ISSN: 1738-9984

national Journal of Software

Vol.7, No.3, May, 2013

SCIENCE & ENGINEERING
RESEARCH SUPPORT SOCIETY

International Journal of Software Engineering and Its Applications
Vol. 7, No. 3, May, 2013

Improving the Performances of Software for Rating Patent Technology: A
Korean Case Study 343

Youngkwan Kwon, Tae-Kyu Ryu and Jong Bok Park

Visualizing and Analyzing the Structure of Aspect] Software under the
Eclipse Platform 353

Sassi Bentrad and Djamel Meslati

Advance Convergence Characteristic Based on Recycling Buffer Structure
in Adaptive Transversal Filter 377

Gwang Jun Kim, Chang Soo Jang, Chan Ho Yoon,
Seung Jin Jang and Jin Woo Lee

Designing of Framework for Mobile Applications Assets Management 387

Haeng-Kon Kim

Domain Specific Language for Collaborative Determination of Separation
Minima between Aircrafts 399

Sakon Sinlapakun and Yachai Limpiyakorn

MOF based Code Generation Method for Android Platform 415

Hyun Seung Son, Woo Yeol Kim and Robert Young Chul Kim

A Software Cost Model with Reliability Constraint under Two Operational
Scenarios 427

Satoru Ukimoto and Tadashi Dohi

Selected Block Size-Based Spectral Domain Scrambling 439

Gwanggil Jeon

xXxi

International Journal of Software Engineering and Its Applications
Vol. 7, No. 3, May, 2013

MOF based Code Generation Method for Android Platform

Hyun Seung Son', Woo Yeol Kim? and Robert Young Chul Kim'

'Dept. of CIC(Computer and Information Communication), Hongik University
Sejong Campus, 339-701, Korea
’Dept. of Computer Education, Daegu National University of Education
Daegu, 705-715, Korea
{son, bob}@selab.hongik.ac.kr, john@dnue.ac.kr

Abstract

The existing code generations methods focus on UML Class diagram, which easily
represents code structure such as class, method, attribute, but just possibly generate a
skeleton code. In this paper we describe to apply UML Message Sequence Diagram (MSD)
for representing interactive behavior among objects, and generate more sophisticated Java
Code for Android Platform. We also propose code generation method based on Meta Object
Facility (MOF) using model transformation technique. And we show metamodel of MSD and
model transformation rules written by Acceleo. Using proposed method, we can optimize

Java code of Android platform, and increase more code generation rate than the previous
approaches.

Keywords: Android, Smartphone, Code Generation, Meta Object Facility (MOF), UML
Sequence Diagram, Model-to-Text Transformation

1. Introduction

Platform-based development supported the classes and methods are mostly used as one
possible method to quickly develop software. But this platform dependent method gives us
difficult to develop on other platform. For example, Android platform [1-3] based software
cannot be executed on iPhone Platform [4]. To solve this problem, Model Driven
Development approach is appeared by OMG for heterogeneous software [5].

MDD absolutely needs automatic tools and methods to transform platform-independent
model into platform-dependent model based on metamodel. To completely follow the MDD
approach, it is important to use model transformation technique to transform model into
model. Model transformation consists of model-to-model and model-to-text [6]. First, Model-
to-model mechanism transforms one dependent model (source model) into one independent
model (target model). There exist the tools, ATL [7] and QVT [8], for this mechanism.
Second, Model-to-text mechanism is able to create text (program code) from model (the
dependent model or target model) through model-to-model step. This method tool as Acceleo
[9] generates code with code template.

Some researchers have studied heterogeneous smartphone software development method
based on the model transformation technique [10-13]. This previous researches just have
focused model-to-model mechanism on UML Class Diagram (CD). Recently, we have
studying model transformation using both UML Message Sequence Diagram (MSD) and
Class Diagram [14]. Also, we have proposed code template to realize model-to-text [15] for
Android (Java), iPhone (Objective-C), and Windows Phone(C#). Actually the previous

415

International Journal of Software Engineering and Its Applications
Vol. 7, No. 3, May, 2013

research method of code generation has limited and just expresses code structures with Class
Diagram. We can generate only skeleton code from this problem.

