Printed in Japan ISSN 1343-4500 (print)
o ISSN 1344-8994 (electronic)

i NFORMATION

An International Interdisciplinary Journal

Volume 16 Number 1(B), January 2013

Published by International Information Insti.tute
www.information-iii.org




INFORMATION : An International Interdisciplinary Journal
Volume 16, Number 1(B), 2013

CONTENTS

Mathematical and Natural Sciences
A Novel Soft Decision Decoding Algorithm with Exploration of Candidate Code

Words Yong-Geol Shim 541
Management and Social Sciences

Framework of Populace Survey-enabled Design Patent Map Systems

Rain Chen and Chao-Chun Chen 549
A New Patent Analysis Using Association Rule Mining and Box-Jenkins Modeling
for Technology Forecasting Sunghae Jun 555
Effects of Educational Game on the Intrinsic Motivation by Learner’s Traits
Hyung-sung Park, Jung-hwan Park, Young-Tae Kim and Young-sik Kang 563

A Study of the Effects of a Wine Critic's Evaluation on the Retail Prices in
Korea; with On-line Evaluation Basis
YoonJung Nam, Youngsik Kwak and Yoonsik Kwak 569
Agriculture and Engineering
A Study on Applying Extreme Value Distribution to NHPP-based SRM

Xiao XIAO and Tadashi DOHI 575
A Study on Security Grade Assignment Model for Mobile Users in Urban
Computing Hoon Ko, Goreti Marreiros, Sang Heon Kim,

Carlos Ramos and Tai-hoon Kim 581

Light Weight Thin Client Session Isolation and Efficient Session Management
for Multi-Platform Mobile Thin Client System
Biao Song, Wei Tang, Tien-Dung Nguyen,
Mohammad Mehedi Hassan and Eui-Nam Huh 587
An Implementation of a Multi-carrier Ad-hoc Routing (MAR) Protocol for
Maritime Data Communication Networks
Seong Mi Mun, Joo Young Son, ChiaSyan Lim,

Won Boo Lee, Hun Ki Kim and Byung Wook Lee 593
Revised Model Transformation for Model Convergence
Woo Yeol Kim, Hyun Seung Son and Robert Young Chul Kim 603

Rule Extraction Method for Model Transformations in Heterogeneous

~ 53—




g ATON XN
== 16. Number 1(B), pp.603-613

Ao,

Revised Model Transformation for Model Convergence

Woo Yeol Kim*, Hyun Seung Son**, and Robert Young Chul Kim**

* Dept. of Computer Education, Daegu National University of Education
Daegu, 705-715, Korea
E-mail: john@hongik.ac.kr
**Dept. Of CIC(Computer and Information Communication), Hongik University

Sejong Campus, 339-701, Korea
E-mail: son@selab.hongik.ac.kr, bob@hongik.ac.kr

Abstract

At present, smartphones reply on a variety of different platforms such as Android, iPhone, and
Windows phone. Since most software is developed for a specific platform, it is often difficult to reuse it
on other platforms. In response to this concern, one model solution focuses on vertically transforming
an independent model to a specific model; unfortunately, for smartphones, this technique has not had
applied. In this paper, we suggest a revised model transformation method as a model convergence
mechanism adaptable to the smartphone sector. This approach utilizes UML, which allows
heterogeneous software to be created through model conversion. In the existing model conversion
process, an independent or dependent model in platform A is horizontally converted into other
independent or dependent models in platform B. By contrast, the proposed method integrates three

stages of transformation: namely, abstraction, transformation, and code generation. In so doing, this

model conversion method allows a given model to be partially reused and heterogeneous smartphone
application software to be effectively developed.

Key Words: Model Transformation, Model Convergence, UML, Heterogeneous Smartphone
Application, Cross Platform

1. Introduction

Smartphone development platforms such as Symbian, OpenC, iPhone, Android, Windows
Phone, and Palm operating systems contain various technologies such as widget, Web
runtimes, Python, Lazarus, Brew, Java Mobile Edition (ME), .NET Compact Framework
(CF), and Flash Lite [1]. Although these provide diverse mobile contents such as audio, video,
multimedia messaging, and Flash, they are limited to the platform for which are designed. For
this reason, software developers generally prefer to use specific platform-based development
method. Unfortunately, since the software developed is based on a specific platform, it
cannot necessarily be reused in a heterogeneous manner.

