ISSN: 1738-9984 -

-International Journal of Software
Engineering and Its Applications

IJSEIA

Vol.7, No.4, July, 2013

SCIENCE & ENGINEERING
RESEARCH SIIPPOART SNCTETV

International Journal of Software Engineering and Its Applications
Vol. 7, No. 4, July, 2013

Systems Features Analysis (SFA) and Analytic Hierarchy Process (AHP) in
Systems Design and Development 349

Felipe P. Vista IV and Kil To Chong

An Extended UML Metamodel for Efficient Application Design and
Development 359

Gabriele Cestra, Gianluca Liguori and Eliseo Clementini

Towards a Next Generation Distributed Middleware System for
Many-Task Computing 379

Jik-Soo Kim, Sangwan Kim, Seokkyoo Kim, Seoyoung Kim,
Seungwoo Rho, Ok-Hwan Byeon and Soonwook Hwang

Concretization of the Structural and Behavioral Models based on model
Transformation Paradigm for Heterogeneous Mobile Software 389

Hyun Seung Son, Woo Yeol Kim and Robert Young Chul Kim

Semi-Parametric Approach for Software Reliability Evaluation Using Mixed
Gamma Distributions 401

Hiroyuki Okamura, Takumi Hirata and Tadashi Dohi

Benefits and Challenges of Social Networks in Kazakhstan 415

Ha Jin Hwang

Redundant Data Removal Technique for Efficient Big Data Search
Processing 427

Seungwoo Jeon, Bonghee Hong, Joonho Kwon,
Yoon-sik Kwak and Seok-il Song

xxi

International Journal of Software Engineering and Its Applications
Vol. 7. No. 4, July, 2013

Concretization of the Structural and Behavioral Models based on
model Transformation Paradigm for Heterogeneous Mobile Software

Hyun Seung Son', Woo Yeol Kim” and Robert Young Chul Kim'

'Dept. of CIC(Computer and Information Communication), Hongik University
Sejong Campus, 339-701, Korea
*Dept. of Computer Education, Daegu National University of Education
Daegu, 705-715, Korea

! {son, bob}@selab.hongik.ac.kr 2 john@dnue.ac.kr

Abstract

Most model transformation approaches expressed to transform the static model structures
of a system, but not involved with the behavioral model. Our previous model transformation
[10] also focused on the structural model, especially class diagram, which was restricted to
generate a detailed code. To solve this problem, we propose model transformation with both
structural and behavioral models, that is, a message sequence diagram with a class diagram
for developing heterogeneous software. This approach makes it possible to generate detailed
codes through the static & behavioral expression of a system. This is also better to transform
more specific design than the previous structure-based model transformation based on only
static structure [11-15]. We show the application cases to perform model transformation on
the three platforms—Android, iPhone, and Windows Phone.

Keywords: Model Transformation, Heterogeneous Mobile Software, UML (Unified
Modeling Language), MDD (Model Driven Development), Integrated Model

1. Introduction

The platform-based development provides tools and API (Application Programming
Interface) to make effective reuse of resources [1]. This method supports quickly to develop
software on one platform. For example, one photo app. of smart phone software cannot use on
any other platforms such as iPhone, Android, Windows Phone and something else. This
means the smart phone software should be developed per various smart phone environment,
and also performed on the basis of platforms [2, 3, 4, 5, 6]. This platform-based method
serves as a barrier to the development of other platforms. The reason is that all platforms have
their own different, or unique, characteristics instead of providing common methods of use
[71.

The e-MDD (Embedded Model Driven Development) [8, 19] is a method for developing
heterogeneous software on embedded platforms, which expanded with the original MDD [9].
Because the e-MDD approach also separates between target independent model (TIM) and
target specific models (TSMs) at the stage of development, it can reduce to depend on a
particular platform. Furthermore, it should absolutely use an automatic model transformation
technique to solve the differences between two TIM and TSM models. This paper uses these
strengths to conduct a study in order to apply to the different environments of smart phone
development [10-15].

389

International Journal of Software Engineering and Its Applications
Vol. 7, No. 4, July, 2013

The existing model transformation focused on the model based on the class diagram, and
provided various characteristics of the static structure on platforms. However, it is not likely
to express related information of the dynamic structure of the system, and to create only
skeleton codes. In the end, although the simple previous model transformation can help
develop heterogeneous software per platform, but not create detailed codes without any
behavioral models, that is, the dynamic structures of the system.

