ISSN 1343-4500 (print)
ISSN 1344-8994 (electronic)

iNFORMATION

An International Interdisciplinary Journal

Printed in Japan

Volume 20 Number 2(A), February 2017

Published by International Information Institute
www.information-iii.org

Extending Use Case Point (e-UCP) mechanism for Cost Estimation and
Priority for the Renewable Energy Monitoring System
Bo Kyung Park, Woo Sung Jang and R. Young Chul Kim
Validating Requirement Satisfaction through Software Tracking Matrix
Model Bo Kyung Park and R. Young Chul Kim
Evaluation of a Smart Traffic Light System with an I0T-based Connective
Mechanism
Hyeon Jun Lee, R. Young Chul Kim and Hyun Seung Son
xCodeParser based on Abstract Syntax Tree Metamodel (ASTM) for SW
Visualization Hyun Seung Son and R. Young Chul Kim
Characteristics of Dehumidifier using Psychoacoustics Parameters in
Sound Signal Processing
Seong-Geon Bae and Myung-Jin Bae
A Study on Definition of Unknown Explosion Sound using a Signal
Processing
Seong-Geon Bae, Myung-Jin Bae and Geum-Ran Baek

Medicine and Life Sciences
Implementation of a Natural Light Chromaticity Coordinates-based Healthy
Lighting System
Yang-Soo Kim, Sook-Youn Kwon and Jae-Hyun Lim
Vagus Nerve Stimulation System for Treating Tinnitus based the Stimulation
Intensity Control According to the Tinnitus Frequency Amplitude
Jaeung Lee and Hojun Yeom
Myoelectric Controlled Electrical Stimulation in Sleep Bruxism Treatment
with Adaptive Artifact Canceller Hojun Yeom
Secure and Anonymous Health Data Transmission Protocol for Remote
Healthcare Monitoring
Youngho Park, Chul Sur and Kyung-Hyune Rhee
A Study on the Real-time Toxic Chemical Management System based loT
Min Soo Kang, Young Gyu Jung, Ji Young Mun and Chun Hwa Ihm
Visualization Device of Living Organism through Soft x-ray
Ji Young Mun, Kyung Eun Lee, Won Ja Lee, Hwa Shik Youn,
Min Soo Kang and Sung Sik Han
Evaluation of Dynamic-motion in Body Index Techniques: Body Mass
Index and Physical Sensory Index Jeong-lae Kim and Kyu-Ok Shin

—697—

935

945

953

963

969

977

985

993

999

1005

1015

1023

1031

ISSN 1343-4500 eISSN 1344-8994
©2017 International Information Institute

ORMATION
jume 20, Number 2(A), pp.963-968

xCodeParser based on Abstract Syntax Tree Metamodel (ASTM)
for SW Visualization

Hyun Seung Son* and R. Young Chul Kim**

* SE Lab., Dept. of Computer and Information Communication, Hongik University
Sejong, 30016, Korea
E-mail: {son*, bob**}@selab.hongik.ac.kr

Abstract

The software visualization is a process to recover the architecture from program code, which
changes representation to graph from text through reverse engineering. To perform the process, we need
to have three tools as the parser, database, and visualizer. The parser in these tools performs a most
important role due to syntax and semantic analysis of a program code such as C, C++, or Java. The
parser generates Abstract Syntax Tree (AST) that is preparation to analyze the statements and
expressions in functions and classes of code. But the AST is dependent on the parser. The existing AST
are not compatible with other. If we achieve SW visualization using the existing specific parser, we
must implement a visualizer separately for each parser or program language. To solve this problem,
OMG proposes the standard named Abstract Syntax Tree Metamodel (ASTM). This means to define
metamodel of the AST, which does not depend on any parser or program language. Therefore, we can
represent several languages with just an ASTM. This paper introduce to implement the parser named
xCodeParser that uses ASTM for multi-language. We show the design and implementation of
xCodeParser. Then we present a case study to suggest a whole procedure for SW visualization with the

ASTM.
Key Words: Abstract Syntax Tree Metamodel (ASTM), Metamodel, Parser, Software Visualization,

Reverse Engineering

AT N BT P e S
T AP Fgrts

BT

1. Introduction
Korea’s most small sized companies and ventures used to develop the software code

without any design due to lack of time and cost. They just want to release SW product

SR IR e e

gy

i quickly, but it may spend more cost at the maintenance stage as a result, and low quality of
3 SW product is made. Therefore, to make high quality software, the companies need method

to show inside of the developing code of the complex software.

