ISSN: 1738-9984

Engineering and Its Applications

- IJSEIA

Vol.7, No.3, May, 2013

SCIENCE & ENGINEERING
RESEARCH SUPPORT SOCIETY

International Journal of Software Engineering and lts Applications
Vol. 7, No. 3, May, 2013

Development of BYOD Strategy Learning System with Smart Learning
Supporting 259

Myung-Suk Lee and Yoo-Ek Son

The Study of AMGA RAP-based Web Application 269

Taesang Huh, Geunchul Park, Jae-Hyuck Kwak,
Soonwook Hwang and Sunil Ahn

Situation Based Dynamically Adaptive Workflow 281

Sang Hwan Kung

Parallel Acceleration on Manycore Systems and Its Performance Analysis:
OpenCL Case Study 291

Rafael Alejandro Vejarano, Phuong Thi Yen and Jeong-Gun Lee

Performance Analysis of Loss Recovery Latency in Reliable Multicast
Protocols using Active Parity Encoded Services 301

Lakhdar Derdouri and Congduc PHAM

Future Smart Device Development Architecture 311

Min Choi and Namgi Kim

SMTL Oriented Model Transformation Mechanism for Heterogeneous
Smart Mobile Models 323

Hyun Seung Son, Jae Seung Kim and Robert Young Chul Kim

Interactive Mirror System based on Personal Purchase Information 333

Donghyun Kim, Younsam Chae, Jonghun Shin, Uyeol Baek and Seoksoo Kim

International Journal of Software Engineering and Its Applications
Val. 7, No. 3, May, 2013

SMTL Oriented Model Transformation Mechanism for
Heterogeneous Smart Mobile Models

Hyun Seung Son, Jae Seung Kim and Robert Young Chul Kim

Dept. of CIC(Computer and Information Communication), Hongik University
Sejong Campus, 339-701, Korea
E-mail: {son, jskim, bob}@selab.hongik.ac.kr

Abstract

Until now, there are not existed any research to reuse any software on heterogeneous
smartphones for interoperating between Android/iphone and iphone/Android. To do this, our
previous approach [7, 8, 12, 13, 14, 15, 16] just used UML metamodel and model
transformation language, ATL, based on model oriented Architecture/development
(MDA/MDD) to embedded systems. But it has limited for Model Transformation language to
represent all transformation rules with ATL. This limitation is not suitable for heterogeneous
smartphone model transformation, and also impossible to extension of ATL. To solve this
problem, this paper suggests Smartphone Model Transformation Language (SMTL) oriented
model transformation mechanism for heterogeneous smartphone. We define SMTL which
easily manipulates more input model in SMTL engine. Through invoking operation in SMTL
engine, it is directly mapped with API in Eclipse modeling Framework (EMF). In addition,
design to use XPath as XML technique instead of OCL to search data in source model.

Keywords: Model Transformation Language, Smartphone, Heterogeneous, Metamodel,
Transformation Engine

1. Introduction

Recently, there are diverse software development platforms for smartphones such as
Android [1, 2, 3], iPhone [4], and Windows Phone [5]. Nevertheless, it may be impossible to
reuse the particular platform dependent software with the different programming language
and application program interface (API) into other platform. Our first research focused on
model driven development (MDD) to solve this problem of smartphone environment [7, 8].
Originally, MDD means to develop software with the conversion of platform independent
model (PIM) to platform dependent model (PDM) for interoperating in Java, Corba, and .Net
platform [9]. To use this mechanism absolutely needs to have model transformation technique
that may automatically generate code with the converted model between PIM and PSM [10].
Our current research focuses on developing heterogeneous software how to adopt model
transformation mechanism into smartphone software development, that is, a way
simultaneously to develop software on different smart mobile environment such as Android,
iPhone, and MS Window phone.