This paper applies the behavior model to compensate for the defects of the structure-based
model transformation, which uses the message sequence diagram to express the behavior
structure of a system. It applies both class diagram and message sequence diagram to the
process of model transformation to develop heterogeneous software. One of the preconditions
of model transformation should automatically express the possible characteristics of the
model. This paper also uses a stereotype for their expression. It defines the rules of naming
stereotypes as BNF. Through this stereotype, it is transformed from an independent model to
a dependent model. For the purpose of transformation, the paper distinguishes the different
characteristics between class diagram and message sequence diagram to apply into the
process of model transformation on the platforms of Android, iPhone, and Windows Phone.
As a result, it finds out that this model transformation expresses more characteristics of
platforms than the existing model transformation.

This paper includes as follows: Chapter 2 mentions e-MDD as related research. Chapter 3
describes the method of model transformation for heterogeneous start phone platforms.
Chapter 4 addresses the applied example cases. Finally, Chapter 5 makes the conclusion and
works in the future.

2. Related Works

The original MDA (Model Driven Architecture) is architecture that makes it possible
to construct a platform-independent model and thereby transforms it into a platform-
dependent model and code [16]. On the other hand, MDD (Model Driven Development)
[17] generally refers to various methodologies, tools and management methods that
help new applications to construct through transforming a platform-independent model
into a platform-dependent one, based on MDA. Model transformation is used along
with a model transformation language, based on MOF (Meta Object Facility), a
standardized meta-model [18, 19].

The existing embedded software development requires depending on each own
development environment. However, the problem is difficult to re-use the embedded
software byproduct in other environments. The e-MDD was come up with in order to
solve this problem. The e-MDD is a method that allows simultaneous development of
heterogeneous software during one development life cycle.

The framework of e-MDD consists of vertical model transformation to model (TIM
to TSM) and horizontal model transformation from model to code (TSM to TDC) [20].
First, vertical model transformation is to transform from the target independent model
to the target specific model based on separation between UML model and UI API Spec.
model. That is, the UML model expresses algorithm and data-related parts as M/C
(Model/Control) among MVC models. Ul API Spec. model, V (view) of MVC, is
composed of APIs related to the Ul component displayed on the screen. The meta-
model of the target model is necessary for these two model transformations. However,
as for the existing UML meta-model, it is difficult to manage these different models.
Furthermore, since it includes all UML diagrams, it is of complexity. The system of the
meta-model is constructed, and the UML meta-model is re-defined to solve these

390

International Journal of Software Engineering and Its Applications
Val. 7. No. 4, July, 2013

problems. And the model transformation language is come up with and the model
transformation engine is designed so that the meta-model can work in this system.

Second, the horizontal model transformation is a method to create the dependent
code using a code template from the target dependent model. It defines the code meta-
model and uses the method of transforming the UML meta-model into the code meta-
model. In particular, it is important to define the code template for Java, Objective-C,
and C#, program languages of Android, iPhone, and Windows Phone, and
simultaneously to create heterogeneous codes per each platform.

3. Model Transformation based on the Structural and Behavioral Models

- g = =
| Ciass Diagram |
i

Model Transformation(Model to Model)

T T T
1 1
[} 1 I
1 1
A \r Wl

Class Diagram i[|} Class Diagram Class Diagram
- Ssquence Sequence
' —Diagram

Windows Phone
.1, .|..

Model Transformation(Model to Text)

]
| A i

tBE Java ﬁbjectiue-{j = =

Figure 1. Model Transformation for Heterogeneous Smartphone

Figure 1 shows the structural- and behavioral-based model transformation for
heterogeneous smart phones. We use the class diagram to describe a static structure,
and have the message sequence diagram to express the behavioral structure of a system.
Then, it uses model transformation (Model to Model) to transform two general
diagrams on TIM stage into two detailed diagrams on TSM. The code is created with
the detailed diagrams through Model Transformation (Model to Text) created. The
method proposed by this paper uses the class diagram for expressing the static structure
of a system, and needs sequential behavior information in the message sequence
diagram. Our model transformation performs with both the class diagram and message
sequence diagram simultaneously from TIM to TSM. The stereotype used for each
diagram is defined to perform model transformation. The rules of model transformation
are also defined for both the class and the message sequence diagram.