Numerous studies addressing interoperability between platforms in various platform
environments have recently been conducted [2]. And while they have examined the potential

reuse of models generated during software development process, the results have not yet been

-603-

QS TR

©2013 International Information Irz=- -




WOO YEOL KIM, HYUN SEUNG SON AND ROBERT YOUNG CHUL KIM

sufficiently applied to the smartphone sector. For this to occur, further research is required in
the area of model convergence as a necessary step toward developing fully adaptable
smartphone software for multiple platforms.

In this paper, to develop a heterogeneous software model-applicable to smartphone
platforms, we adopt Model-Driven Development(MDD) [3] based approach. Using this
method, we are able to convert one upper (independent) model to lower (specific) models. It
should be noted that in the previous studies focusing on smart platform development with
MDD, model convergence was not primary concern [4,5,6,7,8]. In contrast, our suggested
method examines this concern first and foremost. The proposed method consists of three
stages: first, the abstraction stage to abstract information from a dependent model on an
existing platfonn; next, the transformation stage to convert an independent model into a
target model based on the Model-to-Model method; and lastly the code generation stage to
generate the code from the target model using the model-to-text method. In so doing, model
convergence can occur when the converted model is added to another platform model.
Moreover, the code generated is now based on the Model-to-Text Transformation method. To
illustrate this process, we use ATLAS Transformation Language (ALT) [9] for Model-to-
Model Transformation, as well as Acceleo [10] for Model-to-Text Transformation. It should
be noted that such a process requires tools capable of conducting automatic model & text
conversions with code templates and conversion rules, detéils of which will be examined
later in this paper.

As a case study, a sample calculator application on the Android platform is transformed into
a Windbws Phone based platform. In so doing, approximately 90% of the Android based
platform software can be reused through model convergence.

This paper is divided as follows: Chapter 2 describes previous model transformation
approaches; Chapter 3 describes the model convergence process for heterogeneous platforms;
Chapter 4 presents a case study illustrating model convergence; Finally, Chapter 5 provides

concluding comments and suggestions for further research.

2. Related work

Most MDD tools only provide Model-to-Code conversions, which in turn generate codes
using a Platform Specific Model(PSM) based on a Platform Independent Model(PIM).
Unfortunately, these tools have not been sufficiently developed or applied to the smartphone

sector [11,12]. This method also relies on a meta-model approach for the conversion of a

source model into a target model. The purpose of the Model-to-Model conversion process is

- 604 -




REVISED MODEL TRANSFORMATION FOR MODEL CONVERGENCE

to create an intermediate model when there is an abstract difference between a PIM and a
PSM. For example, when materializing a class diagram into EJB with a tool like OptimalJ
[13], an intermediate EJB component model is created which contains all the information
necessary to make an actual Java code. This allows more modulations and maintainable
conversions to be formed. Additionally, the PSM-to-PSM conversion (Model-to-Model
Transformation) is able to generate different system model views [14].

The existing model conversion methods can largely be divided into five categories: namely,
Direct-Manipulation [15], Relational [16], Graph-Transformation [17], Structure-Driven [18],
and Hybrid [19] approaches. The Direct-Manipulation approach provides internal model
conversion and controls APL. The main benefit of this method is that there is no constraint on
the conversion. However, its weakness is that all parts must be materialized for conversion to
take place. The Relational approach defines constraints on the relationship between the
source model and the target model. However, while there are various connection methods that
can be used to map out rules, this approach is difficult to complete without a proper
conversion language [20]. The Graph-Transformation approach uses graphs to clarify and
specify the conversion process. However, most conversions generated are highly complex.
The Structure-Driven approach provides meta-model definitions for each source and target
model using model element structures. Unfortunately, this too is highly complex and different
to adapt easily. The Hybrid approach is a combination of two or more approaches based on
their respective strengths and weaknesses. The Hybrid approach enables various conversions
to occur, but renders the conversion process even more complex and time consuming. In this
paper, we examine an innovative method for heterogeneous smartphone platforms, model
conversion, one that combines a hybrid approach based on ATL and a Structure-Driven

approach based on Acceleo.