In this paper, in order to solve this problem of the existing method, we propose one method
to generate more dedicate fine codes with both MSD and CD, which can optimize Java code
of Android platform through our proposed method, and also implement code generator based
on Meta Object Facility (MOF) using Acceleo. This method possibly increases to generate
more code rate than the previous approaches.

The paper is organized as follows: Chapter 2 mentions related works. Chapter 3 explains
model transformation for heterogeneous smartphone platforms. Chapter 4 presents case
studies using model transformation. Chapter 5 gives conclusion and future works.

2. Related Works

Metamodel is model to express model. In other words, this is mechanism for
definition to express abstract model of actual worlds. Therefore, metamodel clearly
describes necessary constructs and rules to organize specific models in concern domain.
Metamodel is shown from three different perspectives: First, in order to build a model
that is used building blocks and a set of rules, Second, model of concern domain, Third,
instance of other model. Metamodel of Simulink and ECML represents to use Meta
Object Facility (MOF) as expressive method of metamodeling [16, 17]. MOF that is
establishing OMG standard consists of definition language of metamodel and
framework for repository management of metadata. This MOF is used such as
metamodel of UML, Common Warehouse Metamodel (CWM), Model Driven
Architecture (MDA), and other metamodels. MOF ensures interoperability within the
scope, which is defined metamodel on standard.

3. Code Generation from Message Sequence Diagram based on MOF

3.1. Metamodel of UML Message Sequence Diagram

H intreraciion £ NamsdElement
o name : EString
]]
g = |
& AMassegaind
o E Message
2. llitelins : e =
& lifzline messagd = MessageXing : MessageKind c.1
4 11 > g - ==
& Tiehne “1 = messageSort : MassagsSory | MESSEQE
sendEven
3 a1
coverad | 1 receiveEvent
g.x _:fragment 2.7} coverdey 0.1
& OccurrenceSpecification
8] ti
<<gnumsration»>
o << erumsration> ¥ = Mes‘sage_;ort
i % Messageking - synchdall
fragment = complets - asynchc:all
~ losty - asynchsignal
foiind — createMessags
. - deleteMessage |
ok - reply

Figure 1. Simplified metamodel of UML Message Sequence Diagram

416

International Journal of Software Engineering and Its Applications
Vol. 7, No. 3, May, 2013

In order to execute model transformation, metamodel of input model is defined. But,
original UML metamodel is a large scale. Therefore we represent metamodel of UML
Message Sequence Diagram (MSD) effectively to show our research. We simply design
metamodel of UML MSD such as Figure 1. This metamodel consists of Interaction, Lifeline,
Message, and OccurrenceSpecification. Interaction is one scenario a number of elements such
as Liefeline, Message, and OccurrenceSpecification.

Lifeline

:ClassNamel |Message

> :ClassName2

|
1
1 . Al L4
1
1

4
T

OccurrenceSpecification

Figure 2. The relationship between model and metamodel

Liefeline, Message, and OccurrenceSpecification show as Figure 2 that metamodel and
model have a close relationship. In order to understand, we simply express necessary model
for java code generation in Android platform.

3.2. The rules of model transformation for code generation

Code generation method consists of total six rules such as Object Creation (OC), Call Own
Method from a Constructor (COMC), Call a Method from Other Object (CMOO), Call the
Own Method after Call a Method from Other Object (COM_CMOO), Call Other Object after
Call the Own Method (COO_COM), and Call another object after Call a Method from Object
(CAO_CMO).

