch of the specific node (action) or survey the collection of
data [3.9,10,12,13].

650 BY.-C. Kim et al.

B it | 1
Scenda on U wt| b1 n_:1!s1 el M| gifntjit] 1] k1] | mY n1jol| p1|q1
wain Palh 1 | 2 3|4 5
Mol slaius) | 2 | 3 |
Varianl 1 1 2 | 3|4 5 g prre
{Honmal moum] | 20 e
|Serdcs ifhﬂ'l-lp'.l | 1 I 2 3 4 B B [roomemreren ey
Varian| 3 | | .
(Ol of- Order] | 1 | 2 413 5 B [roos-
Variant 4 | |
{Crverioad) | |1 | 2 4|3 5 6 |-

Fig. 5 Use Case Dialog Map for Real Time UPS Application

4 Scenario Based Testing and Test Plan Metrics

Most Object-oriented software testing methods have been developed for object-
oriented programs based on white-box testing. None of the existing methods of test-
ing ‘design’ at the design stage can directly be applied for real time object oriented
development methodologies. We propose different metrics for test plan based on
design. Our scenario based testing approach emphasizes testing software behavioral
design specifications in the design stage, which bring the metric concepts to the soft-
ware development in that the motivation for metrics should focus on reusable num-
bers & ordering of scenarios on testing,

4.1 Test Plan Metrics

This section focuses on the software testing metrics used in the generation of object
oriented test plans as part of Carlson’s use case methodology [3]. The test plan uses
an action matrix that contains a collection of executable sequences of use case action

Scenario Based Testing & Test Plan Metrics 651

units(called scenarios). The action matrix is generated from the interaction diagram at
the design stage. Software testing metrics are employed to improve the productivity
of the testing process through scenario prioritization. In other words, the software test
metrics are available to evaluate the use case scenarios defined by the action matrix
so that a test plan will emerge that improves the productivity of the testing process.
The tester has a broad range of options to choose from when identifying “action units’,
The simplest choice is to let each method be an action unit, A drawback to this ap-
proach is that the number of action units may be quite large. If so, the test plan gen-
erator can choose one of the other options based on the design component (or test
units) concept introduced. In selecting ‘reusable pattern component’, the assumption
i5 that reusable pattern design components are also used as part of the design process.
In selecting *state units’, the assumption is that an event state model has been devel-
oped. Presently, we have a conversion tool that analyzes interaction diagrams, and
automatically generates ‘state component’. The same tool can be used to automati-
cally identify ‘dialogue component’. The basic reason for choosing one of these units
is that each offers its own unique approach to unit testing based on proven testing
techniques. For example, reusable pattern test plans can be used with rensable pattern.
State based testing technigues can be used with state units. Actor based acceptance
testing can be used with dialogue components. Scenario based integration testing
techniques can be used with use case scenarios to identify an ordered list of test sce-
narios. User acceptance testing can be used with use case requirements. Based on this
choice, the test plan contains a set of action units together with appropriate unit test-
ing techniques to be applied to these units. The software metrics described in the next
section can be used to yield a more productive order in which these units can be
tested.

The purpose is to ‘optimize’ the order in which the scenarios defined by the rows
of the action matrix are executed. This approach was adopted from Musa’s work on
Operational Profiles [9,10]. Musa’s approach assumes that the designer has sufficient
insight to assess the ‘criticality” of action units and assign weighting factors to the
elements of the action matrix [7,8]. This approach differs in that the designer analyzes
the scenarios based on the ‘reusability’ of their components or subpaths.

Table 1 illustrates the test plan metrics such as most critical scenarios, most reus-
able components, and most reusable subpaths. The software test metrics described in
this section focus on the length, criticality and reusability properties of the scenarios /
action units as summarized in Table 1.

First, the issue of Length is two aspects of shortest path and longest path. | think
it is not important for software design development. But it is useful if we use this
issue with other categories of the metrics.

Second, the issue of Criticality is important to choose an ordered list of test scenar-
i0s.

Third, the issue of Reusability is also important to identify and maximize the reus-
able components. Therefore, we use scenarios and action units to develop a new path
(i.e., scenario) with the smallest number of alterations from the existing paths,

To apply test plan metrics for each of the approaches described in Table 1 will be
applied to the real time “UPS({uninterruptible power system)™ application.

652 R.Y.-C. Kim et al.

We calculate total probability of occurrence as follows:
i Use case Scenarioi = A Use Case R (R is UPS Application)
For all use case scenarios between the starting point and the ending point,
the particular scenario Scenario i is included in a Use case R.
Yiactionuniti < use case Scenario i
For all action units within a particular use case Scenario i
we can caleulate the total probability of occurrence with
(1 the weighed factor of Action unit i * probability of ac-
tion unit 1) / (L probability i).

