ISSN 1343-4500 (print)
ISSN 1344-8994 (electronic)

iNFORMATION

An International Interdisciplinary Journal

Printed in Japan

Volume 20 Number 2(A), February 2017

Published by International Information Institute
www.information-iii.org

Extending Use Case Point (e-UCP) mechanism for Cost Estimation and
Priority for the Renewable Energy Monitoring System
Bo Kyung Park, Woo Sung Jang and R. Young Chul Kim
Validating Requirement Satisfaction through Software Tracking Matrix
Model Bo Kyung Park and R. Young Chul Kim
Evaluation of a Smart Traffic Light System with an I0T-based Connective
Mechanism
Hyeon Jun Lee, R. Young Chul Kim and Hyun Seung Son
xCodeParser based on Abstract Syntax Tree Metamodel (ASTM) for SW
Visualization Hyun Seung Son and R. Young Chul Kim
Characteristics of Dehumidifier using Psychoacoustics Parameters in
Sound Signal Processing
Seong-Geon Bae and Myung-Jin Bae
A Study on Definition of Unknown Explosion Sound using a Signal
Processing
Seong-Geon Bae, Myung-Jin Bae and Geum-Ran Baek

Medicine and Life Sciences
Implementation of a Natural Light Chromaticity Coordinates-based Healthy
Lighting System
Yang-Soo Kim, Sook-Youn Kwon and Jae-Hyun Lim
Vagus Nerve Stimulation System for Treating Tinnitus based the Stimulation
Intensity Control According to the Tinnitus Frequency Amplitude
Jaeung Lee and Hojun Yeom
Myoelectric Controlled Electrical Stimulation in Sleep Bruxism Treatment
with Adaptive Artifact Canceller Hojun Yeom
Secure and Anonymous Health Data Transmission Protocol for Remote
Healthcare Monitoring
Youngho Park, Chul Sur and Kyung-Hyune Rhee
A Study on the Real-time Toxic Chemical Management System based loT
Min Soo Kang, Young Gyu Jung, Ji Young Mun and Chun Hwa Ihm
Visualization Device of Living Organism through Soft x-ray
Ji Young Mun, Kyung Eun Lee, Won Ja Lee, Hwa Shik Youn,
Min Soo Kang and Sung Sik Han
Evaluation of Dynamic-motion in Body Index Techniques: Body Mass
Index and Physical Sensory Index Jeong-lae Kim and Kyu-Ok Shin

—697—

935

945

953

963

969

977

985

993

999

1005

1015

1023

1031

INFORMATION ISSN 1343-4500 eISSN 1344-8994
Volume 20, Number 2(A), pp.945-952 ©2017 International Information Institute

Validating Requirement Satisfaction through Software Tracking
Matrix Model

Bo Kyung Park*, R. Young Chul Kim**

SELab, Dept. of Computer and Information Communication, Hongik University, Sejong, 30016, South Korea
E-mail: {park*, bob**}@selab.hongik.ac.kr

Abstract

In this current time, software is rapidly developed to release at time-to-market, which is so critical
to control the quality of the software. In our industrial fields, software developers still work on software
maintenance without any design, documentation, and code visualization [1]. Thus, the need of software
visualization based on reverse engineering has emerged. In previous papers, we mentioned a procedural
method for software visualization and quality improvement [2, 3, and 4]. But this method is difficult to
validate requirement satisfaction through tracing the customer requirements. We propose a requirement
tracking model for requirement’s verification, which can visualize the actual object oriented code based
on a SW visualization, and improve software quality through manually refactoring based on inner
structure of the visualized code. The improved result can be verified through Software Requirement
Tracking Model. We can also check how much to achieve between the quality improvements and the
customer requirement satisfaction.
Key Words: Software Visualization, Requirement Validation, Tracking Matrix Model, Software

Quality

1. Introduction

Recently the importance of the quality management of software is increased on software
development. It makes software maintenance difficult due to software complexity, software
invisibility, and developer’s environments. Nowadays, software industry has focused on the
development process for software quality and time to market, which still focuses on code-
centric development for how rapidly to develop the software. Therefore, we also consider the
two more aspects 1) to improve bad habits of programmers, and 2) to work maintenance on
code visualization without any design and documentation. In order to improve software
quality management and maintenance, software engineers focus on reverse engineering,
which analyzes the existing system without any design and documentation, and the original
programmers. To easily analyze the inner structure of software, we try to use this approach. In
previous studies, we proposed the visualized method of the internal object-oriented code
structure, and software quality improvement process based on coupling of the modules [2, 3].
In addition, we measure modules based on coupling, define quality indicators, and improve

the quality of software through refactoring. But this is difficult to verify software whether it is