417

International Journal of Software Engineering and Its Applications
Vol. 7, No. 3, May, 2013

We define six rules of each case as follows:

Case 1: Object Creation (OC)

OC uses stereotype as <<create>> at one step related to object creation. The code
generation method consists of three steps as Figure 3. First step add a property definition for
object creation in class name “ClassNamel”, second step add constructor for “ClassName1”,
and third step add object creation code for “ClassName2” in constructor name “ClassNamel”.
A box on lifeline contacts a box on OccurrenceSpecification in SD, which is related to

constructor.
:ClassName1
{create»
Model :ClasshName?2
(MSD)

<simpleumlsd:Intreraction>
<lifeline name=":ClassNamel" coverdBy="//@fragment.0/@fragment.0"/>
<lifeline name=":ClassName2" coverdBy="//@fragment.1"/>
<message name="&It;<create>>" messageSort="createMessage"
sendEvent="//@fragment.0/@fragment.0" receiveEvent="//@fragment.1"/>

X <fragment name="send" covered="//@]lifeline.0">
<fragment name="sub-send" message="//@message.0" covered="//@lifeline.0"/>
</fragment>
<fragment name="recive" message="//(@message.0" covered="//@lifeline.1"/>
</simpleumlsd:Intreraction>
[template public generateElement(aLifeline : Lifeline)]
[file (aLifeline.name.replace(':',").concat('.java'), false)]
public class [aLifeline.name.replace(:',") /] {
[for (aMsg : Message | aLifeline.ancestors(Intreraction).message)]
[if (aMsg.messageSort.toString() = 'createMessage' and
Rule aMsg.sendEvent.oclAsType(OccurrenceSpecification).covered = aLifeline)]
(Acceleo) [let tarClassName : String =
aMsg.receiveEvent.oclAsType(OccurrenceSpecification).covered.name.replace(:',")]
privae [tarClassName /] [tarClassName.toLower() /];
public [tarClassName.concat('()") /] {
[tarClassName.toLower() /] = new [tarClassName.concat('()") /];
1 [/let] [/if] [/for]
} [/file] [/template]
class ClassNamel {
private ClassName2 className2;
Result public ClassNamel() {
(java) className2 = new ClassName2();

}
}

418

Figure 3. A Rule of Object Creation

i
d

International Journal of Software Engineering and Its Applications
Vol. 7, No. 3, May, 2013

Case 2: Call Own Method from a Constructor (COMC)

COMC calls own method from a constructor. The code generation method consists of three
steps as Figure 4. First step, sets a constructor definition in class name “ClassNamel”, second
step adds method definition of calling self, and third step adds code invoking own method.

Model
(MSD)

:ClassName1
+method10 : void
F—

XMI

<simpleumlsd:Intreraction >

<lifeline name=":ClassNamel" coverdBy="//{@fragment.0
//@fragment.0/@fragment.0"/>

<message name="method1():void" sendEvent="//@fragment.0/@fragment.0"
receiveEvent="//@fragment.0/@fragment.0"/>

<fragment name="send" covered="//@lifeline.0">

<fragment name="sub-send" message="//@message.0" covered="//@lifeline.0"/>
</fragment>

</simpleumlsd:Intreraction>

Rule
(Acceleo)

[template public generateElement(aLifeline : Lifeline)]
[file (aLifeline.name.replace(":',").concat('.java’), false)]
public class [aLifeline.name.replace(":',") /] {

[for (aMsg : Message | aLifeline.ancestors(Intreraction).message)]
[if (aMsg.sendEvent = aMsg.receiveEvent)]
public [aLifeline.name.replace(":',").concat('()) /] {

[aMsg.name.strtok(":', 0) /1;
}
[let fname : String = aMsg.name.strtok(":', 0)]
[let ftype : String = aMsg.name.strtok(":', 1)]
public [ftype/] [fname /] { } [/let][/let] [/if] [/for]
} [/file] [/template]

Result

(java)

class ClassNamel {
public ClassNamel() {
method1();
}
public void mehtod1() { }

}

Figure 4. A Rule of Call Own Method from a Constructor

419

International Journal of Software Engineering and lis Applications
Vol. 7, No. 3, May, 2013

Case 3: Call a Method from Other Object (CMOO)

CMOO is invoked by other object. The code generation method consists of one step like
Figure 5. This step adds method definition in class name “ClassNamel”.

