RSC ' Science and Engineering
Research Support soCiety .

A Performance Model for Hypercube Based NoC with Fully Adaptive
ROMINE AT BOTIIIN coxssmemmusmssssonsn ot snitiimmmmmmmanensmmssssmsssssenassassssssmsavarassenssmsmmenss 68
Jin Liu, Xiaofeng Wang, Hongmin Ren, Jin Wang, Jeong-Uk Kim

Knowledge Modeling Guideline for Reentrant Features in SAGE 76
Jeong Ah Kim, InSook Cho, BinGu Shim, Min Hee Choi, SunTae Kim,
Sun Ah Kim, Yongho Kim, Chang Hee Lee, Heeseong Yun
and Dongkyu Seo

Test Case Extraction for Intelligent Power Switch of Heterogeneous Vehicles...82
Dong Ho Kim, Hyun Seung Son, Woo Yeol Kim,
and Robert Young Chul Kim

A Study on Requirement Extraction on Use Case Approachcocccceueuenn.... 89
Bo Kyung Park, and Robert Young Chul Kim

Query Language for Business Process Framework based
01t CloSEd AVCHIIECIUER: -..ncussnsscsssnsissimsmmmmssmmsnmmmsmsensssnssnsnssasessmossssesastsessssssagss 94
Chae Yun Seo, and Robert Young Chul Kim

Verification of Requirements Extraction and Prioritization
usSing Use Case POINS..........c.cvvueuimiiriiieiiieiieiceese st 100
So Young Moon, Bo Kyung Park, and Robert Young Chul Kim

Automatic Test Case Generation using Multiple Condition Control

FIOW Graphc.oooiiiieee e eeen 105
Hyun Seung Son, Woo Yeol Kim, Jae Seung Kim,
and Robert Young Chul Kim

A Multi-agent based Facility Maintenance Planning and Monitoring

Systers A CaSe SHIAY..sussrmmususmmmnmmiimmmmmmssssossassnsesssmusmonsmensesasessns 110
JaeHoon Lee , MyungSoo Lee, SangHoon Lee, SeGhok Oh,
and JoongSoon Jang

The Archiving Method for Records of Public Sector’s Facebook Page.............. 117

Yun-Young Hwang, In-Ho Jang, Seung-Jun Cha and Kyu-Chul Lee

A Study on Architecture of a Cyber Checkpoint Model in the Cloud

Computing ENVIronmMent............cccoeoieieieieiieicicicceeceeeeeesteeeeeeeeee e 123
Min-Woo Park, Jung-Ho Eom , Sung-Hwan Kim, Nam-Uk Kim,
and Tai-Myoung Chung

Verification of Requirements Extraction and
Prioritization using Use Case Points

So Young Moon!, Bo Kyung Park', and Robert Young Chul Kim!

! Dept. of CIC(Computer and Information Communication), Hongik University,
Sejong Campus, 339-701, Korea
{symoon,bk,bob} @selab.hongik.ac.kr

Abstract. Calculating priority of requirements is required to make the
maximum use of resources within a limited time. Previously, we proposed the
calculating method of priority of all the requirements using the priority
technique based on the goal-oriented Use Case method proposed by Cockburn.
However, there is no verification method for this priority of the requirements.
In this paper, we propose the verification method of our requirement priority
technique using the Use Case point proposed by Karner.

Keywords: Use Case Point, Function Point, Goal Oriented Requirements
Process, Requirements Prioritization

1 Introduction

The cost of error correction increases exponentially depending on the error detection
time [1]. For example, if error is detected at the time of requirement collection, the
cost of error correction would be 3, but at the time of design, the cost would be 5, at
the time of coding, 9, at the time of testing, 17, and at the time of production, 160.
Therefore, there would be more cost of error correction if detected at the time of latter
project phase compared to the one immediately corrected after occurrence of error. As
a result, requirements collection and analysis in the software development life-cycle is
an important step for successful software development.

In the process of requirement definition and analysis, priority of requirements is
vital since it can help to develop the high-quality product within a limited time with
limited resource. That is, by determining priority of functions, we can plan a software
development which provides the best value with minimum cost [2]. It is difficult to
determine that which requirement has the highest priority, but using the Use Case is
helpful to determine priority of requirements [3].

Previously in our research, we proposed the method of prioritizing requirements
and Use Case by applying the goal-based Use Case method proposed by Cockburn
[4,5,6]. Using this method, however, can determine priority but there is no method of
verification. Therefore, in this paper, we verify the priority technique based on the
goal-based Use Case using the Use Case Points proposed by Karner.

This paper is organized as follows: In chapter 2, related work is described such as
Use Case Points proposed by Karner. In chapter 3, calculating Use Case priority using

100

the Use Case Points is discussed. In chapter 4, the goal-based Use Case technique is
verified by the Use Case Points. Finally in chapter 5, conclusion and future work are
discussed.