3. Model conversion method for heterogeneous platforms

The model conversion method for heterogeneous platforms integrates both model-to-model
and model-to-text transformations as shown in Figure 1. To begin, an existing model 2A (i.e.,
the original model) is selected from platform A as shown on the left side of figure 1. For
model-to-model transformation, model 2A is then converted into model 2B (i.e., the changed
model) in platform B as shown on the right side of figure 1. In other words, the original
model is abstracted into an input model as part of the model convergence process. The input

model is then changed into an output model through Model Transformation (MT). Next, the

—-605 -




WOO YEOL KIM, HYUN SEUNG SON AND ROBERT YOUNG CHUL KIM

output model is inserted into Model 2B at a specific phase of within platform B. Lastly, the

inserted model is converted codes into code template generated by the model-to-text

transformation.

Requirement Requirement

Document A Document B
N P
Desigr}/ '_-S ______ ——— / \Design
; : = Model Convergence ot
Model 1 _}_ﬂ?ﬁ?‘?_‘?’:\[ (M2M Transformation) :v-‘_odel ZB_L'——— Model 3

== TR ey l l S

Model Tranpformaton Chang_eg_Mg_det
= o E 1: [C8
+ S C

H
w & 1]
........ .;;d::»;-: ) >$ r—{, . > “err

o <Car 32

F laowimignts § —-V’ F Gecasimtinn. 02 -

s/ IR X o/ hERORE 3T

C D- 53 <Pogeti e A = Sromy-s a CC D
Input Model Output Model

[ Code Template’g:\d_ I
{i\dodel to Text Transformation } ftemplate public generateic : Clases L@Qdel to Text TranSformation}
ifle {cnameconcan( java’), falsel]
Implementatlon g";‘:‘;‘[f‘:;ma“""“wm s S <7 Implementation
N z&x{supac Class | ¢ supeeClass) before( Frmtiren
Code 1 Code 2 senar-tm("!; [superC.namelfort 5 Code 2 :’ Code 3
. [for {imerf - Imarfacs | e dae_
cgetimplementedinterfaces() L T
before{’ implements o publicclassE7
separsior(, ] [imteriname/[/for { private CB e_cb_asc = null: .. H
=mn public class CB ¢ .
el - public class CC extends CB{ .. }
[esmplate] public class CD extends CB{ ..
Code
Platform A Platform B

Fig. 1. Diagram of the model convergence process

3.1 Model to model transformation

For model convergence to take place, the proposed method suggests abstracting a model for
conversion rather than conversing all of the models at oné time. Thus, this technique relies on
selective model-to-model conversion for model convergence. Specifically, an original model
is selected from an existing model on a given platform. This model is then abstracted into an
input model, that is, abstractization. Next, the input model is changed into an output model
which allows the platform-dependent model of platform A to be transformed into a platform-
dependent model on platform B. In so doing, the abstracted output model can be successfully
converted into an adaptable model for platform B. This model-to-model transformation
process uses conversion rules generated from ATL. Whereby this output model is correctly
inserted into the corresponding position through model convergence.

A rule template to generate correlations with ATL can be created as well. This class-
creation template is a UML based Metamodel as shown in Figure 2. It should be noted that

new classes may also be generated by revising the “{Name}” in this template.

- 606 -



REVISED MODEL TRANSFORMATION FOR MODEL CONVERGENCE

rule TransformationClassTemplateRule {
from
o : InputModel!"uml::Class"
to
mm : TargetModel!"uml::Class"(
name <- ‘{ClassName}’, generalization <- generalClass,
ownedAttribute <- Sequence{ mAttribute }, ownedOperation <- Sequence{ mOperation } ),
generalClass: TargetModel!"uml::Generalization” (
general<-thisModule.getRef(‘ { GeneralizationClass} ")),
mAttribute : TargetModel!"uml::Property” (
name <- ‘{AttributeName}’, visibility <- o.visibility, type <- thisModule.getRef(‘ { TypeClass}’) )
mOperation : TargetModel!"uml::Operation" (
name <- ‘{OperationName}’, upper <- 1, visibility <- #public, isStatic <- false,
ownedParameter <- Sequence{parameter} ),
parameter : TargetModel!"uml::Parameter” (
name <- '{ParameterName}', type <- thisModule.getRef('{ ParameterType}') ), }

Fig. 2. Rule Template for Class Creation with ATL

The terms used in the template are provided in Table 1.