Model
(MSD)

:ClassName1

+ method10 : void '

XMI

<simpleumlsd:Intreraction>
<lifeline name=":ClassNamel" coverdBy="//@fragment.0"/>
<message name="method1():void" receiveEvent="//@fragment.0"/>

<fragment name="recive" message="//@message.0" covered="//@lifeline.0"/>
</simpleumlsd:Intreraction>

Rule
(Acceleo)

[template public generateElement(aLifeline : Lifeline)]
[file (aLifeline.name.replace(":",").concat('.java’), false)]
public class [aLifeline.name.replace(’:',") /] {
[for (aMsg : Message | aLifeline.ancestors(Intreraction).message)]
[if (aMsg.receiveEvent.oclAsType(OccurrenceSpecification).covered = aLifeline)]
[let fname : String = aMsg.name.strtok(":', 0)]
[let ftype : String = aMsg.name.strtok(":', 1)]
public [ftype /] [fname /] {
} [Net][/let] [/if] [/for]
} [/file] [/template]

Result
(java)

class ClassNamel {
public void method1() {

}

Figure 5. A Rule of Call a Method from Other object

Case 4: Call the Own Method after Call a Method from Other Object (COM_CMOOQ)

COM_CMOO is invoked by other object and invoking own method. The code generation
consists of three steps like Figure 6. First step, adds invoked method definition by other
object in class name “ClassNamel”, second step inserts method definition of calling self, and
third step inserts code invoking own method.

420

International Journal of Software Engineering and Its Applications
Vol. 7, No. 3, May, 2013

» :Classﬂame1 g

Model
(MSD)

+ method10 : voidy’ JE—
=

<simpleumlsd:Intreraction>

<lifeline name=":ClassNamel" coverdBy="//@fragment.0
/l@fragment.0/@fragment.0"/>

<message name="method1():void" receiveEvent="//@fragment.0"/>
XMI <message name="method2():void" sendEvent="//@fragment.0/@fragment.0"
receiveEvent="//@fragment.0/@fragment.0"/>

<fragment name="recive" message="//@message.0" covered="//@lifeline.0">

<fragment name="sub-self" message="//@message.1" covered="//@lifeline.0"/>
</fragment>

</simpleumlsd:Intreraction>
[template public generateElement(aLifeline : Lifeline)]
[file (aLifeline.name.replace(":',").concat(’ java'), false)]
public class [aLifeline.name.replace(':',") /] {
[for (aMsg : Message | aLifeline.ancestors(Intreraction).message)]
[if (aMsg.receiveEvent.oclAsType(OccurrenceSpecification).covered = aLifeline)]
[let fname : String = aMsg.name.strtok(":', 0)]
[let ftype : String = aMsg.name.strtok(":’, 1)]
public [ftype /] [fname /] {
[if (aMsg.receiveEvent.oclAsType(OccurrenceSpecification).fragment <> null)]
Rule [aMsg.receiveEvent.oclAsType(
(Acceleo) | OccurrenceSpecification).fragment.message.name.strtok("', 1).concat(’;") /] [/if]
Y [Mlet][/let] [else]
[if (aMsg.sendEvent = aMsg.receiveEvent)]
public [aLifeline.name.replace(":',").concat('()") /] {
[aMsg.name.strtok(':', 0) /];
}

[let fname : String = aMsg.name.strtok(":', 0)]
[let ftype : String = aMsg.name.strtok(":', 1)]

public [ftype/] [fname /] { } [/let][/let] [/if] [/if] [/for]
Y [/file] [/template]

class ClassNamel {
public void method1() {
Result method2();

(java) }
public void mehtod2() { }

}

Figure 6. A Rule of Call the Own Method after Call a Method from Other object

Case 5: Call Other Object after Call the Own Method (COO_COM)

COO_COM is calling own method and then also calling a method of other object. The
code generation method consists of four steps as Figure 7. First step inserts property
definition for “ClassName2” in class name “ClassNamel”, second step inserts method
definition of calling self, third step inserts method definition in class name “ClassName2”,
and forth step inserts code invoking method of other class.