For example, we first applied window mobile application with ATLAS Transformation
Language (ATL) [11] based on Model-Model Transformation, but limited to UML Class
Diagram (CD) for the automatic conversion from platform independent model (PIM) to
platform dependent model (PDM) [7], and confirmed to create the basic construct and change
class and method. With this, it shows possibly to convert other dependent platforms with a
platform independent one [12-16], which can be possibly transformed into Code with Acceleo
based on Model-Text transformation. In this time, our research extends Message sequence

323

International Journal of Software Engineering and lts Applications
Vol. 7, No. 3, May, 2013

Diagram (MSD) with transformation mechanism [6]. On these researches, we found to
require very complicated rules even though transforming a simple model with the existing
ATL based model transformation. Therefore, we suggest SMTL (smartphone model
transformation language) to develop heterogeneous smart mobile software. In this paper, we
extend SMTL based on our first model language, multiple model transformation language
(MMTL) suggested by Kim [12] for smartphone software. This SMTL is designed directly to
link with API within Eclipse Modeling Framework (EMF) to manipulate metamodel more
easily. The language is currently ongoing research and to extend model transformation tool.

Through invoke operation in SMTL engine, it is directly mapped with API in EMF(Eclipse
modeling Framework). In addition, design to use XPath as XML technique instead of OCL to
search data in source model.

The paper is organized as follows. Chapter 2 explains the basic concepts related to model
transformations Language. Chapter 3 mentions the language constructs on SMTL
(smartphone model transformation language). Chapter 4 describes case study support
available for SMTL. Chapter 5 gives conclusion and future works.

2. Related Work

ATLAS Transformation Language (ATL) was a model transformation language and
toolkit developed by ATLAS INRIA & LINA [11], which was based on metamodel and
model transformation. In model-driven engineering (MDE), ATL provides to produce
target models from source model developed on the Eclipse platform the ATL integrated
Environment (IDE) provides standard development tools to easily develop ATL
transformations[11].

ATL makes it possible to describe model transformations, which is a descriptive
language of model transformation. ATL transformation program is composed of rules
that define how source model elements are matched and navigated to create and
initialize the elements of the target models. ATL language enables to define three kinds
of ATL units: the ATL transformation modules, the ATL queries and the ATL libraries.
According to their type, these different kinds of units may be composed of a
combination of ATL helpers, attributes, matched and called rules. The ATL language is
based on OMG OCL (Object Constraint Language) norm [17] for both its data types and
its declarative expressions. But there exists a few differences between the OCL
definition and the current ATL implementation.

In other words, ATL works that the class name of UML model inputted is
transformed into the class name of Java code. C2C of Transformation rule is described
about mapping definition of transforming Java class from UML class whether the class
may be abstract class, pubic class, or one within any package. All source models
Inputted into ATL should be UML models which be transformed into XMI models. For
model transformation, it executes to transform from source model to Target model with
ATL file defining Transformation rules and the produced file with the ATL File.

3. Development of Smartphone Model Transformation Language (SMTL)

SMTL transforms from source model to target model, which is based on metamodel
like the previous model transformation method. SMTL is implemented with JavaCC
[18] and EMF [19] like Figure 1. Transformation engine of SMTL is composed of
Parser and Executor. Parser plays a role of making SMTL into abstract syntax tree
(AST), and executor analyzes the AST based semantics, and executes metamodel
transformation. '

324

International Journal of Software Engineering and Its Applications
\ Vol. 7, No. 3, May, 2013

Source '. _ Refersto ' Target ’)
Metamodel 7 TR Rk R O Metamodel /

| Executes
E Refers to | MMTL Parser

peRamnSses (based aon Javacc)

il
il
[
'
»
"
'
¥
]
'
]
]
[l
i

(..-..-—-—

Conforms to iConforms to

Meatamodel
of AST :

_______________ MMTL Executor
Refersto | (based on EMF)

Transformation Engine
SMTL: Smartphone Model Transformation Language, EMF: Eclipse Modeling Framework, AST: Abstract Syntax Tree

Figure 1. Structure of Smartphone Model Transformation Language (SMTL)

Figure 2 shows an example of model transformation. To generate target model, it
uses with “creating keyword”. Also to update the data of source model, it uses with
“updating and deleting keywords”. This approach is possible to change both source and
target models dislike the previous model. SMTL links elements of the particular
metamodel. For example, UML class matches with Class Element of UML Metamodel.