Table 1. Terms used for class creation rules

Name Comment
{ClassName} Class name
{GeneralizationClass} Name of class to be inherited
{AttributeName} Attribute name
{TypeClass} Attribute type
{OperationName} Method name
{ParameterName} Method parameter name
{ParameterType} Method parameter type

Figure 3 also demotes a rule template to express an association with or the relationship
between existing and abstracted classes. That is, a correlation may be generated based on this
rule template. A given rule can also be used as a function when expressed in a program
language such ATL. For example, if “Transformation AssocationRule (‘ClassA’,’ClassB’)”

is executed, the correlation between Class A and Class B can be determined.

rule TransformationAssociationRulé (refl : OclAny, ref2 : OclAny) {
to
mAssociation : TargetModel!"uml::Association” (
name <- OclUndefined, ownedEnd <- Set{associationl,association2} ),
association] : TargetModel!"uml::Property" (
name <- refl_name.toLower(), association <- mAssociation,
upperValue <- ass1_Upper, lowerValue <- assl_Lower, type <- refl ),
ass1_Upper : TargetModel!"uml::LiteralUnlimitedNatural" (value<-1),
ass1_Lower: TargetModel!"uml::Literallnteger"(value<-1),
association? : TargetModel!"uml::Property" (
name <- ref2.name.toLower(), association <- mAssociation, aggregation <- #composite,
upperValue <- ass2_Upper, lowerValue <- ass2_Lower,type <- ref2 ),
ass2 : Upper : TargetModel!"uml::LiteralUnlimitedNatural" ( value <- 1),
ass2_Lower : TargetModel!"uml::Literallnteger"(value<-1)
do { mAssociation; }

}

Fig. 3. Rule template for association between classes with ATL

3.2. Model to text transformation

As part of this conversion process, we can generate the code needed for a model in the

target platform by using the Model-to-Text Transformation. In the code-generation method, a

-607 -



WOO YEOL KIM, HYUN SEUNG SON AND ROBERT YOUNG CHUL KIM

code template is used to generate code. In this study, the changed model in platform B is thus
converted into code based on the code template presented in figure 1 which was prepared

using Acceleo and C#, which mentioned in a previous study [5].

4. Case study for transforming an Android to a Window based platform application
This section provides a sample of the model convergence process for a calculator

application (Figure 4) developed for Android platform and converted into a Windows Phone
based platform.

(a)Android (b)Windows Phone
Fig. 4. Calculators on heterogeneous platforms

4.1. Android platform model

| Acwity | i .PomitweTspes “Pomitivelypes «PamitveTypes || +PrmitiveTepe. || Primstivelipes Teatyien
Baolean Double Char stnng Inteqer 1
? ainterfaces | view ] v
CaiculatorAcvity Button OnChick Listener

e

resuftviener_result

I Realizahion0
calculator_buttonListener Buftontitener
+ calulator + resultviener
. + buttonListener | « Buttonlistenas( + m Calculator) ']
+ calculater HoCheld +n Ve ; Resultviewer | 4
> ]
= vamneT H
Calculator + Resultvieweri + in Calculatoractvityd | §
e calculator_resultviewer » resultiiewer « Setfesuit + ' Stng) :
- fust lean + GetResulty Stoing - o o
) g:qgigiolem + calculator [ -
uttonacion
- operator Char <afculator buttont | pmonn
+ Calculator « in CaleutatorActivity) s calculator + Operation( » In Caleulater;
« ButtonBS() calculator_buttonBS « button8S Q/ » Pressi » in Stnng:
» ButtonCE() « calculator nh
~ ButtonCo) calculator BURGNCE | pomoncE | * ButtonActoni » i Calculator) =he H
+ BultonDaA( o calculator + Press{ » in Stnng)
« Button{ + in Stngy pcccalcitator sy : i
+ ButtonOperatodt » In Stng) Calculator buttenC | pytonC N :‘:,‘"; i"m‘ ’S"m;;l;“ on
« SetResultl o in Stnngy « Calculator
+ GetResult)) Stong calculator_buttenOP D
+ SetFirst] + in Boolean) : = + buttonOV
+ Getwrsts; Boolean + Galeutator PR
+ SetDocPressi » in Boclean)  alcttn pocndox < busne s 7 v s  pondon
« GetDotPressy) 8oclean b 3 2
v Setan + n Double) Backspace Cloar CleatEach
< GetHap Double e
« SetOperatori + 0 Charj
+ GetOperator) Char + Backspace{ « n Calculaton || « Cleart « m Cakeutaton | | + Clearfachs + i Calculator)
« Pressi + in Stang) + Presst «in Stnng) - Prassi +n Stingd