421]

International Journal of Software Engineering and Its Applications
Vol. 7, No. 3, May, 2013

i |
‘ClassName1 | | :ClassName2 |
Model "1+ method10 : void;
(MSD) E
{_1 method20 : void:
- s
<simpleumlsd:Intreraction>
<lifeline name=":ClassNamel" coverdBy="//@fragment.0
/l@fragment.0/@fragment.0"/>
<lifeline name=":ClassName2" coverdBy="//@fragment.1"/>
<message name="method1():void" sendEvent="//@fragment.0"
receiveEvent="//@fragment.0"/>
XMI <message name="method2():void" sendEvent="//@fragment.0/@fragment.0"
receiveEvent="//@fragment.1"/>
<fragment name="self" message="//@message.0" covered="//@lifeline.0">
<fragment name="sub-send" message="//@message.l" covered="//@lifeline.0"/>
</fragment>
<fragment name="recive" message="//@message.1" covered="//@lifeline.1"/>
</simpleumlsd:Intreraction>
[template public generateElement(aLifeline : Lifeline)]
[file (aLifeline.name.replace(':',").concat(' java'), false)]
public class [aLifeline.name.replace(':,") /] {
[for (aMsg : Message | aLifeline.ancestors(Intreraction).message)]
[if (aMsg.sendEvent = aMsg.receiveEvent and
aMsg.sendEvent.oclAsType(OccurrenceSpecification).covered = aLifeline)]
[let fname : String = aMsg.name.strtok(":', 0)]
[let ftype : String = aMsg.name.strtok(":', 1)]
public [ftype/] [fname /] { [/let] [/let]
[elseif (aMsg.sendEvent.oclAsType(OccurrenceSpecification).fragment <= null
Rule and aMsg.sendEvent.oclAsType(OccurrenceSpecification).covered = aLifeline)]
(Acceleo) [let tarClassName : String =
aMsg.receiveEvent.oclAsType(OccurrenceSpecification).covered.name.replace(":',")]
[tarClassName.toLower() /].[aMsg.name.strtok(":', 1).concat(’;") /]
private [tarClassName /] [tarClassName.toLower() /]; [/let]
[elseif (aMsg.receiveEvent.oclAsType(OccurrenceSpecification).covered = aLlfelme)]
[let fname : String = aMsg.name.strtok("', 0)]
[let ftype : String = aMsg.name.strtok(":', 1)]
public [ftype /] [fname /] {
Y [Net][/let] [/if] [/for]
1 [/file] [/template]
class ClassNamel {
public void method1() {
className2.method2();
R_esult private ClassName2 className2;
(java)

class ClassName2 {
public void method2() {}

}

422

Figure 7. A Rule of Call Other Object after Call the Own Method

International Journal of Software Engineering and Its Applications
Vol, 7, No. 3, May, 2013

Case 6: Call Another Object after Call a Method from Object (CAO_CMO)

Model
(MSD)

‘Classhame1 ClassName?2

+ method1d : \migg"[

method20) : voi
(oo v

XMI

<simpleumlsd:Intreraction>

<lifeline name=":ClassNamel" coverdBy="//@fragment.0
/l@fragment.0/@fragment.0"/>

<lifeline name=":ClassName2" coverdBy="//@fragment.1"/>

<message name="method1():void" receiveEvent="//@fragment.0"/>

<message name="method2():void" sendEvent="//@fragment.0/@fragment.0"
receiveEvent="//@fragment.1"/>

<fragment name="recv1" message="//@message.0" covered="//@lifeline.0">

<fragment name="sub-send" message="//@message.1" covered="//@lifeline.0"/>
</fragment>

<fragment name="recv" message="//@message.l" covered="//@lifeline.1"/>
</simpleumlsd:Intreraction>

Rule
(Acceleo)

[template public generateElement(aLifeline : Lifeline)]
[file (aLifeline.name.replace(":',").concat('.java'), false)]
public class [aLifeline.name.replace(’:',") /] {
[for (aMsg : Message | aLifeline.ancestors(Intreraction).message)]
[if (aMsg.receiveEvent.oclAsType(OccurrenceSpecification).covered = aLifeline)]
[let fname : String = aMsg.name.strtok(":', 0)]
[let ftype : String = aMsg.name.strtok(":', 1)]
public [ftype/] [fname /] {
[/let] [/let] [if (aMsg.sendEvent <> null)] } [/if]
[elseif (aMsg.sendEvent.oclAsType(OccurrenceSpecification).fragment <> null and
aMsg.sendEvent.oclAsType(OccurrenceSpecification).covered = aLifeline)]
[let tarClassName : String =
aMsg.receiveEvent.ocl AsType(OccurrenceSpecification).covered.name.replace(:',")]