; The software visualization is able to recover the architecture from a program code through

reverse engineering [1]. For the SW visualization, NIPA Software Engineering Center

R T

support the tool-chains based on open source software such as Source Navigator [2],
Graphviz [3], SQLite [4], Jenkins [5], and etc. But it is require diverse tools such as parser,
database, and visualizer basically [6]. To recover an architecture in NIPA’s software

visualization, they use Source Navigator (SN). The original goal of the SN shows call graphs

—963—

HYUN SEUNG SON AND R. YOUNG CHUL KIM

from code, and the tools generate databases files as a result of parsing the code between the
processes. The idea of NIPA use the databases file without general parser. But, the idea have
some weakness as follows: 1) it not show inside of function, 2) it not read comments in
program code, 3) it cannot be more than work to except for the provided features. Therefore,
we need the general parser to generate the Abstract Syntax Tree (AST) for using advanced
reverse engineering techniques. Generally, the parser generates an AST to analyze the
statements and expressions in functions and classes of code. But the existing ASTs are not
compatible with other AST that dependent on the specific parser. In this case, it can be faced
with difficulties to waste cost and time when you use other languages, because it should be
developed separately for each language.

The OMG’s Abstract Syntax Tree Metamodel (ASTM) [7] is defined by industry companies
to solve the problems of the previous. ASTM is metamodel of abstract syntax tree that the
main purpose easily exchanges the metadata for program code such as C, C++, C#, Java, Ada,
VB/.Net, COBOL, FORTRAN, Jovial, and so on. OMG’s ASTM has defined and
complicated with 193 elements of metamodel but just specifications without any
implementation. We try use the ASTM in previous researches [8].

In this paper, we introduce the parser for multi-programing language using ASTM named
xCodeParser and show the design and implementation of xCodeParser. Then we present case
study to suggest a whole procedure for SW visualization with the ASTM. This paper is
organized as follows. Chapter 2 mentions the procedure of SW Visualization. Chapter 3
describes a case study to show an example of Six-leg Robot Simulator using SW
Visualization. Last chapter mentions the conclusion and future work.

2. A Procedure of SW Visualization
To develop SW visualization tools basically, it is required the parser and visualizer. The

figure 1 shows a whole structure of xCodeParser for SW visualization.

. input | consist of
C/cH ? 3

; | output e input | !
LN R —— ;

Fig. 1. The strategy of xCodeParser for SW visualization

)\
[Metamodel [

e

In the parser part, ASTM is generated via parser from a program code such as C, C++, or

Java. In the visualizer part, the graph is generated from the ASTM. Through this process, we

—964 —

XCODEPARSER BASED ON ABSTRACT SYNTAX TREE METAMODEL (ASTM)

can reverse the architecture from the program code. Our xCodeParser reuse the existing
parser as C/C++ Development Tooling (CDT) [9] and Java Development Tools (JDT) [10]
because better than to develop a new parser. The CDT is a tool in Eclipse platform to develop
C/C++ application. It supports to create the project, to build the program, to edit the C/C++
code, to analyze the static code, and to debug & refactor functions. The JDT is a tool to
develop Java application. It supports the same function like the CDT.
2.1 A design of Specialized ASTM

The ASTM of OMG’s standard is the metamodel of abstract syntax tree (AST). The main
goal of ASTM is easily able to exchange the metadata of a detailed software structure
between metadata repositories in the software development, the tools for software
modernization, platform, or the heterogeneous environment distributed. Especially, The
ASTM defined a specification about modeling elements to represent the AST that can share
between the various tools from other vendors. Also, the ASTM can represent a number of
programming languages such as C, C++, C#, Java, Ada, VB/.Net, COBOL, FORTRAN,

