PROCEEDINGS OF
THE 2008 INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING RESEARCH & PRACTICE

SERP

Volume 11

Editors

Hamid R. Arabnia
Hassan Reza

Associate Editors

Emanuel Grant, Jalal Karam
Vincent Schmidt
Ashu M. G. Solo

WORLDCOMP’08

July 14-17, 2008

Lus Vegas Nevada, USA
www_world-academy-of-science.org

“CSREA Press

A Library-Based Approach to Translating OCL Constraints to JML Assertions for
Runtime Checking

Carmen Avila, Guillermo Flores, Yoonsik Cheon

Automatic MDA (Model Driven Architecture) Transformations for Heterogencous
Embedded Systems

403

409

Woo Yeol Kim, Hyun Seung Son, Young Bom Park, Byung Ho Park, C. Robert Carlson, Robert

Young Chul Kim

Story Cards Process Improvement Framework
Chetankumar Patel, Muthy Ramachandran

A Frame Work for Software Engineers to Support Collaboration
Samina Jadoon, Kashif Hesham Khan, ljaz Ahmad

~ SESSION: THEORETIC APPROACHES

Model-based Object-oriented Requirement Engineering and its Support to Software
Docoments Integration

William C. Chu, Chih-Hung Chang, Chih-Wei Lu

Integrating Z in DEVS : a case study Lift Control System
Mohamed Wassim Trajet, Madamar El-Amine Hamri, Claudia Frydman

A Top-Down Method for B2B Process Design Using SOA
Mostafa Madiesh, Guido Wirtz

Software Complexity for Computer Communication and Sensor Networks Using
Binary Decision Diagrams
Harpreet Singh, Adam Mustapha, Arati Dixit, Kuldip Singh, Grant Gerhart

Model Checking Consistency Between Sequence and State Diagrams
Kuang-Nan Chang

An Expert System for Pi-Calculus and Api-Calculus Automated Reduction
Shahram Rahimi, John Dillards, Bidyut Gupia

Qualitative Comparison of B, VDM and Z in Specifying Requirements of Safety
Critical Systems

Ishrar Sami, Brian Dupee

Queue Design and Implementation Based on Service Level of NQS

415

422

431

437

444

451

457

462

469

476

Young-Joo Lee, Chan-Yeol Park, Sung-Jun Kim, Jin-Woo Sung, Sang-Dong Lee, Joong-Kwon
Kim

w

Int1 Conf. Software Eng. Research and Fractice | SERP08 |

409

Automatic MDA (Model Driven Architecture) Transformations
for Heterogeneous Embedded Systems

Woo Yeol Kim', Hyun Seung Son', Y. B. Park’, B. H. Park’, C. R. Carlson’, R. Young Chul Kim'
'Dept. of Computer & Information Comm., Hongik University, Korea
‘DanK ook University, }The Armed Forces Medical Command, Korea
*Dept. of ITM, Tlinois Institute of Technology, Chicago, USA
{john, son, bob} @hongik ac kr'

Abstract - We adopt the MDA mechanism for embedded siw
development, which reduces the lifecycle of shw development.
In this paper, we propose the automatic MDA (Model Driven
Architecture) iransformations to develop the heterogeneous
embedded sofrware. We first model ‘Target Independent
Meta Model" (TIM) through Requirement analysis With the
automatic MDA transformations, then automatically produce
some ‘Target Specific Model's (TSMzs) selecting the different
05 APIs andlor different processors, and then possible

generate ‘Target Dependent Code' (TDC) such as Java, [

or C per each specific TSM. As a result, it is possible to port
a specific TDC into the target system. We show one example
which illustrates the proposed approach.

