Tai-hoon Kim

Hojjat Adeli

Rosslin John Robles
Maricel Balitanas (Eds.)

Advanced Communication
and Networking

Third International Conference, ACN 2011
Brno, Czech Republic, August 2011
Proceedings

€ Springer

s

e i R P il S TP, M T

Table of Contents XIII

Integrated Retrieval System for Rehabilitation Medical Equipment in
Distributed DB Environmentsovoeeurarensnsasssnrerasanns 209
BokHee Jung, ChangKeun Lee, and SoonGohn Kim

Effective Method Tailoring in Construction of Medical Information
SYBCEIL . oo ovvevnensrnsroneensnsnessssasonsesnnysnesosssisssnsss 215
WonYoung Choi and SoonGohn Kim

A Study on the Access Control Module of Linux Secure Operating

SIVREIION | v.c o »ximcitmsis o i m o o sy AT H S A 4 e 6 W W R S A 223
JinSeok Park and SoonGohn Kim
An fMRI Study of Reading Different Word Formc..0onnne 229

Hyo Woon Yoon and Ji-Hyang Lim

Intelligent Feature Selection by Bacterial Foraging Algorithm and
Tnformation THEOTY oo iameicn ek s s s e n s w1 238
Jae Hoon Cho and Dong Hwa Kim

The Intelligent Video and Audio Recognition Black-Box System of the
Elevator for the Disaster and Crime Prevention0... 245
Woon-Yong Kim, Seok-Gyu Park, and Moon-Cheol Lim

Real-Time Intelligent Home Network Control System 253
Yong-Soo Kim

LCN : Largest Common Neighbor Nodes Based Routing for Delay and
Disruption Tolerant Mobile Networksocoiiiiieiinaienns 261
Doo-Ok Seo, Gwang-Hyun Kim, and Dong-Ho Lee

A Perspective of Domestic Appstores Compared with Global
R TENEENE 1y n in 812515 o A AN o e 5054 s M e Y e B T 271
Byungkook Jeon

A Design of Retrieval System for Presentation Documents Using
Content-Based Image Retrievalcooiviiiiiiiiirinieneinne. 278
Hongro Lee, Kwangnam Choi, Ki-Seok Choi, and Jae-Soo Kim

Data Quality Management Based on Data Profiling in E-Government
g e 11T A P R PR S e e e s L 286
Youn-Gyou Kook, Joon Lee, Min-Woo Park, Ki-Seok Choi,
Jae-Soo Kim, and Soung-Soo Shin

Design of Code Template for Automatic Code Generation of
Heterogeneous Smartphone Applicationcoiviniiaeannnn. 292
Woo Yeol Kim, Hyun Seung Son, and Robert Young Chul Kim

A Study on Test Case Generation Based on State Diagram in Modeling
and Simulation Environmentcoicaniraccetsraiiisinnzsaes 298
Woo Yeol Kim, Hyun Seung Son, and Robert Young Chul Kim

A Study on Test Case Generation Based on State
Diagram in Modeling and Simulation Environment”

Woo Yeol Kim, Hyun Seung Son, and Robert Young Chul Kim

Dept. of CIC(Computer and Information Communication), Hongik University,
Jochiwon, 339-701, Korea
{john,son,bob}@selab.hongik.ac.kr

Abstract. In the conventional tests, test case is generated in the design stage.
However, actual test can be executed after its embodiment. As there is as much
time difference between the design and execution of the test, the errors in the
designs of test and software are checked out late. This paper is proposing the
test case generation method so as automatic test can be carried out in the virtual
simulation environment. The method proposed generates the test case
automatically based on the state diagram and executes it in the virtual simulator.
It can reduce the time difference between the design and execution of test,
accordingly, to find out the error in the test case and problems in the design
promptly. As a result, it can identify the error in the beginning stage of software
development and save the time and expense need for the development.

Keywords: Articulated Robot, Modeling & Simulation, Test, Virtual Environment,
Model based Test.

1 Introduction

In the software development life cycle, the expense differs significantly according to
the error finding stage. If the cost is 1 for finding and solving errors in the request
phase, it costs 30~100 times when finding and solving errors in the production phase
[1]. Software errors can be found out when test is carried out. If software test can be
executed earlier, therefore, the error can be found fast and the development period and
expense can be reduced. However, test can be executed after software development is
completed in the conventional tests.

This paper suggests the automatic generation method of test case that can be
processed in the virtual simulation environment [2,3.4,5]. The method proposed is
creating the test case from the state diagram. Generated test case can be executed
directly in the virtual simulation environment. As for the test case generation method,
it converts state diagram into state table and generates the testing transition tree based

This research was supported by the MKE(The Ministry of Knowledge Economy), Korea,
under the ITRC(Information Technology Research Center) support program supervised by
the NIPA(National IT Industry Promotion Agency)(NIPA-2011-(C1090-1131-0008)) and the
Ministry of Education, Science Technology (MEST) and National Research Foundation of
Korea(NRF) through the Human Resource Training Project for Regional Innovation.