—945 -

BO KYUNG PARK AND R. YOUNG CHUL KIM

correctly developed system based on requirements during software development or not. 54%
of software projects failure factors has occurred from inadequate requirements management.
Therefore, a systematic requirement verification methods are needed [5, 6]. In this paper, we
propose a verification method through the Software Requirement Tracking Matrix Model.
These results define the measure module and quality indicators. And it will improve the
quality of software, which can verify the requirement through the requirements traceability
model. Through these processes, we can check how much to achieve between the quality
improvements and the initial code requirements.

This paper mentions as follows: Chapter 2 introduces to improve quality through the
software visualization process. Chapter 3 describes the requirements for verification methods
through tracking matrix. Chapter 4 describes the application, and chapter 5 mentions

conclusions

2. Software Visualization Process

In previous studies, we have proposed a quality improvement through visualization software
[2, 3]. The visualized tool-chain has used with Open Source based tools such as Parser (or
Analyzer), Database, View Composer. In addition, it consists of source code analysis, DB
storage, and structural analysis, which performs each other as independent functions [1, 2, and
3]. With source code analysis, the Tool-Chain derives the data through the Parser, and finds
the relationships between the object-oriented components (class, method, variable). With DB
storage, it stores the analyzed information to the database (SQLite), and also defines table by
class, method, or variable. And it arranges to generalize relations and associations. This
classification easily looks up information in the structural analysis [3]. In the structural
analysis, the Tool-Chain measures the coupling with arranged information. In the
visualization, it can be visible the internal software structure through the View Composer.
DOT Program is used as a visualization tools. Quality improvement method measures the
software quality based on coupling [1, 2]. This software is based on the design principle of
“strong cohesion and loose coupling” principle. The previous research suggests the way to
measure quantitative measurement method [2, 3] for high software quality. In the module
definition, a module unit is defined for the target software code. We also define a quality
indicator for the quantitative measurement of all coupling elements such as data, stamp,
control, external, common, and internal coupling. In order to develop a high-quality software,
the coupling between the modules are needed to be minimized. Therefore, we define the
quality indicator’s weighted values as follows: Data Coupling (1), Stamp Coupling (2),
Control Coupling (3), External Coupling (4), Common Coupling (5), and Internal Coupling

—946 —-

VALIDATING REQUIREMENT SATISFACTION
(6). After them, it automatically calculates the sum results of multiplication between the

coupling index number and weight value of coupling modules in the whole code. Finally,

analyzed the code pattern to detect the defined code patterns.

3. Validating Requirement through Requirement Tracking Matrix Model

=

7

Fig. 1. A tracking process for verifyiné ;édﬁifément satisfactions

Figure 1 shows a tracking process for verifying requirement satisfactions. This process
consists of three steps as follows; O Tool-Chain through static analysis of the object-oriented
code in Stepl, @ SW quality improvement in Step2, and (3 Satisfaction verification of

requirements in Step 3. In this paper, we limit to mention the requirements satisfaction

verification at step 3 in figure 1.

3.1 Our Tool-Chain for Statically Analyzing Object Oriented Code

In figure 1, step 3 is the process of extracting the UML class diagram from the code [1, 2, 3,
7, 8,9, and 10]. This step is to extract the class diagram in order to visualize the requirements
tracking model. In source code analysis step, the parser analyzes the object-oriented code,
which extracts the elements of classes and the relationship information (generalization,
association and dependent) among the classes. The database storing step classifies the
extracted information, and stores them in each table. Association between the extracted
elements is stored by one to one mapping. For example, if Class ‘A’ has methods ‘a’, ‘b’, this
mapping information should be stored in two ways such as A->a, A->b. The structural
analysis step compares and analyzes the dependencies between the classes and then measures
coupling between them. The DB storage step extracts the elements classified from the
modules. In this paper, we define a modular unit as a class. Therefore, the extracted

information is the information of class and classes, methods, and variables. The visualization

— 947 -

BO KYUNG PARK AND R. YOUNG CHUL KIM

step visualizes relationship between Classes.