3.1. Definition of Stereotype

In order to automatically transform the TIM into the TSM, a particular identified
marker is necessary for transformation. The stereotype as mechanism of UML
expansion is used for expressing this particular identified one. There is not a special

391

International Journal of Software Engineering and Its Applications
Vol. 7, No. 4, July, 2013

rule of naming the previous stereotype. However, to classify classes, methods, and
attributes, we define the stereotype as BNF as follows:

<SterotypeName> := <ClassName>|<ClassName> “ " <MethodName>|<ClassName> *
<AtributeName> -
<ClassName> := <Identifier>

<MethodName> := <Identifier>

<AtributeName> := <Identifier>

<Identifier> functions as a kind of identifier of programming languages. That is,
English letters and the sign “_" should be placed first, followed by English letters, “ ”,
and numbers. It is impossible to express a particular letter except for “ . To take an
example of the rule of naming a stereotype, if the class name is ‘View’, and the method
is ‘OnDraw’, then the stereotype is <<View_OnDraw>>. This paper shows model
transformation rules for seven ones in total: <<View>>, <<View_ReDraw>>,
<<View_OnDraw>>, <<Timer_Set>>, <<Timer_Refresh>>, <<Timer>>,
<<Image_Load>>. It uses <<View>>, <<Timer>>, <<Image Load>> as the class
diagram, and <<View_ReDraw>> << View_OnDraw>>, <<Timer Set>>,
<<Timer_Refresh>> as the message sequence diagram.

3.2. Model Transformation Rules based on Class Diagram

On transforming model, the most effective expression part in the class diagram is to
add or delete some features of class, method and attribute. <View> is a stereotype that
is used to draw a picture or to express an image on the screen. Attaching <View> to a
name of a class will allow the class to play a role of “View’.

<<Views >ManView ‘
1M
- R e B
View UlView i | PheneapplicationPage
: ' |
R R =
P | ! i !
| ManView ' : ManView ManView
-m_paint: Paint . . 8 i
| (@TSMof | (b)TSMof (<)TSM of
i Android iPhone i Windows Phone

Figure 2. Model Transformation Rule of ‘<<View>> in Class Diagram

Figure 2 shows model transformation of the class diagram when transforming each
TSM from the stereotype <View> class of TIM performs model transformation. In
Android platforms, it just inherits from class ‘View’ and has ‘Paint’ as an attribute. In
the iPhone platforms, it inherits from class ‘UIView’. In Windows Phone platforms, it
does not have special View Class. Classes related to View class are all treated in a Ul
framework of XAML. There does not exist a callback function to draw a picture. So, we

392

International Journal of Software Engineering and Its Applications
Vol. 7, No. 4., July, 2013

just assign to inherit from the most similar class ‘PhoneApplicationPage’. This way is
the reason why this class can treat the events happened from XAML.

<<Timer>>Timer
™M

Handler
- , Timer Timer ;
r_lr-_ : oo timer - NSTImer -rm_timer : DispatcherTimer

E Timner ’
@TSMof | (b)TSM of (€)TSM of .
Android iPhone i Windows Phone |

Figure 3. Model Transformation Rules of <<Timer>> in Class Diagram

<<Timer>> is a stereotype used when it is necessary to create time periodically.
Figure 3 shows the model transformation of <<Time>> class. In Android platform, it
inherits from class ‘Handler’ because of implementing the timer with ‘Handler’ class.
In contrast, iPhone and Windows Phone just use an attribute without inheriting the
timer-related class. iPhone uses class ‘NSTimer’, but Windows Phone uses class
‘DispatcherTimer’. The reason with these different methods to create time is that it
depends on whether a callback method is placed inside or outside the class ‘“Timer’. The
inheritance of class ‘Handler’ like Android means to already exist a callback method in
the parent class, which should redefine with overriding. However, if it designates a
composition relation through attributes like iPhone and Windows Phone, it will transfer
to parameter as the callback method to link with the internal callback method of Timer
class. These differences have different rules from each other.