5%]

[tarClassName.toLower() /].[aMsg.name.strtok(":', 1).concat(’;") /]

private [tarClassName /] [tarClassName.toLower() /];
[/let] [/if] [/for]
} [/file] [/template]

Result

(java)

class ClassNamel {
public void method1() {
className2.method2();

private ClassName2 className2;

class ClassName2 {
public void method2() {}
}

Figure 8. Rule of case 6 named call another object after call a method from

object

423

International Journal of Software Engineering and Its Applications
Vol. 7, No. 3, May, 2013

CAO_CMO is invoked method by other object and invoking method from another object.
The code generation method consists of four steps like Figure 8. First step adds property
definition for “ClassName2” in class name “ClassNamel”, second step adds method
definition by called other object, third step adds method definition in class name
“ClassName2”, and forth step adds code invoking method of other class.

4. Case Study

Case study is showing one example of moving “stick man” to the right like Figure 9. We
developed software for Android using three classes such as ManView, Timer, Character [13].
We use the previous study [13] to show how to generate code with UML Message Sequence.

‘Stick an” Adroid Platform

Figure 9. Example of

In Table 1, it shows the generated result with the proposed method to transform code based
on MSD. The result increases more 50% code generation rate than using only class diagram.

Table 1. Result of Model-to-Text Transformation

Classification ManView Timer Character
Add Update | Add | Update | Add | Update
Class Diagram 8 2 7 2 17 2
Android | Sequence Diagram 7 0 6 0 20 0
Total 15 2 13 2 37 2

5. Conclusion

It is necessary to exploit model transformation technique for developing
heterogeneous smartphone applications. The existing code generations methods focus
on UML Class diagram, which easily represents code structure such as class, method,
attribute, but just possibly generate a skeleton code. This paper applies UML Message
Sequence Diagram for representing interactive behavior among objects, and generates
more sophisticated Java Code for Android Platform. The proposed method generate
code using six rules such as Object Creation (OC), Call Own Method from a
Constructor (COMC), Call a Method from Other Object (CMOO), Call the Own Method
after Call a Method from Other Object (COM_CMOO), Call Other Object after Call the

424

International Journal of Software Engineering and Its Applications
Vol. 7, No. 3, May, 2013

Own Method (COO_COM), and Call another object after Call a Method from Object
(CAO_CMO). This method can optimize Java code for Android platform, and increase
more code generation rate than the previous approaches.

Further research will be extending this work such as iPhone and Windows Phone in
the future, which is not dealt in this study.

Acknowledgements

This work was supported by the IT R&D Program of MKE/KEIT [10035708, " The
Development of CPS(Cyber-Physical Systems) Core Technologies for High Confidential
Autonomic Control Software"] and the Ministry of Education, Science Technology (MEST)

and National Research Foundation of Korea(NRF) through the Human Resource Training
Project for Regional Innovation.

References

[1] Android, http://developer.android.conv.

[2] J. Yim, “Implementation of Building Recognition Android App.”, International Journal of Multimedia and
Ubiquitous Engineering, vol. 7, no. 2, (2012), pp. 37-52.

[3] J. H. Yap, Y. -H. Noh and D. -U. Jeong, “The Deployment of Novel Techniques for Mobile ECG
Monitoring”, International Journal of Smart Home, vol. 6, no. 4, (2012), pp. 1-14.

[4] iPohne, https://developer.apple.com/.

[5] B. Selic, “The pragmatics of model-driven development”, Software, IEEE, vol. 20, no. 5, (2003), pp. 19-25.

