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Abstract

At present, smartphones reply on a variety of different platforms such as Android, iPhone, and
Windows phone. Since most software is developed for a specific platform, it is often difficult to reuse it
on other platforms. In response to this concern, one model solution focuses on vertically transforming
an independent model to a specific model; unfortunately, for smartphones, this technique has not had
applied. In this paper, we suggest a revised model transformation method as a model convergence
mechanism adaptable to the smartphone sector. This approach utilizes UML, which allows
heterogeneous software to be created through model conversion. In the existing model conversion
process, an independent or dependent model in platform A is horizontally converted into other
independent or dependent models in platform B. By contrast, the proposed method integrates three

stages of transformation: namely, abstraction, transformation, and code generation. In so doing, this

model conversion method allows a given model to be partially reused and heterogeneous smartphone
application software to be effectively developed.

Key Words: Model Transformation, Model Convergence, UML, Heterogeneous Smartphone
Application, Cross Platform

1. Introduction

Smartphone development platforms such as Symbian, OpenC, iPhone, Android, Windows
Phone, and Palm operating systems contain various technologies such as widget, Web
runtimes, Python, Lazarus, Brew, Java Mobile Edition (ME), .NET Compact Framework
(CF), and Flash Lite [1]. Although these provide diverse mobile contents such as audio, video,
multimedia messaging, and Flash, they are limited to the platform for which are designed. For
this reason, software developers generally prefer to use specific platform-based development
method. Unfortunately, since the software developed is based on a specific platform, it
cannot necessarily be reused in a heterogeneous manner.

Numerous studies addressing interoperability between platforms in various platform
environments have recently been conducted [2]. And while they have examined the potential

reuse of models generated during software development process, the results have not yet been
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sufficiently applied to the smartphone sector. For this to occur, further research is required in
the area of model convergence as a necessary step toward developing fully adaptable
smartphone software for multiple platforms.

In this paper, to develop a heterogeneous software model-applicable to smartphone
platforms, we adopt Model-Driven Development(MDD) [3] based approach. Using this
method, we are able to convert one upper (independent) model to lower (specific) models. It
should be noted that in the previous studies focusing on smart platform development with
MDD, model convergence was not primary concern [4,5,6,7,8]. In contrast, our suggested
method examines this concern first and foremost. The proposed method consists of three
stages: first, the abstraction stage to abstract information from a dependent model on an
existing platfonn; next, the transformation stage to convert an independent model into a
target model based on the Model-to-Model method; and lastly the code generation stage to
generate the code from the target model using the model-to-text method. In so doing, model
convergence can occur when the converted model is added to another platform model.
Moreover, the code generated is now based on the Model-to-Text Transformation method. To
illustrate this process, we use ATLAS Transformation Language (ALT) [9] for Model-to-
Model Transformation, as well as Acceleo [10] for Model-to-Text Transformation. It should
be noted that such a process requires tools capable of conducting automatic model & text
conversions with code templates and conversion rules, detéils of which will be examined
later in this paper.

As a case study, a sample calculator application on the Android platform is transformed into
a Windbws Phone based platform. In so doing, approximately 90% of the Android based
platform software can be reused through model convergence.

This paper is divided as follows: Chapter 2 describes previous model transformation
approaches; Chapter 3 describes the model convergence process for heterogeneous platforms;
Chapter 4 presents a case study illustrating model convergence; Finally, Chapter 5 provides

concluding comments and suggestions for further research.

2. Related work

Most MDD tools only provide Model-to-Code conversions, which in turn generate codes
using a Platform Specific Model(PSM) based on a Platform Independent Model(PIM).
Unfortunately, these tools have not been sufficiently developed or applied to the smartphone

sector [11,12]. This method also relies on a meta-model approach for the conversion of a

source model into a target model. The purpose of the Model-to-Model conversion process is
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to create an intermediate model when there is an abstract difference between a PIM and a
PSM. For example, when materializing a class diagram into EJB with a tool like OptimalJ
[13], an intermediate EJB component model is created which contains all the information
necessary to make an actual Java code. This allows more modulations and maintainable
conversions to be formed. Additionally, the PSM-to-PSM conversion (Model-to-Model
Transformation) is able to generate different system model views [14].