T.-h. Kim et al. (Eds.): ACN 2011, CCIS 199, pp. 298-305, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Study on Test Case Generation Based on State Diagram 299

" on it. Test case ID is identified and test case is generated using the created transition
. tree. The generated test case makes up the event list after classifying event and action
. separately for the processing in the simulator. When processing the event list in the

' yirtual simulation environment, robot is activated and the Pass/Fail is checked out by

" observing the robot’s behavior.

With conventional test, test case is generated in the design stage, but it can be
4 executed after embodiment of software [6]. There occurs time difference as much
. petween the design and execution of the test. However, this method does not wait

" until the embodiment stage by executing the test case directly in the virtual simulation

- environment but processing the test in the design stage. So the design error can be
~ found fast in early stage.

This paper is organized as follow. Chapter 2 describes the model based test as a
related work. Chapter 3 explains how to generate the test case proposed. Chapter 4
shows the case study of proposed method. Finally in Chapter 5, it mentions about the
conclusion and future research.

: 2 Related Work

Following is the observation of model based test. Andras Toth et al. [7] had proposed
the framework for the model level testing of UML model. Planner algorithm has been
used for automatic generation of test case. The input of this framework is the UML
state diagram exported to the independent XML tool of which format is assigned by
UML tool. Conversion program generates text file automatically by the generation of
planner model that can be manipulated like the formal language of UML state
diagram. Planner meta model has established the provision of high level expression to
maintain the methodology opened for other planner tools. The design can be tested, as
of the result of this project UML, and the design flow can be found in the modeling
stage of primary development process for the realization activity to save significant
amount of effort and expenses.

The theoretical background for the extraction of model based test case in the
formal conformance testing for UMLSC (UML State-Chart) had been expressed by
Stefania Gresi et al. [8].

Bertolino A. et al. [9] have suggested the aggregation method that is integrating the
sequence diagram with the state for extracting reference model perfectly and
rationally that can be used in the industrial context. This is used to extract the test case
automatically. The author had extracted the test case based on the UML specification
from all the contexts based on the component and object. The objective of this paper
is for processing perfect model from the state and sequence diagrams and for making
UIT (Use Interaction Test) together with the model in the research. This method
guarantees that it includes all the allowable sequences. However, it cannot provide
any coverage measuring on the embodied system. It satisfies the important
requirements entrusted by the industry. The advantage of this method is for creating
accurate test case and for inducing less testing effort by providing as much
inconformity information as possible in the model.

300 W.Y. Kim, H.S. Son, and R.Y.C. Kim

3 Test Case Generation in M&S

The purpose of test case generation based on state diagram is to verify the relations
between the event, behavior, action, state, and state transition. With using this
technique, it can determine if the state based motion of system can satisfy the system
specifications. There are 3 reasons for the fault of state based system. The first is
when the state diagram cannot transit the system function specification accurately,
The second is when the syntax of state diagram is wrong or inconsistent. The third is
the conversion form state diagram to the code. It does not matter if converted using
the automation tool, but it may cause troubles if converting manually.

Invalid Test Case / Valid Test Case /
Condition Test Case

|

L)

State Diagram State Table State Transition Tree Test case

Fig. 1. Flowchart of the test case generation based on state diagram

Figure 1 shows the test case generation based on state diagram using the state
diagram. Initially, state diagram model is converted into the state table. State table has
been separated using the tables of state and event, which can express the state of all
the situations. Then, create the state transition tree based on the state table. State
transition tree is the array of movable states in each state recursively. In here, the test
case level is varied according to the recursive execution frequency.

Figure 2 shows how to make the state table. The state available for moving toward
when meeting with the event in each state can be indicated on the intersection of the
table after indicating each state on the top of table and expressing the event on the left
side of the table.

StateA | StateB
event A Siate B N/A
event B N/A state A

Fig. 2. State table conversion in the state diagram

Figure 3 shows how to create the transition tree. Array all the states on the top of
table in the sequence. Then, indicate all the states available for access in the next step.
If arraying the state available for re-access, the number of test case generation is
varied according to the depth of array. The array of all these cases in the sequence
makes the test case.

i
i

A Study on Test Case Generation Based on State Diagram 301

State A State B Siate A —> Slafe8 — State A
event A| States NA E>
event B N/A Stale A Siate B —> Stale A —> Siale 8

Fig. 3. Creation of state transition tree in the state table

Generate the final test case is using the state transition tree. Generated test cases

are shown in the Table 1. Generated test case is describing the scenario executed by
~ each state in the state transition tree.