[6] K. Czarnecki and S. Helsen, “Feature-Based Survey of Model Transformation Approaches”, IBM Systems
Journal, vol. 45, no. 3, (2006), pp. 621-645.

[7] Wikipedia, ATL, http://en.wikipedia.org/wiki/ATLAS_Transformation_Language.

[8] Alcatel, Softeam, Thales, TNI-Valiosys, Codagen Corporation, MOF Query/Views /Transformations.
Revised Submission. OMG Document, (2003).

[9] Obeo, Acceleo User Guide, http://www.acceleo.org/. j

[10] W. Y. Kim, H. S. Son and R. Y. C. Kim, “A Study of UML Model convergence Using Model Transformation
Technique for Heterogeneous SmartPhone Application”, Software Engineering, Business Continuity, and
Education, CCIS, vol. 25, (2011), pp. 292-29.

[11] W. Y. Kim, H. S. Son, J. S. Kim and R. Y. C. Kim, “Development of Windows Mobile Applications using
Model Transformation techniques”, Journal of KIISE: Computing Practices and Letters, vol. 16, no. 11,
(2010), pp. 1091-1095.

[12] W. Y. Kim, H. S. Son, J. S. Kim and R. Y. C. Kim, “Adapting Model Transformation Approach for Android
Smartphone Application”, Advanced Communication and Networking, CCIS, vol. 199, (2011), pp. 421-429.

[13] W. Y. Kim, H. S. Son, J. Yoo, Y. B. Park and R. Y. C. Kim, “A Study of Target Model Generation for
Smartphone Applications using Model Transformation Technique”, International Conference on Internet
(ICONI) 2010, vol. 2, (2010), pp. 557-558.

[14] W. Y. Kim, H. S. Son and R. Y. C. Kim, “Design of Code Template for Automatic Code Generation of
Heterogeneous Smartphone Application”, Advanced Communication and Networking, CCIS, vol. 199,
(2011), pp. 292-297.

[15] H. S. Son, W. Y. Kim, J. S. Kim and R. Y. C. Kim, “Concretization of UML Models based on Model

Transformation for Windows Phone Application”, Information Science and Technology (IST), (2012), pp.
288-291.

[16] H. S. Son, W. Y. Kim, R. Y. C. Kim and H. -G. Min, “Metamodel Design for Model Transformation from

Simulink to ECML in Cyber Physical Systems”, Computer Applications for Graphics, Grid Computing, and
Industrial Environment, CCIS, vol. 351, (2012), pp. 56-60.

[17] M. A. Isa, Dayang N. A. Jawawi and M. Z. M. Zaki, “A Formal Semantic for Scenario-Based Model Using
Algebraic Semantics Framework for MOF”, International Journal of Software Engineering and Its
Applications, vol. 7, no. 1, (2013), pp. 107-122.

425

International Journal of Software Engineering and Its Applications
Vol. 7, No. 3, May, 2013

426

Authors

Hyun Seung Son received his B.S. and M.S. degree in Software
Engineering from Hongik University, Korea in 2009. He is currently a
Ph.D. candidate in Hongik University. His research interests are in the
areas of Automation Tool Development in Embedded Software, Real
Time Operation System Development, Metamodel design, and Model
Transformation, Model Verification & Validation Method.

Woo Yeol Kim received the M.S. and Ph.D. degree in Software
Engineering from Hongik University, Korea in 2011. He is currently a
professor in Daegu National University of Education. His research
interests are in the areas of Interoperability, Embedded Software

Development Methodology, Component Testing, Component Valuation,
and Refactoring.

Robert Young Chul Kim received the B.S. degree in Computer
Science from Hongik University, Korea in 1985, and the Ph.D. degree in
Software Engineering from the department of Computer Science, Illinois
Institute of Technology (IIT), USA in 2000. He is currently a professor in
Hongik University. His research interests are in the areas of Test
Maturity Model, Embedded Software Development Methodology, Model
Based Testing, Metamodel, Business Process Model and User Behavior
Analysis Methodology.

International Journal of Software
Engineering and Its Applications

SCIENCE & ENGINEERING
RESEARCH SUPPORT SOCIETY