Keywords: Model Driven Architecture, Embedded System,
Small Unmanned Ground Vehicle, Unified Modeling
Language

1 Introduction

Today’s demsnds for mumerously diverse embedded
systems are on the very rapidly and greatly increase in recent
years. Some industrial software devclopers are now in
progress about the huge complexity of embedded system.
Our researches focus on automatic development tool for
embedded software (such as design, model, code, and test) o
develop the heterogeneous embedded systems. But it may be
hard automatically to develop embedded software because
the cmbedded software mechanism is dependent on the
particular hardware system and also is just code oriented
development [1]. To solve these problems, we propose the
antomatic MDA transformations mechanism [2] using a
general meta-model for embedded shw development. We

suggest detail activities of lifecycle for embedded s'w
development and refined multiple V-model on MDA [6].
This will be possible automatically to generate targél
dependent code per each of target specific models via target
independent software. With this transformation, we can help
automatically to reuse software by product (such as design,
model, code, and test), and to reduce the lifecycle of
heterogeneous cmbedded software development.

This paper is organized as follows: in section 2, we
describe the embedded model driven architecture (MDA)
and refined multiple V-model. In section 3, we show our
automatic MDA transformations for develop embedded s'w
system. In section 4, we show the modeling example of
heterogeneous embedded systems used in this paper.

2 Embedded Model Driven Architecture

The original MDA[2] is the OMG proposed approach for
system devclopment. Tt primarily focuses on software
development platform. The MDA is bazed on one meta-
model describing the systems to be built A system
description is made of numerous models, each model
representing a different level of abstraction. The modeled
system can be deployed on one or more platforms via model
to model transformations [7].

We mention to adopt MDA mechanism into embedded
software development as follows.

21 Refined Multiple V-model on MDA

The orginal multiple V-model[8] is focused on
developing (or modeling) a system based on a particular
target domain. This is difficult to apply for other target
domains. S0, we attempt to refine multiple V-model on
MDA, which solves problems of the original V-model.

This resesch 3 financizlly supponsd by the Mnistry ol Commerce, Indhastry and Enerzry (MOCTE)Y and Korea Inchasrad Techmalogy Feundation (KOTEF)
througzh the Human Resource Training Propect fior Regnona] Inovaton {205

410

TIM TEM(=)
oxt

Test Casa
Spadication

Int{ Conf. Software Eng. Research and Pracfice | SERF'08 |

Tasi Dasign
Test Case ralion

o 0

; -.l-l-... T

Figure1. Refined Multiple V-Model with MDA

In figure 1, it describes 1o adapt multiple V-model with
MDA. The refined multiple V-model is also a development
mode]l process (Target Independent Model, Target Specific
Model(s), Target Dependent Code(s)) which is developed the
different versions of the heterogensous systems. The first V-
model is focused on the target independent model. The
middle V-model is focused on the target specific model(s).
The last V-model is focused on the tarpet dependent code{s).

The refined ome may usefully develop heterogencous
embedded systems with reusability on different target
domains. Moreover it can also work parallel with both of
s'w development process and test process. Due to these
double processes, it may be possible to develop more safe
and reliable software components.

50 we devclop the antomatic tools for automatic MDA
transformations, and code gencrations such as Java, C++, or

Figure 2.a. Mapping diagrams at TIM phase

In figure 2.ab.c, it is just more detail deseribed o map
diagrams at the first V-model. The use case diagram is used
during requircment to represent the functionality of the
system from the user’s point of view. During analysis, the
class diagram describes the structure of the system. The
concurrent message diagram and concurrent state diagram
describe the internal concurrent behavior of the system
during design.

- :":5“-_
R

1‘.@#ﬁ$.‘“““mf
- .

fiar Diyjecty

Figure 2.b. Mapping diagrams at TSM phase

It is necessary work to make the automatic transformation
from TIM{Target Independent Model) phase to TSM(Target
Specific Model) or from TSM(Target Specific Model) to
TDC(Target Dependent Code). Therefore, it should make a
reliable model of TIM at the first step. We don't mention
about next remaining phases in this paper.

Int! Conf. Software Eng. Research and Practice | SERF'08 | 411

do automatically impossible. Finally we can port complete
executable code(s) into the target system(s).