3.2 Software Quality Improvement

Step 2 measures the quality of the software based on coupling [1, 2, and 3]. The class
diagram extracted from step 3 defines the mapping relationship between the requirements and
also shows the graph. For this purpose, in step 2 we define to measure both coupling modules
and quality index, and then also define a code pattern. In other words, this step improves the
software quality. In the module definition step, we define the module units from the target
software code. In this paper, we focus on object-oriented language JAVA code, which
mentions a class as the module. The quality indicators definition step sets a score per each
coupling element. With this scores, we can recognize how much to have the coupling between

modules, and also the cohesion. It is possible to work refactoring for the high-quality software.

3.3 Validating Requirement Satisfaction

Step 3 validates the initial requirement with the extracted results in step 1 & 2. It compares
and analyzes both java source code and list of requirements (Step 1) defined by Redmine of
the tool-chain. In this step, it also assigns the numbering on requirements in the coupling
graph. We extract the class diagrams from coupling graph on source code, and also the
requirement tracking rate to verify that the correct mapping requirements. The requirement
tracking rate is calculated by dividing the number of detected requirement in the total number
of the requirements as below:

The Number of Detected Requirements
The Number of Total Requirements

Requirements Tracking Rate =

(5]

4. Case Study

The case study is applied with the source code of our Use Case Diagram Drawing Tool. It
can extract a class diagram from the source code (Java) of the use-case diagram tool in step 1.
At step 2, it measures software quality metrics based on all coupling elements. To improve
the quality of the software, the refactoring repetitively is performed until getting the suitable
measured value. Then, we continually extract the bed smell pattern during/after refactoring
[11]. In this case, we find bad smell patterns such as the Message Chain and Duplicated Code
Pattern. Therefore, as we can remove these pattern, it may possible to improve the strong
coupling mechanism to the loose one. Figure 2 shows a part of the code visualization graph
extracted through this fool-chain after statically analyzing object-oriented code. It also

extracts the coupling elements between the measured classes in this visualization graph

—948 -

VALIDATING REQUIREMENT SATISFACTION

through a View Composer based on this source code. The graph shows the rectangle as the
identifier of the class, the arrow as indicator between the referencing class and the referenced

class.

CMainFrame.uniqueCMainFrame
getview()

251 52150) .getCTabView()

.getCClassView()

.getCClassEventHandler ()

.setLineFlag(true);

[public static CRATnFrase getinstance(){
{F(umiqueCHainFrose ~= null){

molium.dn:z{"
uniquetMainframe « new (Mainfrase(); -

)

lw-w-n

)

CMainFrame.getInstance()
.setLineFlag(true);

Fig. 3. An example to remove the Message Chain of bad smell pattern
Figure 3 shows an example to remove the Message Chain of bad smell pattern. At step 3, it

illustrates the requirements tracking rate the mapping relationship between the class diagram

and client requirements.

949

BO KYUNG PARK AND R. YOUNG CHUL KIM

List(Redmine)

oS wawer L

ke d

WREQCO2
€003
#REQCO4
BREVCUS
PREOLOS
BREQCOT
BREC008
BAE QOO
=HEQOI 7
&REQ0TT ’

| sReccz ’
=RE0OTY ’
FREQOI4 ’
BREQUTS

~
,.““.“a..”,:}
1

a

A
~

KRNN YN

PRTCREESIRS R AR 2
!

Fig. 4. An analysis process of the requirements

Figure 4 shows an analysis process of the requirements defined by our tool-chain (Redmine)
and the source code. This process defines the mapping relationship between the class diagram
and the requirements [2, 3].

Our mapping relationship method analyzes the java code related with the requirements, and
assigns the comment (/@Requirement Number) at the start point of the associated code [5].
When the tool-chain is running, it compares between a commented section and the Database
information. If there are the information associated with the database, the tool-chain enters the

requirement numbers (like REQ002...) within the class.
- After

1
1
T
1
1
i

Before «

EREQD29

| Requirement
SRECO2S

//8REQO02, REQD03, REQOD4, REQU0S, REQOOT ,peonn.
public class CMenuBar extends JMenuBar _pc.q,.
I SRECO2S

Fig. 5. An extracted mapping relationship

Figure 5 illustrates an extracted mapping relationship. ‘Before’ part is derived from the
extracted results of step 1, 2 in figure 1. ‘After’ part is the extracted result from defining a
mapping relationship between the classes and requirements. Each requirement number is
marked in each associated class (CmenuBar <> REQ002/003/004/005/007). The extracted
information is used to calculate the requirement tracking rate [5]. The total number of
requirements of the Use Case Diagram Drawing Tool is 29. The number of mapped
requirements is 13. Therefore, the requirements traceability rate of the applicable case is 45%.
The results shows that only 45%. The results shows that only 45% of the total requirements is

reflected in this application tool.