Fig. 5. Class Diagram of a calculator in the Android Platform
The application model for the Android platform, as shown in Figure 5, is presented as a
class diagram. The calculator class represents the main class or role of the calculators. The
Listener class directs the event processing in the Android platform. The ButtonListener class

is used to process many buttons at one time. The ResultViewer class shows the calculated

—608 —




REVISED MODEL TRANSFORMATION FOR MODEL CONVERGENCE

result. When the calculator button is pressed, the ButtonAction class is activated. Its roles are
divided into Backspace, Clear, ClearEach, Dot, Number, and Operation classes. Backspace is
a class to delete one letter when the “BS” button is pressed. Clear is a class to delete all data
when the “C” button is pressed. ClearEach is a class to delete a formula when the “CE”
button is pressed. Dot is a class to feed decimal points when the “.” button is pressed.
Number is a class carrying out processing when number keys are pressed. Operation is a class
applied when “+,-,* /” keys are pressed.

In the class diagram of an Android calculator, the red dotted box indicates the independent
components of the platform. The remaining components are Android platform-dependent. It

is important to note that the platform-dependent portions should be separated when designing

the software design.
A) (8) ©
« £ <tdodel> model o B3 <Vodet» model 4 B <Madel- mogel
EJ «Class- CalculaterActivity 3 <Class» Calculatar et P
B3 <Class» Activity ] <Class> Resuitviewer i Dhrr\kigeph-g( -
B <Class> Caitulator £ <Class- gutteriiste ey £ A%
. <Dependencys calculator = <Ciasse o e
E£J ~Classs ResukViewer % <Primitive Type» Scolean .
: - cousie  Transformation

355> Buticnuistener Abstract B <Prmaive T
F &

< trondcon S B «fomitive Types Char

2 ative Types 3ociean Ps B3 <Frimitive Type> Sting ‘ > imitive Types Couble

5 <Frimitive Type» Doutle 7 B8 ~Prmuive Typex Integer <Ramuve Tyoe- Char

B3 -Samative Types Thar o iatior> calculator_resultvi

2 «Primnve Types Sing / <Assoclatior > calculater_buttonN

2 «Primiti ype» Integer  -asseqaner> calkulter_buttenc: lon- caleuiater_resultvieser

oL <Assccistior> calculator resultviewer S Asscciatior. " Assorianions caleulator buttorN

 =Assouations calculator_butony / <Association> a3 ions <3icuistor_tuttenCE

/ <Asscaiticr - calculator_bws / =Asscaiaticr> calculater_butienss onr zalulater buttenC

/ ~Asscciaions <alculator_bu / <association > <alculstar_buttenCP = 100 > :a}cutawr‘aur».or(:cl

/ <Assoclatiens> calcutator_bu o 2 <Class> view  <Assoiatons calcuiator Cultorss

~ <Assoaaton calzulstor_bunen3s & <Class> Clear " <associstion cakuistes_tutierCP

' <assocatens calculatar_bunionGe i ~Class» Cleargach = <Class~ Ciear -

/ <Asscciabons calcutator_buticniistener S «Class- Dot 5 <Class» Clear€ach

£ <Class> Teview £ «Class» Cperaticn 5 «Class» Dot

 wAssociations resultViewer_result i <Class> Numoer 2 <Class» Coeration

EX -interface- Sumcn OnClickListener [3 <Class - Backspace = <Class» Number

-# <Realizations Realization0 &5 <Class> object

B <Class> view o ~Class~ RoutedfyentArgs

B «Class> Clear S <Assocauon> mainFage_salculator
«Class> ClearSach =5 =Class~ Sackspace

=Class> Cpersucr
«Class> Numbder
£3 «Class~ gactspace

1=
£ <Class> Cct
=
=

Fig. 6. Model Transformation Process

The results of the model conversion process applied to the Android based platform
calculator are shown in Figure 6. The features (A) in the figure 6 are available when the
Android class diagram is conducted through the eclipse UML model editor. It can also be
confirmed that all components of the Android class are included. (B) is the result of
abstractization based on an independent model for reuse. As a result, the platform-dependent
models are removed and only the independent model components are included. (C) indicates
a model generated through the model conversion process. Once generated, these classes are
inserted into the Window platform-dependent models.