Character

+<<Image_Load> »Imageload() : void

TIM

Character ! Character i '} Character

i i {

i1 -m_bitmap: Bitmap -m_bitmap: Ullmage | ¢ i -m_bitmap : Image

i | +Imageload() : void +Imageload() : void % +Imageload(): void | |

'3 : i ‘

i (a)TSM of i (b)TSM of { (€)TSM of
Android iPhone i Windows Phone

Keescnimmasn s mnsrmeamnse s w4 4 bnma aa s e d

Figure 4. Model Transformation Rules of <<Image_Load> in Class Diagram

<<Image Load>> is a stereotype used on upload image files in the memory. Figure 4
shows the model transformation of <<Image_Load>>. While the previous examples are
all involved in classes, <<Image_Load>> is related with methods. <<Image_Load>> is
a method that calls the existing image files to draw pictures on the screen. With the

393

International Journal of Software Engineering and Its Applications
Vol. 7, No. 4, July, 2013

same mechanism of reading images, Android uses ‘Bitmap’ class; iPhone ‘Ullmage’
class; Windows phone class ‘Image,’ respectively. The <<Image_Load>> is not used in
the message sequence diagram, but expressed in the class diagram due to adding
attributes without time sequences of method calls.

In this manner, the class diagram can effectively depict the program structure.
However, it can give no expression to the sequence of calling the methods. The class
library of the platform does not only have the simple structure, but also includes this
case to ask for a call of other methods before using a particular method.

For this reason, the structure-based model fails to give expression to the sequence of
calling API provided by the platform. This paper uses the message sequence diagram to
overcome these limitations.

3.3. Model Transformation Rules based on Message Sequence Diagram

The message sequence diagram can give effective expression to sequential behaviors.
Therefore, it can express the method calls in temporal sequence. <<View_ReDraw>> is
a stereotype to perform re-drawing in a method designated in the class “View’.
<<View_OnDraw>> is also a stereotype originally to draw something from an assigned
event. The relationship between these two stereotypes is that after running ‘Repaint()’
method of <<View_ReDraw>>, it should absolutely execute ‘OnDraw()’ method of
<<View_OnDraw>>. The class diagram is not enough to express this mechanism and
can just change the name of the method.

-
| ManView

t < <View_ReDraw>>Repaint()
Ptk bl

i
<View OnDraw>>Cnlravy)
s

1
[
|
]
i

! TiM
IL ManView : ‘ManView i ManView
e — 1 " — .
: +Repaint(}: void | i, +Repaint(): void : ‘TRepa:nt\): void
1 #onDrawicanvas : Canvas) : void ™ --v-dra-.«fRect(.rect;CGRE:I) - voidi ,: +OnDraw() : void
| :‘ g |
: P P
(a)TSM of : (b)TSM of {e)TSM of
Android | iPhone | Windows Phone |

Figure 5. Model Transformation Rules of <<View_ReDraw>> and <<
View_OnDraw>> based on Message Sequence Diagram

Figure 5 shows the model transformation of <<View_ReDraw>> and
<<View_OnDraw>>. On transforming the model based on this rule, it does not change
the Repaint method of each platform because of abstracting one method with the
behavior of re-drawing. For Android, the method called when draws a picture is
changed into ‘onDraw(canvas:Canvas)’; for Windows Phone, it is changed into
‘drawRect(rect: CGRect)’. Because of overriding class ‘View’ of both platforms, it
should follow the method rule of the parent class. But Windows Phone does not change
its method because it does not have a callback method for drawing.

394

International Journal of Software Engineering and Its Applications
Vol. 7. No. 4, July, 2013

! i ;
Timer ’; ;
:]‘%:Seb >SetTimer()
5 L= :
“J<<Timer_Refresh>>CallbackTimer(} !
: . ,:
5 T TIM i
—_ = e —— ::
i Timer il ‘Timer | Timer 5
l +SetTimer(): void TSetTimer):void | || roetlimer):void
5 g ; : === _
b [+handletdessage(msg : Message] : void;: 7+ CaltbackTimer{): voi‘d§ i" + CallbackTimer{): void |
e § | I | — |
| (a)TSM of B)TSMof | ©TSMof |

Android iPhone i Windows Phone |

Figure 6. Model Transformation Rules of <<Timer_Set>> and
<<Timer_Refresh>> based on Message Sequence Diagram

<<Timer_Set>> is a stereotype for designating time. <<Timer_Refresh>> is a
stereotype that is automatically invoked a callback method when it reaches a particular
time. Both these methods are associated with class ‘Time’. The stereotypes
<<Timer_Set>> and <<Timer_Refresh>> always works on together. After executing
<<Timer-Set>> method, then a designated method <<Timer-Refresh>> must be called
after the designated time. Figure 6 shows the model transformation rule of
<<Timer_Set>> and <<Timer_Refresh>>. The Android platform alone has changed the
name of its method. This reason is that it uses this method with overriding the class
Handler without registering the callback method. iPhone and Windows Phone use the
attribute defined within the class diagram that the method of <<Timer_Refresh>> is
defined in the method of <<Timer_Set>>.