2 Related Work

The Use Case Point has been developed by Gustav Karner based on the basic concept
of Function Point [3]. The number, size and complexity of the Use Case are
quantitatively measured by using actors and Use Cases in Use Case diagrams in order
to measure the software size. The Use Case Point considers complexity of Use Case
itself and actors which interacts with the Use Case. The Use Case Points are
calculated by calculating Unadjusted Use Case Point through actors and Use Cases
depicted in a diagram. Next, Use Case Points are calculated based on the Unadjusted
Use Case Point using the Technical Complexity Factor and Environmental Factor. In
the Technical Complexity Factor, points regarding factors which affect a system are
calculated. In the Environmental Factor, factors which affect efficiency of a project
development are reflected.

3 Calculating Use Case priority using the Use Case Points

We applied the actor weight, Use Case weight, weights of the technical complexity
factor and environmental factor as proposed in the Use Case point calculation by
Karner. In this chapter, we explain the calculating method of priority of requirements
of TST Sejong multi-shop management program by using the calculation methods
described in Step 1 to Step 6. Table 1 shows the results of priority of requirements of
TST Sejong multi-shop management program by using the Use Case Points.

Table 1. Calculated UCP and TCF

Actor Vieight (VAW) Use Case Weight (UUCV) T2 | w3 | o [0 [Tes o
8~5

Wse l Marager; [Basic (Afternats Yool | Use G " TCE vaiue
fses] 2 ic ise (ase
L jse Case N ° |Actor g 4 1 [13 1 1
Mo | e ctor vieight|actor weig*“ 69| oy | ¢ i Fiow | Transaction | Weight :
3

uct Login 3 3
UCZ_| Custom Register 3 15 85
uC3 [Custom Update 2]
UGS | Custom Relrieve 3 i3
UCs | Custom: Delete 15 13 X3
UCs | Stock Register 2 25
UC?_| Stock Refrieve 3 35
UCE | Stock Delete 15 1
UCS | Sale Register 1 2

[UCIL | Sale Uipdate
UCL2 | Sale Delete No Use
[UC13 | Product Reqister

UCH4 | Product Retrieve
UC1S | Product Deiete
UC1E |Inventory Refriev

SRR
olalo|a]

[[1 1N
e e e e

g

el |6 s e [t o2

w
kd i

e
o

o ||
o[fen [| oe

i1 1
1 3 i3

©
&

o [f e [

i 2

UC17 | Income Refrieve | Ko use
UCI8 | & Create

e S SRS

i1

3] Refrieve
UC21 | Expense Delete | No Use
Uz Print 3

[| o | | v | o | | 3| 0
%) 199 N VN 1 PN

5
oo fun s
ofalofo|a|-
e

i1 g i 8

101

- Step 1: Actor weight calculation

Actor can be categorized into two: user and supervisor. How to calculate an actor
weight in the Use Case points is to calculate an actor as simple, average and complex
actor. However, in this paper, an actor’s weight is calculated in each Use Case for
priority of requirements.

In case of the income query (UC17) which can be accessed only by a supervisor,
the weight of a general user is none, and there is actor weight only for the supervisor.
Since an actor and system interact with each other through the GUI, the weight of an
actor on the income query is 3 which is complex. In case of the customer register
(UC2), since a general user and supervisor can access and interact through the GUI,
the weight for a general user is 3, and for a supervisor is 3; total weight of the actor is
6.

- Step 2: Use Case weight calculation

The Use Case weight is simple if the number of transactions is less than 3, average
if the number of transactions is between 4 and 7, and complex if the number of
transactions is over 8. Total sum of all calculate the Use Cases weights becomes the
final Use Case weight. However, in this paper, total sum is not calculated but each
Use Case weight is calculated for calculating priority of the Use Cases.

In Table 1, the Use Case weight is assigned 10 since basic flow 1, alternative flow
3, and exception flow 0 which makes the total transaction 4. Finally unadjusted Use
Case point is calculated as 13 by summing the actor weight and Use Case weight
calculated in step 1.

- Step 3: unadjusted Use Case point calculation

In Table 1, an unadjusted Use Case point is calculated by summing actor weight
and Use Case weight by Use Cases. UC2 customer register is 11 by calculating (Actor
Weight:6)+(Use Case Weight:5), and UC17 income query is 13 by (Actor
Weight:3)+(Use Case Weight:10). Table 1 shows all the calculated results which sum
all the weights of actor and Use Case in all 22 Use Cases.

- Step 4: Technical complexity factor calculation

To calculate the technical complexity factor in the Use Case points, the weights are
given between 0 (no effect) and 5 (great effect) to each factor in terms of overall
system effect. In this paper, weights are given by 0.5 unit for detailed priority of
requirements.