IN(SOME_IN:UMLZ2, SOME_IN2:UML2);

OUT (SOME_OUT :UML2) ;

Creating CreateClass from o:SOME_IN.Class {

init {

int num;
string name;
ref_list 1listil;
ref list list2;
ref out = o.createClass;
listAttr = o.getOwnedAttributes;
listOper = o.getOwnedOperations;
name = o.getName;

¥

when { o.getName == "Classl" }

do {
out.setName = name;
out.getOwnedAttributes.add = listAttr;
out.getOwnedOperations.add = listOper;

}

Figure 2. Example of SMTL

It executes with init, when, do to link each Element. Init defines a variable to execute
transformation, and is possible to initiate data. When executes transformation only if a

325

International Journal of Software Engineering and Its Applications
Vol. 7, No. 3, May, 2013

value of the condition for transformation is true. Do is a part of generating actual model.
To generate model, it does directly use EMF Application Program Interface (API).
Table 1 shows matching the relationship with SMTL and EMF APIL For example,

when o.createClass is executed, it transforms o.createClass into createClass(), and
executes EMF API.

Table 1. The relationship between SMTL and EMF API

Type SMTL EMF AP1
Set data setName = “name” setName(“name”);
Get data | getName getName()
createClass createClass()
e(lzgr{;t;t createOperation createOperation()
createPropety createPropety()
s getOwnedAttributes getOwnedAttributes()
getOwnedOperations getOwnedOperations()
Add getOwnedAttributes.add = element getOwnedAttributes.add(element)
element | getOwnedOperations.add = element getOwnedOperations.add(element)

4. Case Study

In order to generate UML model based on metamodel, it can be substituted with

some data of metamodel type. We separate with three types of Data, Element, Element
List. Table 2 shows the possible combination of three types.

Table 2. Mapping data for model creation

RHS .
Data Element Element List
Data Case 1 Case 2 Case 3
LHS Element X Case 4 Case 5
Element List X X Case 6

Case 1: Data to Data

Case 1 mentions all data values of both LHS and RHS. Like Figure 3, it uses
character strings “Class_After” of RHS and setName of LHS to transform from the class
name of Model A to the class of Model B. 0:UML.Class behind ‘from’ in “Creating T1
from 0:UML.Class™ is defined as the name o of the class element existed within UML
metamodel. ‘

The defined object ‘0’ of metamodel is used as the basic element for transformation.
SMTL consists of the directly linkable structure with method of EMF. Therefore, when
SMTL is executed, o.createClass is mapping with method createClass(). That is, it
defines a variable ‘out’ with a keyword Ref within ‘init’ for the produced object.
‘out.setName="Class_After”” 1is transformed into ‘setName("Class_After”)’. This
changes the name with “Class_After”.

326

International Journal of Software Engineering and lts Applications
Vol. 7, No. 3, May, 2013

<umbkModel> <umbkModsl>
<packagedElement xmi:type="uml:Class" <packagedElement xmi:type="uml:Class”
name="Class_Before"/> name="Class_After"/>
<fuml:Model> <fumi:Madel>
Model A of XM file : Model B of XMI file
Creating T1 from o:UML.Class {
Class_Before init { Class After
ref out = o.createClass; j:
}
: when { o.getName == "Class_Before" }
do {
out.setName = “Class_After”;
1
Source Model) d Target Model
SMTL