Our MDA Transformation Process comsists of two
transformation steps T1, T2{or T2, T2'") in figure 4.

The first transformation T1 is automatically transformed
TIM (which merges with the predefined Processor profile
and O% profile) inte TSM. The second transformation T2 is
automatically generated the right executable TDC per each
different target systemn. Its possible generable code languages
are C, C++, and Java. The code generating mcthod is
automatically generated using conversing text from model

[s].
[Processor | we | yug | s]
. EewEdT1 ™ F | e
Figure 2.c. Mapping diagrams at TDC phase s H"HM_H____ I_ = i
S
________ (Tl —— — — = ——
2.2 MDA based Modeling Approach werae \T—: [P —
L= =" TR TS
We apply MDA to cmbedded software modeling e TEM l
approach. Our modeling approach consists of static modeling T e
and dynamic modeling. Static model uses class diagram to =~ ————— ﬁ F— T ———-
represent the static aspect of a system. In dynamic model, i 1 T
concurrent message diagram and concurrent state diagram o VY (R S5 S T i B
[11] represent the dynamic concurrent behavier of the Cooe l]] | |
system in figure 3.

Figure 4. MDA Development Process

3.1 Transformation T1: Transforming from a
TIM to TSM(s)

To transform TIM imto TSMis), we mention about four
layers such as application layer, service layer, operating
system layer, and processor layer. Each Layer is described as
follows: Application Layer is the top layer for modeling 2
system. The user can do modeling with services on service
layer. But we can pot change the service name for Tl
transformation[9].

Figure 3. The r:ta-ﬂ_:l-luhip of the models

3 MDA Transformation Process

Our defined MDA Transformation Process [5,10] consists
of TIM (Target independent modcl) stage, TSM (Target
specific model) stage, and TDC (Target dependent code)
stage. TIM defines a general model independent of the
particular target domains. After requircment analysis, we
may design TIM with extendad xUML[4,5,11] and UML
profile[3] at this TTM stape.

TSM defines a specific mode! dependent of the OS, and et
hardware within the particular target domains. aisas
At this TSM stage, we can model more complete with E AL ;?l: T« VAR
additional functions on TSM automatically transformed with == : iy . = S
TIM. TDC defines the source code per the specific target I e] o { o Pt e |
system. At TDC stage we can automatically generate codes Figus 5. The stmnturo.uffwmn;;}w embetided
whatever we need such as Java, C++, or C. But we manually system development

need 10 write a little part of the particular function codes that

il Int Conf. Software Eng. Research and Practice | SERF'08 |

In figure 5, there is mapping the behaviors of application
layer imto services of service layer. Then associate with
operating system layer and processor layer. The user will
possible develop a system having only knowledge of
services without detail implementation. Operating System
Layer consists of APIs of OS, Just work with context switch,
scheduling, memory management, timer service of O3S on the
processor layer. The last processor layer is the bottom layer
dependent of hardware.

3.2 Transformation T2: Transforming from
TSM(s) to a TDC(s)

To transform the actually executable code from TSM
through Tl transformations, we should do execute T2
transformations.

T2 is generated a language with meta-template model on
the basic of the class diagram, concurrent message diagram,
and concurrent state diagram of TSM. Figure 6 shows the
meta template model for these diagrams.

Claxs Name: string

Package List: List

Parent List : List

Interface List : List

Attriburte
Association List: List
SetFunction
Avtribute List: List
Head
Function List: List e ——
Bady

Figure 6. Meta template model

Meta template model consists of all elements for the
actual code generation in figure 6. “Class Name™ stores the
strings of class name. “Package List” stores a type of linked
list to include package or library. “Parent List” is the above
ome of current class, which stores a type of linked list.
“Interface List” stores interface name. “Association
List” also stores a type of linked list about association
relationship between other classes. * Amtribute List” also
stores a type of linked list about the class attributes.
“Function List” stores a type of linked list about the class
methods.