4. Case Study

This case study shows an application that makes it possible to load and a particular picture
on the screen on each platform. In order to develop this application, it is necessary to load a
picture and use a timer to move coordinates on the picture. With this simple example, it can
transform from target independent model (TIM) to target specific model (TSM) on each
platform.

Figure 7 is model transformation based on the class diagram. Three classes are necessary
to load a picture and then move it on the screen. View is a class that shows the screen; Timer
is a class that calls a method periodically; Character is a class that includes a picture. It shows
them as stereotypes to express what to transform in these classes. The rules of <<View>>,
<<Timer>>, and <<Image Load>> defined in Chapter 3 are all performed. Figure 7 (a) is one
general model, that is, target independent model. Figure 7(b) shows to transform TIM to TSM
of Android; Figure 7(c) shows to transform TIM to TSM of iPhone; Figure 7(d) shows to
transform TIM to TSM of Windows Phone.

395

International Journal of Software Engineering and Its Applications

Vol. 7, No. 4, July, 2013

E < aViews = ianView =< Timers »Timer II Handler
\ |
H @ Titner Set>»5otTime) void |
K. 4« <Timer Refreshs » CatlbackTimu(): veld | ManView |
s em— e Timer |
“m_peint : Paint |
characte} Jeharagten “Repaint) : void TimerD : void |
Eharacar -nnmnw@mva:l;::‘n'nvan: void e g s M . vmdl
&l E\lrrm
_imgEizeWidth : Integer sHMmCcEae] > o f‘“-'"::"’
_imgSizehoight : Integar Charactar |
-positicny : Integer 2 . 1
~pasitieny ; Intagec ':;—:::2 :’::g;:, :hl::é"’\ i
P pOATTERX ; Tntegen
:;:.‘:l:;u.agv;‘_snadnbwgc.aaw vald -p:.:“':'r'\"lhta;n |
ove 3 vaid bt : Bitmap |
+GetPotition(y: Point Cimageload() : void |
+GotSize() : Size : ':"c?:! mrd“ vl i
+GalPosition]) - Point |
+ GetSizels - Slze |
(a) TIM (b) TSM of Android
Uliews PhoneApplicationPage
, S , : S
| fhanView Timar i ManView Fimer
[- _tirmer : NSTimer] «m_timer ; DispatcherTimer
| +Repaints : void A i satTimerg tvaid i «Repaint) : void ZSetTimer() 1 void
| rerawRectirect : CGRact) @ void || | CalibackTimer() : void ! 100w : void + CallbackTimar() : void
ST TH T e
charaster! e chacaciw character | | character
Character i Character
-m_ imgSizeVidth : Integer Wisth : Intagm
-m_lengSizerlaight ; Intagar Haight : Integes
-positionX ; integer Integer
~positionY @ Intager & : Intager
«m_bitmap: Ulimage i L imags
“Imageload() : void ' simageload() : void
+hiove - void ! +Mave ; vol
+52tPos’tionD ; Point i
+GetSizad - Size [
(c) TSM of iPhone (d) TSM of Windows Phone
. . .
Figure 7. Model Transformation of Class Diagram on each Platform
cw<Views »ManView :ManView |
sl bl R ...»4—-:...’———__]
scrastern, | Lecerentens] T
:Character i (R Character
| r.cwate:-;-——' | {
bl < Timer> > Timer | L Ti .
<l ago__l.ond):[mage'ﬂ‘iﬂ\’] b= TRIBT S S SatTimei() I eImageLoad() : void I tTimer() : void
uuuuuuuuuuuuu —{j -] 1 ?—""_, |
locp i : <H-Timrr_ﬂnfrr!'v>Caﬂaaci"imer(;- sop i +handleM: ;ill'qnig: Messag ,i. void
1 : — : ;
: o Mevel) ,‘ 8 +Movel) * void ! ;
‘Vi!WT&lDrW»mpaim(\' e 1] i, +Repaint() : voidi, {1.]_, |
41 3 b= "
-':",5__-;!"1_11; OnDraw>50nDrav() H ZonDraw(canvas : Lanvas) : void i !
== B L
' : - H
3 H]