Figure 3. Mapping Data of Source model to Data of Target model

Case 2: Element to Data

<uml:Madel> <umi:Model>

<packagedElement xmitype="uml:Class" <packagedElement xmi:type="uml:Class"

name="Class_Befora"> name="Class_After">

2 <ownedOperation name="0pA"/> <ownedOperation name="0pA"/>

= </packagedElement> </packagedElement>
</umbModel> <fuml:Model>

Model A of XMI file Model B of

Creating T2 from o:UML.Class { odel B of XMI file
Class_Befors init { Clzss_Ater
refop_b =
- > o.getOwnedOperations{@name="0pAT; L—_J> —
+8pA0 ref op_a = o.createOperation; wOphY

when { o.getName == "Class_Before” }
: do{

Source Model op_a.setName = op_b.getName; Target Model

o.getOwnedOperations.add = op_a;
}
}
SMTL

Figure 4. Mapping Element to Data

Case 2 mentions that LHS is Data and RHS is Element. When a method of Model A
transfers the method of Model B like Figure 4, SMTL engine creates the method of
Model B, and inputs the method’s name of Model A from the name value of Element.
B This case is to create the method of target model from source model and to match
Eo method’s name of both models. When invoking name value from Element, it selects a
data in the multiple list data by using XPath expression.
‘getOwnedOperation[@name="OpA "]’ selects an element named “OpA” in multiple
methods. The SMTL engine is inputted the selected name of method element into
target model

&
£

e

RTINS

International Journal of Software Engineering and lts Applications
Vol. 7, No. 3, May, 2013

Case 3: Element List to Data

Case 3 mentions that LHS is List and RHS is Data in Figure 5. This case is to add a
method in new class from the multiple elements in source model like Figure 5. In this
case, a method of target model is created by the engine. To select an element between
method lists of source model enters new method’s name of target model. The engine
inserts a newly created method in internal class by command named “add”.

<uml:Model>
- <packagedElement xmiitype="uml:Class” <umi:Maodel>
name="Class_Before"> <packagedElement xmistype="uml:Class"
<ownedOperation name="0pA"/> name="Class_After">
<ownedOperation name="0p8"/> <ownedOperation name="0p8"/>
</packagedElement> </packagedElement>
<fuml:Model> <fuml:Maodel>
Model A of XMI file Model B of XM! file
Clasz_Befors C;?;tl{ng T3 from o:UML.Class { Class_Aftsr
ref_list op_list = 0.getOwnedOperations;
+ OpAQ ref op_a = o.createOperation; - OpBY
- Q[}BG }
when { o.getName == "Class_Before"]
do {
Source Model op_a.setName=op_list{@name="0Op8".getName; Target Model
o.getOwnedOperations.add = op_a;
}
}

SMTL

Figure 5. Mapping Element List to Data

Case 4: Element to Element

<umi:Model> .
<packagedEtlement xmi:type="uml:Class” <umhkModel>
name="Class_Before"> <packagedElement xmittype="uml:Class"
<ownedOperation name="OpA"/> name="Class_After">
<ownedOperation name="0pB"/> <ownedOperation name="0pB"/>
</packagedElement> </packagedElement>
<fuml:Model> </umi:Model>
Model A of XM file Model B of XM file
r— Creating T4 from o:UML.Class { =

. init {
refop b= j
* 29‘;*3 o.getOwnedOperations{@name="0p8"}; + OpBQ
= Cp

ref op_a = o.createOperation;

. == "Class_Before"
Source Model x‘;}i}e{n to.getham Class Bolore™] Target Model
op_a = op_b;

o.getOwnedCperations.add = op_a;

)
}

SMTL
Figure 6. Mapping Element List to Element List

328

International Journal of Software Engineering and lts Applications
Vol. 7, No. 3, May, 2013

Case 4 mentions all elements of both LHS and RHS. This case transfers other
element from an element in Figure 6. The SMTL engine adds method of the class in
target model from selecting a method between two methods of source model.

Case 5: Element List to Element

Case 5 mentions that LHS is List and RHS is element. Like Figure 7, this case is to
insert a selected method between method lists of source model into target model. Case
4 and case 5 look similar, but are distinct. The case 4 is to add the element that is
defined element in iniz. The case 5 is directly selected the element in multiple list
objects to add method.