The existing model conversion methods can largely be divided into five categories: namely,
Direct-Manipulation [15], Relational [16], Graph-Transformation [17], Structure-Driven [18],
and Hybrid [19] approaches. The Direct-Manipulation approach provides internal model
conversion and controls APL. The main benefit of this method is that there is no constraint on
the conversion. However, its weakness is that all parts must be materialized for conversion to
take place. The Relational approach defines constraints on the relationship between the
source model and the target model. However, while there are various connection methods that
can be used to map out rules, this approach is difficult to complete without a proper
conversion language [20]. The Graph-Transformation approach uses graphs to clarify and
specify the conversion process. However, most conversions generated are highly complex.
The Structure-Driven approach provides meta-model definitions for each source and target
model using model element structures. Unfortunately, this too is highly complex and different
to adapt easily. The Hybrid approach is a combination of two or more approaches based on
their respective strengths and weaknesses. The Hybrid approach enables various conversions
to occur, but renders the conversion process even more complex and time consuming. In this
paper, we examine an innovative method for heterogeneous smartphone platforms, model
conversion, one that combines a hybrid approach based on ATL and a Structure-Driven

approach based on Acceleo.

3. Model conversion method for heterogeneous platforms

The model conversion method for heterogeneous platforms integrates both model-to-model
and model-to-text transformations as shown in Figure 1. To begin, an existing model 2A (i.e.,
the original model) is selected from platform A as shown on the left side of figure 1. For
model-to-model transformation, model 2A is then converted into model 2B (i.e., the changed
model) in platform B as shown on the right side of figure 1. In other words, the original
model is abstracted into an input model as part of the model convergence process. The input

model is then changed into an output model through Model Transformation (MT). Next, the
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output model is inserted into Model 2B at a specific phase of within platform B. Lastly, the

inserted model is converted codes into code template generated by the model-to-text

transformation.
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Fig. 1. Diagram of the model convergence process

3.1 Model to model transformation

For model convergence to take place, the proposed method suggests abstracting a model for
conversion rather than conversing all of the models at oné time. Thus, this technique relies on
selective model-to-model conversion for model convergence. Specifically, an original model
is selected from an existing model on a given platform. This model is then abstracted into an
input model, that is, abstractization. Next, the input model is changed into an output model
which allows the platform-dependent model of platform A to be transformed into a platform-
dependent model on platform B. In so doing, the abstracted output model can be successfully
converted into an adaptable model for platform B. This model-to-model transformation
process uses conversion rules generated from ATL. Whereby this output model is correctly
inserted into the corresponding position through model convergence.

A rule template to generate correlations with ATL can be created as well. This class-
creation template is a UML based Metamodel as shown in Figure 2. It should be noted that

new classes may also be generated by revising the “{Name}” in this template.
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rule TransformationClassTemplateRule {
from
o : InputModel!"uml::Class"
to
mm : TargetModel!"uml::Class"(
name <- ‘{ClassName}’, generalization <- generalClass,
ownedAttribute <- Sequence{ mAttribute }, ownedOperation <- Sequence{ mOperation } ),
generalClass: TargetModel!"uml::Generalization” (
general<-thisModule.getRef(‘ { GeneralizationClass} ")),
mAttribute : TargetModel!"uml::Property” (
name <- ‘{AttributeName}’, visibility <- o.visibility, type <- thisModule.getRef(‘ { TypeClass}’) )
mOperation : TargetModel!"uml::Operation" (
name <- ‘{OperationName}’, upper <- 1, visibility <- #public, isStatic <- false,
ownedParameter <- Sequence{parameter} ),
parameter : TargetModel!"uml::Parameter” (
name <- '{ParameterName}', type <- thisModule.getRef('{ ParameterType}') ), }

Fig. 2. Rule Template for Class Creation with ATL

The terms used in the template are provided in Table 1.