Table 1. Test Plan Metrics w: weight value 1: nat
2 Measures of test path) Weight value(w)
Length 1} Shortest path (simple path) w=1
- least steps of actions |
2) Longest path (hardest path) W=l
- most steps of actions
Criticality 1} Most critical path W=0
2 Least critical path W =1
Reusability | Component 1) Most reusable components | w=1
2} Least reusable components | W =0 and I
Sub-path Most rewsable sub-path w1

Fig. 5 shows the alternative representation of the action matrix, the use case dialog
map, to apply the calculation of the total probability of occurrence in each use case
scenarios. Fig. 4 shows tabularly all possible action units of each use case scenario in
the use case UPS application. The Mealy model and the Moore model are theoreti-
cally equivalent, but the Mealy model is a link-weighted model and the Moore model
is a node weighted model [Beiz95). We apply with both weight concepts. As a result,
each action unit is assigned a weighted value with the value one and each link is also
a probability of occurrence.

Most Critical Scenario. The first metric is an adaptation of Musa’s ‘most critical
operational profile’ approach [9,10]. This mefric places greater weight on those sce-
narios that use action units thought to be most critical. It assumes that the designer
can make these judgments. Later metrics will not have to assume that someone is
available to make such judgments, since they can be produced automatically. Fig. 5
shows the action matrix of the real time UPS application. The use case scenarios
defined by the rows of this matrix include: normal status (variant 0), normal retumn
(variant 1), service interrupt (variant 2), and out-of-order (vanant 3), and owver-
load(variant 4) use case scenarios. The probability of occurrence of each scenario is:
variant 0 (0.54), variant 1(0.27), variant 2 (0.025), variant 3 (0.0012), and variant 4
{0.0015). As this result, we can make a decision to choose the ‘normal return’ sce-
nario because it has the highest value of probability of occurrence. Fig. 5 displays the
ordered list of test scenarios as follows: the first direct path of ‘normal status® sce-
narioc which consists of the sequence of action umits ‘bl->{(gl-=11->ml->pl-
=r1)||(f1-=j1)", the second direct path of ‘normal return’ scenario which consists of

Scenario Based Testing & Test Plan Metrics 653

sequences of action units ‘al->((gl->11->m1->pl->r1)[[(f1->j1)), the third direct path
of ‘service interrupt’ scenario which consists of sequence of action units ‘cl->d1-
>el->gl->hl->il->j1->k1->]1->ml->nl-=ol->pl’, the fourth direct path of ‘out-of-
order’ scenario, the fifth direct path of ‘overload® scenario, and other combinations,

Most Reusable Components. This simply measures the reusability of action units in
each row of the action matrix. This metric places greater weight on those action units
that are reused the most by the collective group of scenarios being analyzed.

Fig. 6 (a) displays three different types of geometric Fig.s: a triangle, a rounded rec-
tangle, an oval, and diamond. The triangle implies a particular component is used just
one time on just a single one of the paths. The rounded rectangle implies that this
component is used on two paths. The diamond implies that this component is used on
four paths. The oval implies that this component is used on five paths. The reusabil-
ity weight is defined as the number of paths that use the particular component.

!Ew 5\15“ elf{dl|el] f1 il-“‘ il| j1| k1 L mi| nt]| o1 ?1 gl|
:M:‘rumnnlp::;uf: 3 [2:_‘_: . ? 7 T'H;I i _ IF'II I'
Fraar 0 Pl | z{iil 4 la | .'5iIL Ii|._
{servce intamipn W AN TIAN e &:‘ Il']*_L
O | . E fle} [2] |||5||II'T \7 |
= W (T 11141

(a)

al bl ctdl o 1 g M 1 j1 kI H mi nt ol p1q1r‘1]
[Eeehvmgriveie 1 4 4 4 4 7 0111 111 11111 9

[PomsiyWscnt 1 ¥ A £ 4 2 2 2 ¥ 2 4 2 5 2 4 4 2 5

| (b)
__ pent | vemz | rans | rane | rans |
¥4 @‘ 1 | | !
#5 ﬂ [. 2 2
fstamest | 72 | = |0 m b
(c)

Fig. 6 Most Reusable Component

Therefore, Fig, 6 (b) shows the values ‘reusability weight' of each action unit. The
values can indicate whether a particular action unit is reusable or not. We may say
that the unit action is reusable when the value of the particular unit is at least 2.

Fig. 6 (c) indicates the total values of reusability components on each path (sce-
nario). Due to the “most critical scenario’, we say that path 1 (normal status) and path

654 R.Y.-C. Kim et al.

2 (normal return) are better than path 4 (out-of-order) and path 3 (overload), which
are better than path 3 (service interrupt). But if we measure each path based on the
‘most reusable component’, then we recognize that path | and path 2 are more usahle
than other paths.