<umlkModel>
<packegedElement xmistype="uml:Class" <uml:Model>
name="Class_Before"> <packagedElement xmi:type="uml:Class"
<ownedOperation name="0OpA"/> name="Class_After">
<ownedOperation name="0pB8"/> <ownedOperation name="0pB"/>
</packagedElement> </packagedElement>
<fuml:Maodel> <j/uml:Model>
Model A of XM file Model B of XMI file
e C:i':iattl{ng T5 from o:UML.Class { e
- I:> ref_list op_list = o.getOwnedOperations; I:—l_>
* A = aate = i . -
+C;BO ref op_a = o.createOperation; Opeg
when { o.getName == "Class_Before" }
do { =
Source Model op_a = op_list{@name="0p3"]; farget Model
o.getOvwnedOperations.add = op_a:
}
}
SMTL

Figure 7. Mapping Data to Data

Case 6: Element List to Element List

<uml:Model> <umb:Modsl>
<packagedElement xmi:type="uml:Class” <packagedElement xmi:type="umk:Class”
name="Class_Before"> name="Class_After">
<ownedOperation name="0pA"/> <ownedOperation name="0pA"/>
<ownedOperation name="0p&"/> <ownedOperation name="0p8"/>
</packagedElement> </packagedElement>
</umkModel>) </umi:Model>
Model A of XMI file Model B of XM file.

p P Creating 76 from o:UML.Class { T

init {
ref_list op_list = o.getOwnedOperaticns;
+ OpAQD « OpAQ
i) + Opag

+ Ol when { o.getName == "Class_Before" }
oy d li
' o.getOwnedOperations = op_list;
Seurce Model 1 g perat Target Model
}
SMTL

Figure 8. Mapping Data to Data

329

International Journal of Software Engineering and Its Applications
Vol. 7, No. 3, May, 2013

Case 6 mentions all element lists of both LHS and RHS. The methods of target model
are copied with two methods in source model in Figure 8. When developer writes

SMTL, this case is to add method using the assignment operator because two data types
are the same.

5. Conclusion

Currently it does not exist to adapt smartphone area with model transformation. The
model transformation through the existing ATL had limited with transformation rules
and languages. So it was very complicated with transformation rules even though
transforming a simple model. To solve this problem, we suggest SMTL model
transformation language for heterogeneous smartphone development. Our suggested
SMTL is designed to directly link EMF API for easily manipulate metamodel.

The proposed SMTL design to directly connect SMTL API with EMF API in order to
manipulate easily the metamodel and to use XPath in order to search data in models. To
retrieve data, it uses OCL, but not easy. So we apply to use XPath of XML. In order to
do model transformation based on metamodel, SMTL should substitute data of multiple
metamodel type. We separate with three types of Data, Element, Element List and the
possible combinations are six cases. Then we made examples that separate six cases in
order to demonstrate the ability of the SMTL and model transformation process. We can
validate to cover the six cases from examples of the result through SMTL.

Further research will extend this work such as model transformation language and

tools in order to use SMTL with heterogeneous smartphone environment in the future,
which is not dealt in this study.

Acknowledgements

This work was supported by 2012 Hongik University Research Fund and the Ministry of
Education, Science Technology (MEST) and National Research Foundation of Korea(INRF)
through the Human Resource Training Project for Regional Innovation.

References

[1] Android, http://developer.android.cony.

[2] 1. Yim, “Implementation of Building Recognition Android App.”, International Journal of Multimedia and
Ubiquitous Engineering, vol. 7, no. 2, (2012), pp. 37-52.

[3] J. H. Yap, Yun-Hong Noh and Do-Un Jeong, “The Deployment of Novel Techniques for Mobile ECG
Monitoring”, International Journal of Smart Home, vol. 6, no. 4, (2012), pp. 1-14.

[4] iPhone, https://developer.apple.com/.

[5] Windows Phone, http://dev.windowsphone.com/.

[6] D. Gavalas and D. Economou, “Development of Platforms for Mobile Applications: Status and Trends”,
Software, IEEE, vol. 28, no. 1, (2011), pp. 77-86.