Figure 7 shows the results of this model transformation. Based on the model conversion
process, most of the independent model structures can be reused. Also, when the MainPage
and PhoneApplicationPage classes are generated, they become dependent on the Windows

Phone platform as well. As for commands in the Windows Phone platform, MainPage can

-609—




WOO YEOL KIM, HYUN SEUNG SON AND ROBERT YOUNG CHUL KIM

now directly receive an event even though there is no ButtonListener class. To increase the
reuse of models upon convergence, it is important to separate platform-independent models

from platform-dependent ones upon model design.

U
PhoneapplicationPage ly| =PrmitiveTspes | | «PrmitiveTypes | | «PnmitiveTypes || «PrmteTvpe. || <Pumtivelype.
Boolean Deuble Char String Inteqer
|

MainPige
obiect | | RoutedEventargs |
+ MainPage(:
- onClhick( + i object, +in RoutedEventasgs;
+ mainPige i" 1
manPage_calculator : Resultviewer :
[ Lo -
+ calculator + calculator . :
Calculator e + Resultviewer( « in MainPager
Seah od:en calculator_result/iever + reuitviewer - SeResk] & -Sng !
- dotprass Boolean - + GetResultis Stnng | I — -
- hap Double e
: ButtonAchion ation
operatcrs <har calculator buttonN  p,ronny Oper.
+ Calculaton « in ManPage) ppeg—t-Salculater + Operationt + 1n’ Catculaton
+ ButtonBSi} calculator buttonBS  + buttonBS « Présy « m SURng
+ ButtenCE) + calculater &
+ ButtenC() calculator buttonCE |, pemonce | Buttonaction: « in. Calculator Nymber
+ ButtonDotD I = + Press( » in Stnng;
+ Buttoni » in Stnna S
+ ButtonCperator( + In String) calculator buttonC + buttanC + Numberr +p Calcuiaton
+ SetResult{ + i String) + calculator K + Presst v inStnng; }
+ GetResuk Stra calculatos_buttonOP Dot
« Setfirst{ + in Boclean) ~ + buttonOP ]
+ Getfirst(y Boolean + calculator
+ SetDotPress( + In Bociean) calculator_buttonDot  + buttonDot + Deti +in Caleulaten)
+ GaDotPress(; Boolean ‘P V + Press{ + n.Stnngy
+ SetHap( « in Double)
. gm*la:((;nwble ) Backspace Clear Clearfach
+ SetOperatort + in Chan
+ GetOperatoe: Char + Backspace] »in Calculaton + Cleart + i Calculatori{ | + Cleatachi + mn Calcuiator;
+ Press » i Stangy » Pressi +in Stang) + Presst +in Stang)

Fig. 7. Class Diagram of a calculator in the Windows Phone Platform
When the model is generated through the model conversion process, codes are then
generated through model-to-text transformation. Figure 8 shows a comparison between
Android platform and Windows Phone platform code segments. Based on this comparison,

we can see that a greater number of codes can be reused when the platform-dependent areas

