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Abstract. Calculating priority of requirements is required to make the
maximum use of resources within a limited time. Previously, we proposed the
calculating method of priority of all the requirements using the priority
technique based on the goal-oriented Use Case method proposed by Cockburn.
However, there is no verification method for this priority of the requirements.
In this paper, we propose the verification method of our requirement priority
technique using the Use Case point proposed by Karner.

Keywords: Use Case Point, Function Point, Goal Oriented Requirements
Process, Requirements Prioritization

1 Introduction

The cost of error correction increases exponentially depending on the error detection
time [1]. For example, if error is detected at the time of requirement collection, the
cost of error correction would be 3, but at the time of design, the cost would be 5, at
the time of coding, 9, at the time of testing, 17, and at the time of production, 160.
Therefore, there would be more cost of error correction if detected at the time of latter
project phase compared to the one immediately corrected after occurrence of error. As
a result, requirements collection and analysis in the software development life-cycle is
an important step for successful software development.

In the process of requirement definition and analysis, priority of requirements is
vital since it can help to develop the high-quality product within a limited time with
limited resource. That is, by determining priority of functions, we can plan a software
development which provides the best value with minimum cost [2]. It is difficult to
determine that which requirement has the highest priority, but using the Use Case is
helpful to determine priority of requirements [3].

Previously in our research, we proposed the method of prioritizing requirements
and Use Case by applying the goal-based Use Case method proposed by Cockburn
[4,5,6]. Using this method, however, can determine priority but there is no method of
verification. Therefore, in this paper, we verify the priority technique based on the
goal-based Use Case using the Use Case Points proposed by Karner.

This paper is organized as follows: In chapter 2, related work is described such as
Use Case Points proposed by Karner. In chapter 3, calculating Use Case priority using
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the Use Case Points is discussed. In chapter 4, the goal-based Use Case technique is
verified by the Use Case Points. Finally in chapter 5, conclusion and future work are
discussed.

2 Related Work

The Use Case Point has been developed by Gustav Karner based on the basic concept
of Function Point [3]. The number, size and complexity of the Use Case are
quantitatively measured by using actors and Use Cases in Use Case diagrams in order
to measure the software size. The Use Case Point considers complexity of Use Case
itself and actors which interacts with the Use Case. The Use Case Points are
calculated by calculating Unadjusted Use Case Point through actors and Use Cases
depicted in a diagram. Next, Use Case Points are calculated based on the Unadjusted
Use Case Point using the Technical Complexity Factor and Environmental Factor. In
the Technical Complexity Factor, points regarding factors which affect a system are
calculated. In the Environmental Factor, factors which affect efficiency of a project
development are reflected.

3 Calculating Use Case priority using the Use Case Points

We applied the actor weight, Use Case weight, weights of the technical complexity
factor and environmental factor as proposed in the Use Case point calculation by
Karner. In this chapter, we explain the calculating method of priority of requirements
of TST Sejong multi-shop management program by using the calculation methods
described in Step 1 to Step 6. Table 1 shows the results of priority of requirements of
TST Sejong multi-shop management program by using the Use Case Points.
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- Step 1: Actor weight calculation

Actor can be categorized into two: user and supervisor. How to calculate an actor
weight in the Use Case points is to calculate an actor as simple, average and complex
actor. However, in this paper, an actor’s weight is calculated in each Use Case for
priority of requirements.

In case of the income query (UC17) which can be accessed only by a supervisor,
the weight of a general user is none, and there is actor weight only for the supervisor.
Since an actor and system interact with each other through the GUI, the weight of an
actor on the income query is 3 which is complex. In case of the customer register
(UC2), since a general user and supervisor can access and interact through the GUI,
the weight for a general user is 3, and for a supervisor is 3; total weight of the actor is
6.

- Step 2: Use Case weight calculation

The Use Case weight is simple if the number of transactions is less than 3, average
if the number of transactions is between 4 and 7, and complex if the number of
transactions is over 8. Total sum of all calculate the Use Cases weights becomes the
final Use Case weight. However, in this paper, total sum is not calculated but each
Use Case weight is calculated for calculating priority of the Use Cases.

In Table 1, the Use Case weight is assigned 10 since basic flow 1, alternative flow
3, and exception flow 0 which makes the total transaction 4. Finally unadjusted Use
Case point is calculated as 13 by summing the actor weight and Use Case weight
calculated in step 1.

- Step 3: unadjusted Use Case point calculation

In Table 1, an unadjusted Use Case point is calculated by summing actor weight
and Use Case weight by Use Cases. UC2 customer register is 11 by calculating (Actor
Weight:6)+(Use Case Weight:5), and UC17 income query is 13 by (Actor
Weight:3)+(Use Case Weight:10). Table 1 shows all the calculated results which sum
all the weights of actor and Use Case in all 22 Use Cases.

- Step 4: Technical complexity factor calculation

To calculate the technical complexity factor in the Use Case points, the weights are
given between 0 (no effect) and 5 (great effect) to each factor in terms of overall
system effect. In this paper, weights are given by 0.5 unit for detailed priority of
requirements.

- Step 5: Environmental factor calculation

For the environmental factor, it is calculated by applying weights between 0 to
Sdepending on its category such as familiarity of the life-cycle model during the
project (1.5), experience on the area (0.5), experience on development methodology
used (1), ability of analyzer (0.5), motivation of the team (1), stabilization of the
requirements (2), part-time team member use (-1) and difficult programming language
use (-1). In this paper, weight for the environmental factor is given 3 to all the Use
Cases and the calculated value is 13.5. However, this value is discarded since all have
the same value.
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- Step 6: Priority based on the Use Case points
After completing all the calculations between Step 1 to Step 5, priority of UCP can

be determined by calculating overall priority.

4  Verification of goal-oriented requirements priority using Use
Case priority with Use Case point

Through customer’s requirements, Use Case priority is calculated using the Use Case
points. In this chapter, two methods are compared and evaluated: one result from the
priority technique using previously proposed goal-oriented requirements, and the
other result from the Use Case priority using the Use Case points.
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Fig. 1. Chart for UCP and GORP

In Figure 1, priority of login is 15 in UCP, 14 in GORP. Priority of Stock_Register
is 14 in UCP, and 15 in GORP. Also priority of Sale Register is calculated as 17 in
UCP, 16 in GORP. Priority of Sale Update is measured as 3 in UCP, 4 in GORP.
Priority of Product_Delete is calculated as 16 in UCP, 17 in GORP, and priority of
Expense_Update is measured as 4 in UCP, 3 in GORP. As shown in a chart of Figure
1, the verification of Goal oriented Use Case Requirement Priority has been done by
using Use Case Points. The results are shown as almost in consistent although there is
a little difference in ranking caused by the subjective difference of two methods.

5 Conclusion

In this paper, priority is calculated by applying transactions and technical complexity
factor using the Use Case points. We verify the priority of requirements based on the
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goal-based Use Case by comparing the Use Case priority calculated by the goal-
oriented requirements process method and the Use Case priority using the Use Case
points. As a result, though there is a slight difference between two priorities due to the
subjective judgment of the evaluator, we conclude that the results are consistent with
each other.

However, when we see the result of the Use Case priority using the Use Case
points, it has a difficulty to calculate the Use Case priority due to the wide range of
the technical complexity factors and environmental factors. Therefore, as our future
work, it will be studied that research on finding the new technical factors and
environmental factors which will be applied to the Use Case priority.
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