(a) TIM

Character ik " {
frymsrhatez, :Til‘l:ﬂf A
_'.P{lﬁl -TL-L

z nllhnckﬂm-r():: void

“:‘er(} s void

: _ +Move{) : void
C}-\-R‘p‘in|ﬂ 1 wol f]LI * -
avsRect(rect : LGRect) : void ‘
_GatPoutiond

Ll;i___ﬁgxsmm

'
"
]
"
1
1
I
'
i
i
i
'
'
'

|
|
I
[
|
|

i R
?“"““”"l Timer |
i T [‘Lv%t‘l’im.cr() : void
L o) i
k. CaltbackTimer() : void

H AM::«(:.voidJ] P
:) e stieel YO
H .w.p.mm;muﬂ” -

GatSizell

o)

(¢) TSM of iPhone

(d) TSM of Windows Phone

Figure 8. Model Transformation of Message Sequence Diagram on each
Platform

396

International Journal of Software Engineering and Its Applications
Vol. 7, No. 4, July, 2013

Figure 8 is model transformation used message sequence diagram. This diagram shows to
indicate when an object be created, and which a method is called in the sequential order. The
rules of <<View_ReDraw>> << View OnDraw>>, <<Timer Set>> and
<<Timer_Refresh>> defined in Chapter 3 are all performed.

Our model transformation performs with Class Diagram and Message Sequence Diagram
on three platforms, which shows to have partially complementary relationship with each
diagram. The class diagram can reflect the static characteristics of class, method and attribute;
the message sequence diagram can reflect the sequential calling order of methods.

5. Conclusion

The existing model transformations focused on the class diagram does not express
the behavior-centered information, which creates only structured skeleton codes. In the
end, they can make heterogeneous models with the finally skeleton codes. This paper
mentions concretization of the class diagram and message sequence diagram based on
model transformation. And it shows the results for the Android, iPhone, and Windows
Phone platform. The result indicates that the class diagram can reflect the
characteristics of class, method and attribute, while the message sequence diagram can
reflect only the order of methods.

For this purpose, it defined the stereotype as BNF and made the rule of model
transformation for both class diagram and message sequence diagram. The model
transformation rule of class diagram and message sequence diagram defines the 7 most
widely used stereotypes: <<View>> <<View_ReDraw>>, <<View_OnDraw>>,
<<Timer_Set>>, <<Timer_Refresh>>, <<Timer>>, and <<Image_Load>>. And it
verified the result by applying them to the platforms of Android, iPhone, and Windows
Phone.

The result shows that the class diagram can reflect the static characteristics of class,
method and attribute, and the message sequence diagram can reflect the calling order of
methods. In addition, because it is possible to depend on the message sequence diagram
to express the order of methods, it is expected the creation of the objects, and the time
of performance. Furthermore, our model transformation can express more specific and
dynamic characteristics of the platforms than the existing model transformations.

Our research still is studying on a detailed code creation based on the class diagram
and the message sequence diagram by expanding model transformation, and also
anticipating high-level code creations such as Java, C++, and C with code template
creation through our model transformation. And it will be possible to develop
heterogeneous start phones through automation model transformation (from model to
model and code).

Acknowledgements

This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and
Technology (2012-0001845) and the Ministry of Education, Science Technology (MEST) and
National Research Foundation of Korea(NRF) through the Human Resource Training Project
for Regional Innovation.

397

International Journal of Software Engineering and Its Applications
Vol. 7, No. 4, July, 2013

References

[1] D. Gavalas and D. Economou, “Development of Platforms for Mobile Applications: Status and Trends”,
Software, IEEE, vol. 28, no. 1, (2011), pp. 77-86.

[2] Android, http://developer.android.com/.

[3] iPohne, https://developer.apple.com/.

[4] Windows Phone, http://developer.windowsphone.com/.

[5] J. Yim, “Implementation of Building Recognition Android App.”, International Journal of Multimedia and
Ubiquitous Engineering, vol. 7, no. 2, (2012), pp. 37-52.

[6] J. H. Yap, Y. -H. Noh and D. -U. Jeong, “The Deployment of Novel Techniques for Mobile ECG
Monitoring”, International Journal of Smart Home, vol. 6, no. 4, (2012), pp. 1-14.

[7] A.Jantsch, “Modeling Embedded System and SOCs”, Morgan Kaufmann, San Francisco, (2004).