are removed.
public class Operation extends ButtonAction { ' public class Operation : ButtonAction {
public Operation(Calculator c) { super(c); } public Operation(Calculator c) : base(c) {}
@Override public void Press(String value) { public override void Press(string value) {
if(calculator.GetFirst() && !value.equals("=")){ if(calculator.GetFirst() && !value.Equals("=")){
calculator.SetOperator(value.charAt(0));return; } calculator.SetOperator(value[0]); return; }
double susu = Double.parseDouble(calculator.GetResult());] ~ double susu = Double.Parse(calculator. GetResult());
switch(calculator.GetOperator()) { switch(calculator.GetOperator()) {
case '+ calculator.SetHap(calculator.GetHap() + susu); gas:l;+‘: calculator.SetHap(calculator.GetHap() + susu);
break; Teak;
case '-": calculator.SetHap(calculator.GetHap() - susu); caszl"[-': calculator.SetHap(calculator. GetHap() - susu);
break; break;
case "*': calculator.SetHap(calculator.GetHap() * susu); gaszl;*': calculator.SetHap(calculator.GetHap() * susu);
break; reak;
case '/": calculator.SetHap(calculator.GetHap() / susu); casgl;/': }calculator.SetHap(calculator.GetHap() / susu);
break; } break;
if(!value.equals("=")) { if ('value.Equals("=")) {
calculator.SetOperator(value.charAt(0)); } calculator.SetOperator(value[0]); }
double ii = calculator.GetHap()—(int)calculator.GetHap(); double ii = calculator.GetHap()-(int)calculator.GetHap();
if(ii = 0) { calculator.SetResult( if(ii =0) { calculator.SetResult(
String.valueOf((int)calculator.GetHap()) + "."); }olse ((int)calculator.GetHap()). ToString() + ".");
} else else .
calculatgr.SetResult(String.valueOf(calcnlator.GetHap())); calculator.SetResult(calculator.GetHap(). ToString());
} if(value.equals("=")) { } if (value.Equals("=")) {
calculator.SetHap(0.0); calculator.SetHap(0.0);
calculator.SetOperator('+); } calculator.SetOpemtor('#); 1
calculator.SetFirst(true); calculator.SetFirst(true);
calculator.SetDotPress(false); } } calculator.SetDotPress(false); } }
(a) Android’s code (b) Windows Phone’s code
Fig. 8. Code comparison between Android and Window phone platform

-610—




REVISED MODEL TRANSFORMATION FOR MODEL CONVERGENCE

5. Conclusion

Presently, efficient model convergence methods for heterogeneous platforms are limited in
terms of reliability and adaptability, most notably in the area of smartphone applications. In
response to this concern, this paper examined first the Model Driven Development (MDD)
method, as a possible convergence approach for smartphone heterogeneous platform
environments. This approach automates the process of a software design to software
materialization, and enables the conversion of one upper model into other lower models.
Although the original MDD method is appropriate for model conversion, it is not capable of
horizontal movement between heterogeneous models. Subsequently, MDD is limited and not
advantageous for model convergence. Therefore, an alternative model transformation method
for model convergence was presented, combining Hybrid Development and Structure-Driven
Approaches.

The suggested method incorporates the Model Transformation with MDD based
mechanisms and conducts convergence of an existing model with a target model. The first
stage is abstractization, which involves separating platform-dependent models from platform-
independent models. The second stage is model-to-model transformation, which converts a
given model into an abstracted model, then reinserts the latter into its corresponding position.
At this stage, class-creation templates are used, as well as correlation generation methods
using the conversion language, ALT. The third stage involves Model-to-Text Transformation
that converts the model into codes based on a code template generated from the conversion
language, Acceleo. Based on this process, partial automation of model convergence occurred
and heterogeneous platform interoperability became partially achievable.

To illustrate this process, we presented a case study involving the transformation of a
calculator application from the Android platform into the Windows platform. In so doing,
nearly 90% of the Android based platform software structures could be re-used. Thus, by
using the suggested method, the model may be partially re-used and effectively applied to the
development of heterogeneous smartphone application software.

At present, complete automation of the model convergence process is not yet possible and
significant manual operation is still required. Details of this problem could be seen in the
Class Diagram presented in this study.

Further research should therefore be conducted to address this concern as well as limitation

of the class diagramming process.

-611-




WOO YEOL KIM, HYUN SEUNG SON AND ROBERT YOUNG CHUL KIM

6. Acknowledgments

This Tesearch was supported by the MKE(The Ministry of Knowledge Economy), Korea,
under the ITRC(Information Technology Research Center) support program supervised by
the NIPA(National IT Industry Promotion Agency)(NIPA-2012-(H0301-12-3004)) and the
Ministry of Education, Science Technology (MEST) and National Research Foundation of
Korea(NRF) through the Human Resource Training Project for Regional Innovation.