[7] W.Y.Kim, H. S. Son, J. S. Kim and R. Y. C. Kim, “Development of Windows Mobile Applications using
Model Transformation techniques”, Journal of KIISE: Computing Practices and Letters, vol. 16, no. 11,
(2010), pp. 1091-1095.

[8] W. Kim, H. Son, J. Yoo, Y. B. Park and R. Y. Kim, “A Study on Target Model Generation for Smartphone
Applications using Model Transformation Technique”, International Conference on Internet (JICONI) 2010,
vol. 2, (2010), pp. 557-558.

[9] B. Selic, “The pragmatics of model-driven development”, Software, IEEE, vol. 20, no. 5, (2003), pp. 19-25.

[10] K. Czarnecki and S. Helsen, “Feature-Based Survey of Model Transformation Approaches”, IBM Systems
Journal, vol. 45, no. 3, (2006), pp. 621-645.

[11] Wikipedia, ATL, http://en.wikipedia.org/wiki/ATLAS_Transformation_Language.)

[12] W. Y. Kim, H. S. Son, J. S. Kim and R. Y. C. Kim, “Adapting Model Transformation Approach for Android
Smartphone Application”, Advanced Communication and Networking, CCIS, vol. 199, (2011), pp. 421-429.

330

International Journal of Software Engineering and lts Applications
Vol. 7, No. 3, May, 2013

[13] W. Y. Kim, “Model Transformation Framework for Heterogeneous Mobile Embedded Platforms”, Hongik
University thesis, (2011).

[14]W. Y. Kim, H. S. Son and R. Y. C. Kim, “A Study on UML Model convergence Using Model
Transformation Technique for Heterogeneous SmartPhone Application Software Engineering”, Business
Continuity, and Education, CCIS, vol. 257, (2011), pp. 292-297.

[15] W. Y. Kim, H. S. Son and R. Y. C. Kim, “Design of Code Template for Automatic Code Generation of

Heterogeneous Smartphone Application Advanced Communication and Networking”, CCIS, vol. 199, (2011),
Pp- 292-297.

[16] H. S. Son, W. Y. Kim, J. S. Kim and R. Y. C. Kim, “Concretization of UML Models based on Model

Transformation for Windows Phone Application Information Science and Technology(IST 2012), (2012), pp.
288-291.

[17] OMG, Meta Object Facility Speciﬁcation, In OMG Unified Modeling Language Specification, Version 2.0
(2006).

[18] T. Copeland, “Generating Parsers with JavaCC: An Easy-to-Use Guide for Developers”, Centennial Books
(2009).

[19] D. Steinberg, F. Budinsky, E. Merks and M. Paternostro, EMF: eclipse modeling framework. Addison-
Wesley (2008).

Authors

Hyun Seung Sen received his B.S. and M.S. degree in Software
Engineering from Hongik University, Korea in 2009. He is currently a
Ph.D. candidate in Hongik University. His research interests are in the
areas of Automation Tool Development in Embedded Software, Real
Time Operation System Development, Metamodel design, Model

Transformation, and Model Verification & Validation Method.

Jae Seung Kim received his B.S. degree in Electronic Engineering
from Hongik University, Korea in 2004. He is currently a M.S. candidate
in Software Engineering from Hongik University. His research interests
are in the areas of Automation Tool Development, Software Modeling &
design, Metamodel design, Model Transformation, and Testing.

Robert Young Chul Kim received his B.S. degree in Computer
Science from Hongik University, Korea in 1985, and the Ph.D. degree in
Software Engineering from the department of Computer Science, Illinois
Institute of Technology (IIT), USA in 2000. He is currently a professor in
Hongik University. His research interests are in the areas of Test
Maturity Model, Embedded Software Development Methodology, Model
Based Testing, Metamodel, Business Process Model, and User Behavior
Analysis Methodology.

331

International Journal of Software
Engineering and Its Applications

IJSEIA

SCIENCE & ENGINEERING
RESEARCH SUPPORT SOCIETY