Jovial, and etc.

o, B Beciaration
detret from gastm)

from aastmy

o B Datalype @
= isMutable : EBoolean

from gastmi

{implements |nherits ' . E TjpedefTipe
o ol project] o = spedfier * EString
R T H ClasiType e E project & |.= dedarator : Estring
& MemberDefinition | , - from gastmi o* om gasum —_—
member inherits

Fig. 2. A design of Specialized ASTM (SASTM)

But, The OMG’s ASTM just have a specification of metamodel that do not implement and
the metamodel structures of complex form is made. We redesign the specialized ASTM
(SASTM) to extend metamodel of the existing ASTM. The SASTM to accept the standard
document were implemented all of the 193 metamodel structures and it was added 10
structures necessary for the SW Visualization as shown in figure 2. The top model of
SASTM is a SASTModel. The SASTModel have multiple project that below added all code
syntax. The SASTM include the new type such as Class Definition, Typedef Type, Class
Scope, Interface Definition because ASTM has not it.

_965__

HYUN SEUNG SON AND R. YOUNG CHUL KIM

2.2 A design of Specialized ASTM

The xCodeParser can generate the SASTM files from input code of programing language
via code analyzer. The generated SASTM metamodel based XMI file can be interoperable
through the existing tools based on Model Driven Development (MDA). The figure 3 address
mapping relationship between code and SASTM of class & variable definition, function call,

and if & for statement.
4 Source Location 7
[« 4 inary Sxpression
4 Scurce Locaticn 7
+ less
#include "stdio.h" 4 + Identrfier Refrecence
int main() { 4 Scurce Location 7
int i; <+ Name
+_+ Member Object = ot ? & Integer Literal 10
1< 10}[IH) { 4 4 Block Statement
}: & 4 Member Object 3 om._= sum + 1) + Scurce Locsten 7
' __+ oo e
4 & Sxpression Statement
+ orcion o e | otuzn 0; " s o
int main() { + Source Location 2 } + 4 Snry Expression
int n = 7; 4 4 IGentifier Refrerence *i“'“‘"’“"“"7
[dooddEvenCheck(n) 4 Source tocation 2 B
Tetets 3 & Mt ko
} . e e ey
+ % Identtiier Refrerence & Scurce Location 7
& Source Location & 4 Post Increment
4 Identifier Refrerence
ops .
(a) class definition and function call statement (b) for statement
4 [+ Declaration Or DeAnition Statement]|
Vaniatle Defintion
i ?ﬁmmm
#include "stdio.h" + Source Location &
int main 4 4 3inary Expression
+ Sourze Location &
if(n = 0 » bl

< Scurce Location 8
4 4 Binary Expression
<4 Source Location 8
+ Equal
> 4 Sinary Expressicn
 Integer Liteal 0
»_% Slock Statement

D n "zero") ; » 4 Icentifier Refrerence
) A e o
. % Gocksutement
i I.ntt("m numbe. RS
Q 7

<4 Retum Statement

(c) variable definition and if statement

Fig. 3. The representation of code

In class definition of figure 3(a), the class of programing code is made to an Aggregate
Type Definition of SASTM. The name of the class is the Name element and the rest is stored
in the Class Type child. The member variable or function of an internal class is created to
Member Object and the child variable or function is made to each Variable Definition or
Function Definition. In figure 3(b), for statement is stored divided into three parts: 1)
Initbody, 2) Condition, and 3) IterationBody. The “i=0”, “i < 10” , or “i++” of for statement
in code is represented to each Binary Expression of Initbody, Binary Expression of Condition,
or Unary Expression of IterationBody. In figure 3(c), the variable statement is change to a
Variable Definition of Declaration or Definition Statement child unlike the variable in class
definition above. The condition part of if statement represent various expressions according
to the form of code. The equal relationship is made to the Binary Expression, and the else if

and else statement is changed to sub-structure of first if statement in Block Statement.