Table 1. Test case

TCID Initial Event Action Next Event Action End

State State
TC1 S_A El Do S_B E2 Do S_A
TC2 S B E2 Do S_A El Do S B

Generated test case cannot be processed right away in the simulator. So convert the
test case to the event list as is shown in Table 2 for execution. Table 2 is the
conversion result of the test cases generated in the Table 1 to the event list. TCID is
the ID of test case. In the Type column, s means state, and e means event. State/Event

~ have been assigned in plural so as both state and event can come in. P/F means

Pass/Fail. The state and event in the event list are carried out alternatively, and the
robot executes the behavior whenever the event list is processed in the virtual
simulator environment

Table 2. Event list
Test Case ID Type State/Event P/F
TCl s S_A
TCl e El
TC1 5 S_B
TC1 e E2
TC1 s S_A
g . 5] s S_B
TC2 e 2
TC2 s S_A
TC2 [1
TC2 s S_B
4 Case Study

This application case shows the multi-jointed robot [10,11] moving to the target
position using the 4 directions of forward, backward, left, and right. Articulated robot
is composed with the state diagram shown in Figure 4. ‘Idle’ is the initial state of
robot, which is the robot state when activated initially or all the works have been
finished. ‘Initialized’ means the resetting state of robot. The target of robot is assigned

302 W.Y. Kim, H.S. Son, and R.Y.C. Kim

and the coordinates are set up in this state. ‘goRobot’ means the state that robot is
moving to the location nominated. Robot is moving forward or backward in this state
to check the current position. ‘goLeft’ means the state that robot is running to the left,
‘goRight’ is the state that robot is turning to the right. ‘Stopped’ is the state that is
generated when the user has suspended the robot. ‘Stopped by Intrusion’ is the state
that is generated when the robot arrives at the destination. Robot is in the ‘Idle’ state
when activated, and it is converted to the ‘Idle’ state or stops completely when the
user commands the robot to stop.

Mapping Class Hame

Fig. 4. State diagram of articulated robot

Generate the test case automatically for the execution of test. State diagram must
be composed with the design tool as is shown in Figure 5, and create the state table by

selecting the 'I»' button in the red block for the generation of test case.

t Tool TEST Simlation Window Help

2 » 0 mp oo @ T @O
s ko i ws.State.ext |[ig] ws_Use.exu |

A8 2» |0
Disgr| 3 Concurent State Diagram | State Table | State Transitior
gam| | S==s e
il | Mapping Class Hame
| -

& ’

3 l Idle] <

Fig. 5. Creation of state table

State table is the table that draws the called state when a specific event is generated
in the corresponding state. With the state table, it is easy to check out which state has
been called when a certain event is generated in the current state. Figure 6 is the state

table created.

A Study on Test Case Generation Based on State Diagram 303

47 nwb s | &@ T @O

wa.State.ex! | (1] ws.Use, oo |

R

2] 2
Concurent State Diagram State Table | State Transition Tree | Test case |
I e | bmaked | oot [smeed [8
hutDown(is0¥ = truel N/A NA NA o
stanficbct Inahized goRabot WA WA
setobottocation] isAmved = falie &bk iTa. N /A goRight NiA
setRobotiocation/checkintrusion = trug] N/A /A Stopped by Intrusion N/A
stopRcbet Na WA Stopped WA
- | | WleRobot WA WA NA WA
< | chkshutCown{isOH = fake] NA MNA NA ke
|| |setRobetLocsoniamed = falie &b hTar WA NA goRsbot Wk
| sethobetiocation] iwhmved = fale & iTa LT WA goleh A
Fig. 6. State table

State transition tree is generated based on the current state table when selecting 2>
button in the screen of composed state table. State transition tree draws all the states
in the form of tree that can be called in the current state for the visual checking. The
 tree will have more branches as the depth is deepened, and the depth can be assigned
by selecting Switch. Figure 7 is showing the state transition tree created.

b Ump Hpx & T O

| eS|) e e | P —=—_
2
! Dingram | Statc Teble State Transition Tree | Test case |

| Stopped by Intrusion 1dle 1
END Tc2

Stopped Idle T3
goFlight T
Stopped by intrus|
Stapped T
goRabot ™
tdle Initialized goRightt golefiat goLen TcH
Stopped by In END 1
Stopped goRlight initalized 1

Stopped by Intrusion idle T

END TC12

Stapped Idle €13

goRight TC
Stopped by Intrusi

Fig. 7. State transition tree

Test case is generated finally when selecting '3»' button in the state transition
tree. Test case is generated as is shown in Figure 8, and it shows which event and
which action can be occurred in the current state (Start state) through such test case,
also it can be checked up in the form of table through this which state will be the
next state.