Table 1. Terms used for class creation rules

Name Comment
{ClassName} Class name
{GeneralizationClass} Name of class to be inherited
{AttributeName} Attribute name
{TypeClass} Attribute type
{OperationName} Method name
{ParameterName} Method parameter name
{ParameterType} Method parameter type

Figure 3 also demotes a rule template to express an association with or the relationship
between existing and abstracted classes. That is, a correlation may be generated based on this
rule template. A given rule can also be used as a function when expressed in a program
language such ATL. For example, if “Transformation AssocationRule (‘ClassA’,’ClassB’)”

is executed, the correlation between Class A and Class B can be determined.

rule TransformationAssociationRulé (refl : OclAny, ref2 : OclAny) {
to
mAssociation : TargetModel!"uml::Association” (
name <- OclUndefined, ownedEnd <- Set{associationl,association2} ),
association] : TargetModel!"uml::Property" (
name <- refl_name.toLower(), association <- mAssociation,
upperValue <- ass1_Upper, lowerValue <- assl_Lower, type <- refl ),
ass1_Upper : TargetModel!"uml::LiteralUnlimitedNatural" (value<-1),
ass1_Lower: TargetModel!"uml::Literallnteger"(value<-1),
association? : TargetModel!"uml::Property" (
name <- ref2.name.toLower(), association <- mAssociation, aggregation <- #composite,
upperValue <- ass2_Upper, lowerValue <- ass2_Lower,type <- ref2 ),
ass2 : Upper : TargetModel!"uml::LiteralUnlimitedNatural" ( value <- 1),
ass2_Lower : TargetModel!"uml::Literallnteger"(value<-1)
do { mAssociation; }

}

Fig. 3. Rule template for association between classes with ATL

3.2. Model to text transformation

As part of this conversion process, we can generate the code needed for a model in the

target platform by using the Model-to-Text Transformation. In the code-generation method, a
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code template is used to generate code. In this study, the changed model in platform B is thus
converted into code based on the code template presented in figure 1 which was prepared

using Acceleo and C#, which mentioned in a previous study [5].

4. Case study for transforming an Android to a Window based platform application
This section provides a sample of the model convergence process for a calculator

application (Figure 4) developed for Android platform and converted into a Windows Phone
based platform.

(a)Android (b)Windows Phone
Fig. 4. Calculators on heterogeneous platforms

4.1. Android platform model
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Fig. 5. Class Diagram of a calculator in the Android Platform
The application model for the Android platform, as shown in Figure 5, is presented as a
class diagram. The calculator class represents the main class or role of the calculators. The
Listener class directs the event processing in the Android platform. The ButtonListener class

is used to process many buttons at one time. The ResultViewer class shows the calculated
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result. When the calculator button is pressed, the ButtonAction class is activated. Its roles are
divided into Backspace, Clear, ClearEach, Dot, Number, and Operation classes. Backspace is
a class to delete one letter when the “BS” button is pressed. Clear is a class to delete all data
when the “C” button is pressed. ClearEach is a class to delete a formula when the “CE”
button is pressed. Dot is a class to feed decimal points when the “.” button is pressed.
Number is a class carrying out processing when number keys are pressed. Operation is a class
applied when “+,-,* /” keys are pressed.

In the class diagram of an Android calculator, the red dotted box indicates the independent
components of the platform. The remaining components are Android platform-dependent. It

is important to note that the platform-dependent portions should be separated when designing

the software design.
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Fig. 6. Model Transformation Process

The results of the model conversion process applied to the Android based platform
calculator are shown in Figure 6. The features (A) in the figure 6 are available when the
Android class diagram is conducted through the eclipse UML model editor. It can also be
confirmed that all components of the Android class are included. (B) is the result of
abstractization based on an independent model for reuse. As a result, the platform-dependent
models are removed and only the independent model components are included. (C) indicates
a model generated through the model conversion process. Once generated, these classes are
inserted into the Window platform-dependent models.

Figure 7 shows the results of this model transformation. Based on the model conversion
process, most of the independent model structures can be reused. Also, when the MainPage
and PhoneApplicationPage classes are generated, they become dependent on the Windows