966

XCODEPARSER BASED ON ABSTRACT SYNTAX TREE METAMODEL (ASTM)

4. A Case Study
To test the xCodeParser, we use the code of Six-leg Robot Simulator (SRS) [5] that is
developed by ourselves. The SRS is simulator to develop for easily controlling the action of

multi-jointed robot as shown figure 4. This simulator using 3D rendering is developed by

C++ based on Microsoft foundation class (MFC), Open Dynamic Engine (ODE).

|

Fig. 4. The execution result of Six-leg Robot Simulator
To validate the transformation of xCodePaser exactly, we perform the translation from 45
header and source code files in SRS. As shown figure 5, we compare the number of each
elements (such as class, function, variable, function call, 1f, for, switch) and the number of
each elements of generated ASTM files from xCodePasrer. From the compared result, we

can see correspondence exactly and our xCodeParser is validated to be able to transform the

ASTM from program code.
1600
= 1400
5
£ 1200
2
<@ e arcr———— SN =S—
= 1000
E 800 ——
g 600
z
2 400 {
E :
200 o | - s
0 - : : _ R B
Class | Function | Variable | Function If For [Switch |
Definition | Definition = Definiton | Call | Statement | Statement | Statement
(wProgram Code| 29 | 592 | 772 | 1449 | 261 53 3
! @ xCodeParser 29 i 592 i 772 1449 261 53 3

Fig. 5. The comparison of the number between program code and xCodeParser
S. Conclusions
Using the existing analyzer tools, if we need the functions don’t support in tools, it have
various problems. Therefore, we require the Abstract Syntax Tree (AST) to correspond the
one-to-one code for software visualization. But, the existing AST have a problem to develop
new tools when using other AST, as the each program code or the compiler is different.

On the other hand, the Abstract Syntax Tree Metamodel (ASTM) is useful to convert from

—967 —

T

HYUN SEUNG SON AND R. YOUNG CHUL KIM

the various program codes which is good for interoperability. But it has a complex structure
of 193 elements with just specifications. We proposed the parser for multi-programing
language named xCodeParser based on ASTM, showed the specification of SASTM to
extend the ASTM, and implemented the xCodeParser. Also, to apply a case study, we
validated the xCodeParser. Our future study will extend the existing xCodeParser for high
quality software development.
6. Acknowledgments

This work was supported by the Human Resource Training Program for Regional
Innovation and Creativity through the Ministry of Education and National Research
Foundation of Korea (NRF-2015H1C1A1035548).

References

[1] Lee, S.E. and et al., SW development quality management manual (SW Visualization).
National IT Industry Promotion Agency (NIPA), (2013).

[2] Source Navigator, http://sourcenav.sourceforge.net/

[3] Graphviz, http://www.graphviz.org/

[4] SQLite, https://sqlite.org/

[5] Jenkins, https://jenkins.io/

[6] Son, H.S., Moon, S.Y., Kim, R.Y.C., and Lee, S.E., Replacing Source navigator with
Abstract Syntax Tree Metamodel (ASTM) on the open source oriented tool chains SW
Visualization. The 5th International Conference on Convergence Technology (ICCT
2015), pp. 366-367.

[7] OMG, Architecture-driven Modernization: Abstract Syntax Tree Metamodel (ASTM)
Version 1.0. OMG Document Number: formal/2011-01-05, (2011).

[8] Son, H.S., Kim, Y.S., Park, Y.B., Kim, W.Y., and Kim, R.Y.C., Abstract Syntax Tree
Metamodel for SW Visualization, International Conference on Convergence Technology
(ICCT 2014), pp. 157-158.

[9] CDT, http://www.eclipse.org/cdt/

[10] JDT, http://www.eclipse.org/jdt/

**Corresponding author: Prof. R. Young Chul Kim
Department of Computer and Information Communication,
Hongik University Sejong Campus,

2639, Sejong-ro, Jochiwon, Sejong, 30016, Korea

E-mail: bob@hongik.ac.kr

—968 —

	img20170710_14083483.pdf
	img20170717_16390136.pdf