304 W.Y. Kim, H.S. Son, and R.Y.C. Kim

»ulef dHhem @ 1@3 e
| Seesersiand |- L2

] e

| Concurent State Diagram | State Table | State Transition Tree Test case |

| [Ho | StartSate Event Action _!m;m Event

— - ———————

Test case is inserted in the event list as is shown in Figure 9 when double clicking
the test case for the execution of test in the test case generated. When clicking the Run
button, it is processing from No 1 to the end automatically. Time is the event
generation frequency, and repeat is the number of repetitions.

e, .’_

w | ¢ | Type |
vi 5
vi
Vi
Vi
Vi
v2
v
v
v2

aﬁf%i’;

Stopped by Intrusion

il

chiShutDown[isOFF = true]
8o

goRobot

stopRobot

Stopped
W-M

goRobot
seRobotlocatonisArmived = false ShsTarget = 5tr..,

EEEEEEEEEEEEEEEEEEERERERE

REENEBEECREEEREEY e ansuns
-
4

seRobotLocaton] isAmived = false SAisTarget = Ri..,
goRght

e = = | = |

i

| Fig. 9. Event list

=

A Study on Test Case Generation Based on State Diagram 305

- 5 Conclusion

" It requires automatic generation of test case and execution method of test case for the
. execution of test in the virtual simulation environment. This paper has developed the
tool supporting such procedure, applied to the multi-jointed robot, generated and
* executed the test case. As the result, the test case generated in the design stage can be
executed directly in the virtual simulation environment. The method proposed
overcomes the conventional problem in the design and execution of test, and finds out
- design errors by executing the test without waiting until its embodiment stage. It has
" shortened the time difference between the design and execution of test, and enabled
prompt countermeasure against the problems generated in the design by finding easily
out the errors of test case.

There is a problem in the method proposed that the tester must check and confirm
the test case executed in the virtual simulation environment visually in person. In
order to overcome such a weak point, automatic checkup method is under research for
expected result of the test as a future study.

References

1. Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)

2. Son, H.S., Kim, W.Y., Kim, R.Y.C.: Implementation of Technique for Movement Control
of Multi-Joint Robot. In: The 30th KIPS Fall Conference 2008, November 14, vol. 15(2),
pp- 593-596 (2008)

3. Kim, W.Y., Son, H.S., Kim, R.Y.C., Carlson, C.R.: MDD based CASE Tool for Modeling
Heterogeneous Multi-Jointed Robots. In: CSIE 2009, vol. 7, pp. 775-779. IEEE Computer
Society, Los Angeles/Anaheim (2009)

4, Kim, J.S., Son, H.S., Kim, W.-Y., Kim, R.Y.C.: A Study on Education Softwarefor
Controling of Multi-Joint Robot. Journal of The Korean Association of Information
Education 12(4), 469-476 (2008)

5. Kim, J.S., Son, H.S., Kim, W.-Y., Kim, R.Y.C.: A Study on M&S Environment for
Designing The Autonomous Reconnaissance Ground Robot. Journal of the Korea Institute
of Military Science and Technology 11(6), 127-134 (2008)

6. Burnstein, L: Parctical Software Testing. Springer, Heidelberg (2003)

7. Toth, A., Varro, D., Pataricca, A.: Model Level Automatic Test Generation for UML
State-Charts. In; Sixth IEEE Workshop on Design and Diagnostics of Electronic Circuits
and System, DDECS 2003 (2003)

8. Gresi, S., Latella, D., Massink, M.: Formal Test Case Generation for UML State-Charts.
In: Ninth IEEE International Conference on Engineering Complex Computer System
Navigating Complexity in e-Engineering Age (2004)

9. Bertolino, A., Marchetti, E.: Introducing a reasonably complete and coherent approach for
model based testing. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988,
Springer, Heidelberg (2004)

10. McGhee, R.B., Frank, A.A.: On the Stability Proper-ties of Quadruped Creeping Gaits.
Mathematical Biosciencies 2(1/2) (1968)
11. Raibert, M.H.: Legged Robots. ACM 29(6), 499-514 (1986)

ISBN 978-3-642-23311-1

9ll78364211233111

	142232_Page_01.jpg
	142232_Page_02.jpg
	142232_Page_03.jpg
	142232_Page_04.jpg
	142232_Page_05.jpg
	142232_Page_06.jpg
	142232_Page_07.jpg
	142232_Page_08.jpg
	142232_Page_09.jpg
	142232_Page_10.jpg
	142232_Page_11.jpg