e

o Sy —
o [Poctope L] swcigge Poctoge Ll
ciom [Chesa oreg] | | o i el
emierech [Fored Linf] Prwed Lisf], Priericce L]
| Iplgraesh Troprices il |
' i Furcten lntFe]
Momcmpion pechecied :
mriecied Ttz o Ligh Azl
ssecagt on Lt gt bk Fueson lnftiecal]
ke oz st Lazp o |) [
Jeasec pion LB Funztiacd oibee || unchon iBadll |
Motritule srieyle L3 |
|Rsreis LEl gnabon
Funcin Fenzhon Lrinacdl
Punzioe Lsthgod] |
i (Farecion [atibg ol

Funcior UnEogys) 1
} 1

Figure 7. Each code template

After storing all information of diagrams through meta
template model, it is transformed like figure 7.

It shows that cach of meta template names in figure 6
matches each code template in figure 7. As a result, we can
execute T2 transformation automatically to generate each
code with collecting information on Meta template model of
TSM in figure 6.

4 The automatic MDA transformation tool

We would like to use one example of small unmanned
ground vehicle system (SUGV) in figure 8.

Figure 8. Small Unmanned Ground Vehicle System

Table | describes the information comparison of two
heterogeneous SUGY systems.

A — .

Int? Conf. Software Eng. Research and Practice | SERP08 | 413

Table 1. Hardware Information for SUGY Systams
(= o RS ; o L =
5 SomeSUGYL - f - - SUGVE o v
=1 % | Ubicom SX45AC Hitachi HE3292 i
Beicroce s 20MHz 16MHz B
RAM 32 KByte 513K Evie e : ;

EEPROM 32 KByt 16K Byt | E Rctia 7 v e e
Sensar ® | Two ultrasonic seasors| Two light sensors i1 St :""m ST
Display Text LCD Text LCD | teeaces T oepwrczid [oAumel ATHISANTAD |

Serve-motor i 2 B oometio Seen e H
JYM = WA N/A | I‘ WO I Lega0s I Seesive
language & Java CHCe4 J i z HEzh. £

4.1 Transformation T1: Transforming from a

TIM to TSM(s)

The first mansformation T1 is automatically transformed
TIM (which merges with the predefined Processor profile
and OS profile) into TSM in Figure 9, 10. Figure 9 shows o s : =)
choose Ubicom SX48AC and Javeling for SUGVI, then Figure 10, Transformation T1: SUGV2
click the ‘Generate’ button to transform into one TSM.

Figure 10 shows to choose Hitachi H8/3292 and brickO8 for 4.2 Transformation T2: Transforming from
other SUGV?2 then also click the ‘Gencrare” button to TSM(s) to TDC(s)
transform into other TEM.

- ""_;'_-_:'Ji' —ie

e — Ml

I

The second transformation T2 is automatically generated

&ﬁ%%m’? gt the right executable TDC per each different target system. Tts
| sHis v ¥ 3= almae i = possible generable code languages are C, C++, and Java.

Figure 11, 12 shows automatically to transform into code

: through code template after modeling a TIM. All

Fof e e ! = transformations are automatically executed on the tool, In

1 l ; = == the case of SUGI, java code can be generated as clicking
) “Java® button while C++ be generated in SUGV2.

o B

- :i i

| EET e T i |

AL

Wi Ll v a1 | | S T ——- ' . |

Figure 9. Transformation T1 : SUGV1 Figure 1. ".F_r.ansfon.:;;t;n_}:z. S SUGV

414

h e e . T
=] Ll B
. B '.=I-: T bl =

;':;;-:-—l——er.h.u.-_..._ e ——

On T2 transformation in Table 2, it shows Forward{),
Backward(), Stop() functions of motor class. Motor class
links 1o one other motor fo work the servo motor,

So, it rotates each opposite direction if the same code to
move the left servo motor and the right servo motor, As a
rersult, we can store the location status information with
"m_chPosition’ variable. We show to compare the underline
on three functions penerated with the tool, and fo transform
into the right code for the heterogenous embedded systems.