Phone platform as well. As for commands in the Windows Phone platform, MainPage can
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now directly receive an event even though there is no ButtonListener class. To increase the
reuse of models upon convergence, it is important to separate platform-independent models

from platform-dependent ones upon model design.
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Fig. 7. Class Diagram of a calculator in the Windows Phone Platform
When the model is generated through the model conversion process, codes are then
generated through model-to-text transformation. Figure 8 shows a comparison between
Android platform and Windows Phone platform code segments. Based on this comparison,

we can see that a greater number of codes can be reused when the platform-dependent areas

are removed.
public class Operation extends ButtonAction { ' public class Operation : ButtonAction {
public Operation(Calculator c) { super(c); } public Operation(Calculator c) : base(c) {}
@Override public void Press(String value) { public override void Press(string value) {
if(calculator.GetFirst() && !value.equals("=")){ if(calculator.GetFirst() && !value.Equals("=")){
calculator.SetOperator(value.charAt(0));return; } calculator.SetOperator(value[0]); return; }
double susu = Double.parseDouble(calculator.GetResult());] ~ double susu = Double.Parse(calculator. GetResult());
switch(calculator.GetOperator()) { switch(calculator.GetOperator()) {
case '+ calculator.SetHap(calculator.GetHap() + susu); gas:l;+‘: calculator.SetHap(calculator.GetHap() + susu);
break; Teak;
case '-": calculator.SetHap(calculator.GetHap() - susu); caszl"[-': calculator.SetHap(calculator. GetHap() - susu);
break; break;
case "*': calculator.SetHap(calculator.GetHap() * susu); gaszl;*': calculator.SetHap(calculator.GetHap() * susu);
break; reak;
case '/": calculator.SetHap(calculator.GetHap() / susu); casgl;/': }calculator.SetHap(calculator.GetHap() / susu);
break; } break;
if(!value.equals("=")) { if ('value.Equals("=")) {
calculator.SetOperator(value.charAt(0)); } calculator.SetOperator(value[0]); }
double ii = calculator.GetHap()—(int)calculator.GetHap(); double ii = calculator.GetHap()-(int)calculator.GetHap();
if(ii = 0) { calculator.SetResult( if(ii =0) { calculator.SetResult(
String.valueOf((int)calculator.GetHap()) + "."); }olse ((int)calculator.GetHap()). ToString() + ".");
} else else .
calculatgr.SetResult(String.valueOf(calcnlator.GetHap())); calculator.SetResult(calculator.GetHap(). ToString());
} if(value.equals("=")) { } if (value.Equals("=")) {
calculator.SetHap(0.0); calculator.SetHap(0.0);
calculator.SetOperator('+); } calculator.SetOpemtor('#); 1
calculator.SetFirst(true); calculator.SetFirst(true);
calculator.SetDotPress(false); } } calculator.SetDotPress(false); } }
(a) Android’s code (b) Windows Phone’s code
Fig. 8. Code comparison between Android and Window phone platform
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5. Conclusion

Presently, efficient model convergence methods for heterogeneous platforms are limited in
terms of reliability and adaptability, most notably in the area of smartphone applications. In
response to this concern, this paper examined first the Model Driven Development (MDD)
method, as a possible convergence approach for smartphone heterogeneous platform
environments. This approach automates the process of a software design to software
materialization, and enables the conversion of one upper model into other lower models.
Although the original MDD method is appropriate for model conversion, it is not capable of
horizontal movement between heterogeneous models. Subsequently, MDD is limited and not
advantageous for model convergence. Therefore, an alternative model transformation method
for model convergence was presented, combining Hybrid Development and Structure-Driven
Approaches.

The suggested method incorporates the Model Transformation with MDD based
mechanisms and conducts convergence of an existing model with a target model. The first
stage is abstractization, which involves separating platform-dependent models from platform-
independent models. The second stage is model-to-model transformation, which converts a
given model into an abstracted model, then reinserts the latter into its corresponding position.
At this stage, class-creation templates are used, as well as correlation generation methods
using the conversion language, ALT. The third stage involves Model-to-Text Transformation
that converts the model into codes based on a code template generated from the conversion
language, Acceleo. Based on this process, partial automation of model convergence occurred
and heterogeneous platform interoperability became partially achievable.

To illustrate this process, we presented a case study involving the transformation of a
calculator application from the Android platform into the Windows platform. In so doing,
nearly 90% of the Android based platform software structures could be re-used. Thus, by
using the suggested method, the model may be partially re-used and effectively applied to the
development of heterogeneous smartphone application software.

At present, complete automation of the model convergence process is not yet possible and
significant manual operation is still required. Details of this problem could be seen in the
Class Diagram presented in this study.

Further research should therefore be conducted to address this concern as well as limitation

of the class diagramming process.
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