[8] W.Y.Kim, H. S. Son, R. Y. C. Kim and C. R. Carlson, “Semi-Automatic Software Development based on
MDD for Heterogeneous Multi-Joint Robots”, 2009 World Congress on Computer Science and Information
Engineering, vol. 7, (2009), pp. 775-779.

[9] B. Selic, “The pragmatics of model-driven development”, Software, IEEE, vol. 20, no. 5, (2003), pp. 19-25.

[10] W. Y. Kim, H. S. Son and R. Y. C. Kim, “A Study of UML Model convergence Using Model Transformation
Technique for Heterogeneous SmartPhone Application”, Software Engincering, Business Continuity, and
Education, CCIS 257, (2011), pp. 292-297.

[11] W. Y. Kim, H. S. Son, J. S. Kim and R. Y. C. Kim, “Development of Windows Mobile Applications using
Model Transformation techniques”, Journal of KIISE: Computing Practices and Letters, vol. 16, no. 11,
(2010), pp. 1091-1095.

[12] W. Y. Kim, H. S. Son and R. Y. C. Kim, “Design of Code Template for Automatic Code Generation of
Heterogeneous Smartphone Application”, Advanced Communication and Networking, CCIS, vol. 199,
(2011), pp. 292-297.

[13] W. Y. Kim, H. S. Son, J. 8. Kim and R. Y. C. Kim, “Adapting Model Transformation Approach for Android
Smartphone Application”, Advanced Communication and Networking”, CCIS, vol. 199, (2011), pp. 421-429.

[14] W. Y. Kim, H. Son, I. Yoo, Y. B. Park and R. Y. Kim, “A Study of Target Model Generation for Smartphone
Applications using Model Transformation Technique”, International Conference on Internet (ICONI) 2010,
vol. 2, (2010), pp. 557-558.

[15] H. S. Son, W. Y. Kim, W. S. Jang and R. Y. C. Kim, “Development of Android Application using Model
Transformation”, Joint Workshop on Sofiware engineering Technology 2010, vol. 8, no. 1, (2010), pp. 64-67.

[16] OMG, MDA Guide Version 1.0.1., omg/2003-06-01, (2003).

[17] K. Czarnecki and S. Helsen, “Feature-Based Survey of Model Transformation Approaches”, IBM Systems
Joumnal, vol. 45, no. 3, (2006), pp. 621-64.

[18] OMG, Documents associated with Meta Object Facility (MOF) 2.0 Query/View/Transformation, Version 1.0,
(2008).

[19] M. A. Isa, D. N. A, Jawawi and M. Z. M. Zaki, “A Formal Semantic for Scenario-Based Model Using
Algebraic Semantics Framework for MOF”, International Journal of Software Engineering and Its
Applications, vol. 7, no. 1, (2013), pp. 107-122.

[20] W. Y. Kim, “Model Transformation Framework for Heterogeneous Mobile Embedded Platforms”, Hongik
University thesis, (2011).

Authors

Hyun Seung Son received his B.S. and M.S. degree in Software
Engineering from Hongik University, Korea in 2009. He is currently a
| Ph.D. candidate in Hongik University. His research interests are in the
| areas of Automation Tool Development in Embedded Software, Real
Time Operation System Development, Metamodel design, and Model
| Transformation, Model Verification & Validation Method.

398

International Journal of Software Engineering and Its Applications
Vol. 7. No. 4, July. 2013

Woo Yeol Kim received the M.S. and Ph.D. degree in Software
Engineering from Hongik University, Korea in 2011. He is currently a
professor in Daegu National University of Education. His research
interests are in the areas of Interoperability, Embedded Software
Development Methodology, Component Testing, Component Valuation,
and Refactoring.

T Robert Young Chul Kim received the B.S. degree in Computer
Science from Hongik University, Korea in 1985, and the Ph.D. degree in
| Software Engineering from the department of Computer Science, Illinois
| Institute of Technology (IIT), USA in 2000. He is currently a professor in
Hongik University. His research interests are in the areas of Test Maturity
Model, Embedded Software Development Methodology, Model Based
Testing, Metamodel, Business Process Model and User Behavior
Analysis Methodology.

399

International Journal of Software Engineering and Its Applications
Vol. 7. No. 4, July, 2013

400

International Journal of Software
Engineering and Its Applications

IJSEIA

SCIENCE & ENGINEERING
RESEARCH SUPPORT SOCIETY