Table 2. The comparizon of codes on each SUGY

SUGV 1(Javeline) SUGV2(MindStorm)

public void Forward()

{
il lefl” =m chPosition)

public void Forward()

| H"left"—m_chPosition)

CPUpulseOutiSTOP -m speed, | Motor forward(m speed);
m_nFin);

else clsa

CPU pulseOut{STOP +m speed. Mator reverse(m speed):
m_nPinj;

m_stahus = “forwarnd™;
| Ly
public voud Backward)) public void Backward(}
|)

i~ tefi™—=m_chPosition)

| CPLULpulscOutSTOP4m speed,

m_status="forward™;

1 left"™=—m chPosition)

Magtor.reverse{m_speed);

m_nPin):
else else
CPUpulseDut{STOP-m spoed, | Motor forward{m_speed);
m_nPFink

m_states = "backword™: m_stafus = “hackword ™
i |
public vaid Siop() pulrlic voul Stopi)
i |
CrU pulseQuiSTOP, m nPinj; Maotgr brake();

m_status="ghop ™, m_statug="glop™;

! i [!

Inti Conf. Software Eng. Research and Practice | SERP'08 |

5 Conclusion

It may be hard to reuse embedded software products
(such as model, design, and code) for the hardware
dependent systems, that is, heterogencous embedded systems.

We propose the automatic MDA (Model Driven
Architecture) transformation to develop the heterogeneous
systems. With this transformation method, we can possible
develop target independent model, then automatically
generaic target specific model(s), which also are generated
target dependent code(s).

To salve a problem for embedded software development,
we implement the automatic tools for model transformation
and code generation.

As a result, we can lead to reduce the lifecycle of the
heterogeneous embedded software development.

6 References

[1] Axel Jantsch, Modeling Embedded System and SOCs, Mogan
Kaufmann, 2004,

(2] A. Kleppe, . Warmer, W.Bast, MDA Explained: The Model
Driven Architeerore: Practice and Promise, Addison-Wiseley,
2003,

[3] Object Management Group, OMG Unified Modeling Languape
Specification (drafi) Fersion 1.3, June 1999,

[4] Leon Starr, Executable UML: How to Build Class Model
Prentice Hall, 2002,

[5] Melior, Stephen J, Marc JBalcer, Evecmable LML 4
Foundation for Model-Driven Architecnure. Boston: Addison-
Wesley, 2002.

[€] Bart Brockman, Edwin Notenboom, Testing Embedded
Sofreare, Addison-Wesley, 2003

[7] Pierre Boulet, Jean-luc Dekeyser, Cedric Dumoulin, and
Philippe Marquet, “Mda for Soc Design, Intensive Signal
Processing Experiment”, In FDL'03, Frankfurt, September 2003,
ECSL

[8] D. Kim, W. Kim, Robert Y. Kim, “A Study on Design for
Embedded 5/'W based on Model Driven Architecture”™, Jowrnal of
WIT, Korea, Vol. 6, No. 1, March 2006,

[%] Kyo C. Kang, Jacjoon Les, and Patrick Donohoe, "Feature-
Oricnted Product Line Engineering,” 1EEE Software, Vol, 9, No_ 4,
Jul/Aung. 2002, pp.5B-65.

[10] Jean-Louis Houberdon, lean-Philippe Babau, “MDA fis
embedded systems dedicated to process control™ Workshop on
MDA in SIVOEES, in conjunction with UML'2003, October 2003,
[11] W. Kim, Robert Y. Kim, "A Study on Extension of Exccutable
UML for Modeling Real-time Embedded Softwarc™, Proceedings of
the 25th KIPS Spring Conference, Korea, Vol 13, No, 1, May 2006,
Pp-231-234

	사진 001.jpg
	사진 002.jpg
	사진 003.jpg
	사진 004.jpg
	사진 005.jpg
	사진 006.jpg
	사진 007.jpg
	사진 008.jpg