-950~-

VALIDATING REQUIREMENT SATISFACTION

Total
No. Project = Timestamp Coupling
(SN)

Total Violation | ReqRate Total Result

(PMD) (req/totalReq) {LOC | Graph Ao

Class nNESEo
Disgr add reqRate field

Fig. 6. The results of a requirements traceability rate

Figure 6. is the results of a requirements traceability rate derived from the examples.

5. Conclusion

In order to develop high-quality software, the correct requirements from the initial
development lifecycle is crucially required. It happens to fail software projects due to the
insufficient requirements management and frequent changes [6]. To solve this problem, a
systematic requirement validation method is essential. In this paper, we propose a
requirements traceability model to validate the requirements satisfaction. This model not only
maps relationship between the existing results (such as the extracted design from the software
code and the code visualization graph) and client requirements. It also shows the class
diagram through visualizing the associated requirements. In addition, this model may improve
the quality of the code, and validate the original requirements. In the future, we will study the
additional quality metrics and the code pattern to find defects. We will study the extraction
method how to extract all designs (such as sequence, package, and use case diagram) from the

code based reverse engineering through code visualization.

6. Acknowledgments

This research is supported by the Human Resource Training Program for Regional
Innovation and Creativity through the Ministry of Education and National Research
Foundation of Korea (NRF-2015H1C1A1035548) in 2016/2017 and Research and

Development Service through the Telecommunications Technology Association (TTA).

References

[1] Nipa SW Engineering Center, SW Development Quality Management Manual (SW
Visualization), 2013.

[2] Bokyung Park, Haeun Kwon, Hyun Seung Son, Young Soo Kim, Sang Eun Lee, R.
Young Chul Kim., A Case Study on Improving SW Quality through Software
Visualization. Journal of KIISE, 41 (2014), 935-942.

[3] Bokyung Park, Haeun Kwon, Hyeoseok Yang, Soyoung Moon, Young Soo Kim, R.
Young Chul Kim., A Study on Tool-Chain for statically analyzing Object Oriented Code.

=I5 1=

BO KYUNG PARK AND R. YOUNG CHUL KIM

Korea Computer Congress, 463-465.

[4] Geon-Hee Kang, R. Young Chul Kim, Geun Snag Yi, Young Soo Kim, Young B. Park,
Hyun Seung Son., A Practical Study on Code Static Analysis through Open Source based
Tool Chains. KIISE Transactions on Computing Practices, 21 (2015), 148-153.

[5] Bokyung Park, Haeun Kwon, Young Soo Kim, R. Young Chul Kim, Requirement
Tracking Visualization for Validating Requirement Satisfaction. The Sth International
Conference on Convergence Technology, 5 (2015), 368-369.

[6] Karl Wiegers., “Software Requirements”, Microsoft, 2013.

[7] Haeun Kwon, Bokyung Park, R. Young Chul Kim, Sang Eun Lee., Extracting Designs via
Code on Reverse Engineering. The 5th International Conference on Convergence
Technology, 5 (2015), 274-275.

[8] Haeun Kwon, Bokyung Park, Hyeoseok Yang, Young B. Park, Young Soo Kim, R.
Young Chul Kim., Applying Reverse Engineering through extracting Models from Code
Visualization. The 2014 Fall Conference of the KIPS, 21 (2014), 650-653.

[9] JunSun Hwang, R. Young Chul Kim, SangEun Lee., A Guideline for Realization on
extracting automatic size maturity level of diverse component via Source Codes. The 5th
International Conference on Convergence Technology, 5 (2015), 268-269.

[10] So Young Moon, Sang Eun Lee, R. Young Chul Kim., Internal Code Visualization for
Analyzing Code Complexity. The 5th International Conference on Convergence
Technology, 5 (2015), 364-365.

[11] Martin Fowler, Refactoring: improving the design of existing code. Addison-Wesley,
1999.

**Corresponding author: R. Young Chul Kim, Ph.D.

Department of Computer & Information Communication (CIC),
Sejong Campus, Hongik University

2639 Jochiwon-eup, Sejong-ro, Sejong City, 30016, South Korea
E-mail: bob@hongik.ac.kr

-952-

	img20170710_14083483.pdf