References
[1] D. Gavalas, D. Economou, Development Platforms for Mobile Applications: Status and
Trends. Software, IEEE, Vol. 28, Issue 1 (2011), pp. 71 =86,
[2] K. Czarnecki, S. Helsen, Feature-based survey of model transformation approaches. IJBM
Systems Journal, Vol. 45, Issue 3 (2006), pp. 621 — 645.
[3]1 B. Selic, The pragmatics of model-driven development. Software, IEEE, Vol. 20, Issue 5
(2003) , pp. 19 -25.
[4] Woo Yeol Kim, Hyun Seung Son, Jae Seung Kim, R. Young Chul Kim, Development of
Windows Mobile Applications using Model Transformation techniques. Journal of KIISE :
Computing Practices and Letters, Vol. 16, No. 11 (2010), pp. 1091-1095.
[5] Woo Yeol Kim, Hyun Seung Son, R. Young Chul Kim, Design of Code Template for
Automatic Code Generation of Heterogeneous Smartphone Application. Advanced
Communication and Networking, CCIS 199 (2011), pp. 292-297. '
[6] Woo Yeol Kim, Hyun Seung Son, Jae Seung Kim, R. Young Chul Kim, Adapting Model
Transformation Approach for Android Smartphone Application. Advanced Communication
and Networking, CCIS 199 (2011), pp. 421-429.
[7]1 Wooyeol Kim, Hyunseung Son, Junbeom Yoo, Young B. Park, R. Youngchul Kim, A
Study on Target Model Generation for Smartphone Applications using Model
Transformation Technique. International Conference on Internet (ICONI) 2010, Vol. 2
(2010), pp. 557-558.
[8] Hyun Seung Son, Woo Yeol Kim, Woo Sung Jang, R. Young Chul Kim, Development
" Android Application using Model Transformation. Joint Workshop on Software engineering
Technology 2010, Vol. 8, No. 1 (2010), pp. 64-67.
[9] Wikipedia, ATL, http://en.wikipedia.org/wiki/ATLAS_Transformation _Language
[10] Obeo, Acceleo User Guide, http://www.acceleo.org/
[11] M. Karanam, A. Rao Akepogu, A Framework for Visualizing Model-Driven Software
Evolution — Its Evaluation. International Journal of Software Engineering and Its

Applications, Vol. 5 No. 2 (2011), pp.135-148.

-612-




=
=
g
£
5
e

REVISED MODEL TRANSFORMATION FOR MODEL CONVERGENCE

[12] W. Alouini, O. Guedhami, S. Hammoudi, M. Gammoudi, D. Lopes, Semi-Automatic
Generation of Transformation Rules in Model Driven Engineering : The Challenge and First
Steps. International Journal of Sofiware Engineering and Its Applications, Vol. 5 No. 1
(2011), pp. 73- 88.

[13] OptimalJ, http://en.wikipedia.org/wiki/Optimall

[14] K. Czarnecki, S. Helsen, Classification of model transformation approaches. OOPSLA
03 Workshop on Generative Techniques in the Context of Model-Driven Architecture, 2003.
[15] Jamda, The Java Model Driven Architecture 0.2. http://sourceforge.net/projects/jamda/.
[16] D. H. Akehurst, S. Kent. A, Relational Approach to Defining Transformations in a
Metamodel. UML 2002 - The Unified Modeling Language 5th International Conference,
Dresden, Germany, LNCS 2460 (2002), pp. 243-258.

[17] F. Marschall and P. Braun, Model Transformations for the MDA with BOTL. Model
Driven Architecture: Foundations and Applications, 2003, pp. 25-36.

[18] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software. Addison- Wesley, 1995.

[19] Alcatel, Softeam, Thales, TNI-Valiosys, Codagen Corporation, et al., MOF
Query/Views/Transformations. Revised Submission. OMG Document, 2003.

[20] I. Bouzouita, S. Elloumi, Generic Associative Classification Rules: A Comparative

Study. International Journal of Advanced Science and Technology, Vol. 33 (2011), pp. 69-84.

*Corresponding author: Robert Young Chul Kim, Prof.

Department of Computer and Information Communication,

Hongik University Sejong Campus,

300 Jochiwon-eup, Yeonki-gun, Choongchungnam-do 339-701, Korea
E-mail: bob@hongik.ac.kr

=hld~