Most Reusable Sub-Paths. This metric is similar to the previous metric except that it
places greater weight on scenarios which share common subpaths, Fig. 6 shows one
example how to identify each cluster of the sequence of reusable components in all
possible scenarios of the real time ‘LIPS’ use case application. Fig. 7 shows several
different types of geometric figures: an dotted shaded elliptical figure, and a shaded
elliptical figure. The elliptical figure shows the cluster over two paths with reusable
subpaths. The shaded elliptical Figures show iteratively or repeatedly the cluster of
reusable subpaths in paths. The dotted one displays the smallest cluster, which
consists of two components, in paths, but it is less useful because this size is smaller
than the smallest dialog unit within this application. Fig. 7 displays the core pattern
(cluster) in the use case dialog map.

On pathl and path2, we can see the ‘longest reusable subpath® which is “‘m1” through
‘r1" represented by the ellipse. On pathl, path2, and path3, we can see the reusable
subpath 11" through ‘m1°, represented by the dotted shaded elliptical Fig.s.

D T P —
Lt i i

e Rt e .m.-ua:vmqum.T.ywwpﬁ.,‘ml R

i B |
(FE- IS PR AN RS A 1| ok prjat] et
o |

L1y
i i B R A

Fig.7 Most Reusable Subpaths

In reality, we can use this metric to prioritize the important paths. After done by most
critical scenario, we had better apply this metric to recognize the most important
subpath. Therefore, we may also use this metric of the shortest and the longest path
on the concepts of most critical scenario and most reusable component. As a result,
we can clearly determine a basic main path, by first making an ordered list of all paths.

5 Conclusion

Traditional software testers concentrate on testing the program source code in the
implementation stage ar testing stage, while our testing approach will emphasize
testing software design specification in the design stage. In the design phase of our
real time object oriented development methodology, we will focus on testing “action

Scenario Based Testing & Test Plan Metrics 655

matrix & use case dialog maps® that is generated from extended interaction diagram,
which represents the behavioral properties of system design. That is actually testing
“specifications” before implementing real program source codes (program state-
ments). Scenario based testing will make a decision to order of all possible scenarios
to test first, to maximize reusability, and to minimize test cases for real time applica-
tion system. As a resull. this can lead for designer to design better system with infor-
mation of reusable design components

Refercnces

1, Breizer, Boris, “Black-Box Testing”, John Wiley & Sons, Inc, NY, 1995

2. Byun, k. UJse case hased approach to algorithm event state table, Ph.D, Thesis Hlinois Insti-
tute of Technology, Chicago, IL 1999

3. Carlson, C.R.“Object-Oriented Information Sysiems: Architectural Strategies”, Viking
Technologies Inc., Chicago, 1997,

4. Firesmith, D. “Use cases: The Pros and Cons,” ROAD, Vol.2,Nol,pp2-6, 1995,

5. Hurlbut, R. “Managing Domain Architecture Evolution though Adaptive Use Casc and
Business Rule Models®, PH.D Thesis, [llinois Institute of Technology, 1998.

6. Jacobson, L, et al, “Objet-Oriented Software Engincering: A Use Case Driven Approach”,
Addison-Wesley/ACM press, 1992,

7. Mealy, G.H. “A Methed for Synthesizing Sequential Circuits™, Bell System Technical Jour-
nal Vol 34, 1955,

8. Moore, E. F. “Gedanken Experiments on Sequential Machines”, In Aulomata Studies. An-
nals of Mathematical Studies #34. Princeton.Nj: Princeton University Press, 1956.

9. Musa, 1.D. “The Operational Profile in Software Reliability Engincering: An Overview™,
ATE&T Bell Labs. NJ, 1592,

10. Musa, J.D. “Operational Profile in Software Reliability Engineering: An Overview™,
ATET Bell Labs, NI, 1993,

11. Marick, Brian, “The Craft of sofiware testing: subsystem testing including Object-Based
and Object-Oriented testing”, Prentice Hall Series, NI, 1995,

12, Kim, YoungChul, Carlson, C.R. “Scenario hased inlegration testing for Object-oriented
software development”, TEEE The Eighth Asian Test Symposium (ATS'99), November 16-
18, 1999, Shanghai, China.

13. Kim, YoungChul, Carlson, C.R "Adaptive Design Based Testing for OO Software”, ISCA
15th Intemnational Conference on Computers and Their Applications (CATA-2000), New
Orleans, Louisiana, March 2000

14. Kim, YoungChul, A Use Case Based Approach to Test Plan Generation During Design,

Ph.13, Thesis [llinois Institute of Technology, Chicago, IL 2060