- Step 5: Environmental factor calculation

For the environmental factor, it is calculated by applying weights between 0 to
Sdepending on its category such as familiarity of the life-cycle model during the
project (1.5), experience on the area (0.5), experience on development methodology
used (1), ability of analyzer (0.5), motivation of the team (1), stabilization of the
requirements (2), part-time team member use (-1) and difficult programming language
use (-1). In this paper, weight for the environmental factor is given 3 to all the Use
Cases and the calculated value is 13.5. However, this value is discarded since all have
the same value.

102

- Step 6: Priority based on the Use Case points
After completing all the calculations between Step 1 to Step 5, priority of UCP can

be determined by calculating overall priority.

4 Verification of goal-oriented requirements priority using Use
Case priority with Use Case point

Through customer’s requirements, Use Case priority is calculated using the Use Case
points. In this chapter, two methods are compared and evaluated: one result from the
priority technique using previously proposed goal-oriented requirements, and the
other result from the Use Case priority using the Use Case points.

23
22 $-22
% 7
2 1
5] i
16‘ 7 l.
12]
i3 f
12 4 & |
B v, W23 1
3) 4 y
§] e
% T 1 4 e | CP
3 B . e 4
3 - f s GORP
2 ¥ =
B e ————_——-—— Al
C 5 ¥ v uw = ¥ @ S ¥ @ ow - ow V¥ - o ow om
R R R R EEEEEEE R EEE -
= r = & = 5 = T ® E & = T ® o
T PS5 E8258F858¥%s8032¢8sE0
xS e e 2 oo oo e)
g B J 8 G 8 1 ey R
EgESY¥$olagmygyI ¥ prygawc
Oﬁoﬁoo;”ﬂm"”::’gEocscﬂ
h’:ﬁzﬁ"‘ @ ow TT 23w s B
S g 3 Y b Ssﬂ-gu%&%m
L% (%] o oo _E‘”m"“

Fig. 1. Chart for UCP and GORP

In Figure 1, priority of login is 15 in UCP, 14 in GORP. Priority of Stock_Register
is 14 in UCP, and 15 in GORP. Also priority of Sale Register is calculated as 17 in
UCP, 16 in GORP. Priority of Sale Update is measured as 3 in UCP, 4 in GORP.
Priority of Product_Delete is calculated as 16 in UCP, 17 in GORP, and priority of
Expense_Update is measured as 4 in UCP, 3 in GORP. As shown in a chart of Figure
1, the verification of Goal oriented Use Case Requirement Priority has been done by
using Use Case Points. The results are shown as almost in consistent although there is
a little difference in ranking caused by the subjective difference of two methods.

5 Conclusion

In this paper, priority is calculated by applying transactions and technical complexity
factor using the Use Case points. We verify the priority of requirements based on the

103

goal-based Use Case by comparing the Use Case priority calculated by the goal-
oriented requirements process method and the Use Case priority using the Use Case
points. As a result, though there is a slight difference between two priorities due to the
subjective judgment of the evaluator, we conclude that the results are consistent with
each other.

However, when we see the result of the Use Case priority using the Use Case
points, it has a difficulty to calculate the Use Case priority due to the wide range of
the technical complexity factors and environmental factors. Therefore, as our future
work, it will be studied that research on finding the new technical factors and
environmental factors which will be applied to the Use Case priority.

Acknowledgments. This work was supported by the IT R&D Program of MKE/KEIT
[10035708, “The Development of CPS(Cyber - Physical Systems) Core Technologies
for High Confidential Autonomic Control Software™] and the Ministry of Education,
Science Technology (MEST) and National Research Foundation of Korea(NRF)
through the Human Resource Training Project for Regional Innovation.

References

1. Grady, Robert, B.:An Economic Release Decision Model: Insights into Software Project
Management. In Proceedings of the Applications of Software Measurement Conference,
Orange Park, FL, Software Quality Engineering, pp. 227-239 (1999)

2. Karl E. Wiegers: Software Requirements. MicrosoftPress (2003)

3. Karner, G.: Resource Estimation for Objectory Projects. Objective System SF AB(copyright
owned by Rational Software) (1993)

4. Bokyung Park, Soyoung Moon, Dongho Kim, Chaeyeon Seo, R. Youngchul Kim, “A Study
on Extraction of Goal Oriented Use Case Based Requirements”. Proceedings of 2012 Korea
Conference on Software Engineering (2012)

5. Bokyung Park, Soyoung Moon, Chaeyeon Seo, R. Youngchul Kim, “Extraction &
Prioritization of Goal Oriented Use Case Based Requirements”. Proceedings of KISM
Spring Conference 2012, vol. 1, no. 1, pp. 62-65 (2012)

6. Bokyung Park, R. Youngchul, Kim, “Extraction & Prioritization of User Preference
Requirements through User Needs”. The 37" KIPS Spring Conference (2012)

104

