2013 FOURTH WORLD CONGRESS ON
SOFTWARE ENGINEERING

3-4 December 2013 ¢ Hong Kong, China

“Swansea University
Prifysgol Abertawe ;

EE

Software Requirements

Schematizing UML USE CaSEScc.owruuimmrrroeieoeeeeeee oo 35
Sabah Al-Fedaghi and Asad Alrashed

Software Architecture and Design

Architecting and Constructing an SOA Bridge for an MVC Platform ... 45
Sabelo Yalezo and Mamello Thinyane

Framework Planning of an Integrated Management Platform Applied
for Environment Protection Based on SOA Infrastructure
Lei Ma, Qinan Jia, Jun Zhang, and Jianfeng He

Software Testing and Analysis

A Formal Definition of Software Testing Based on AT T ————— 59
Zhitao He, Chao Liu, Haihua Yan, and Huacan He

A Formal Model for Metamorphic Relation DECEMPOSIRION s smsmimssinisssimemmssrersmmmssasessesmars. 64
Zhan-Wei Hui and Song Huang

A Method of State Addreviation for Verification of Class MO€lo.ovooooooooooooo | .69
Soo-Kyung Choi, Byungho Park, Robert Young Chul Kim, and Young B. Park

Achievements and Challenges of Metamorphic TESHNGo..oeveeeeeoeeeoeoeeoeeoeoeeeeoeeeeooeooeoo 73
Zhan-Wei Hui and Song Huang

Evaluation of Stability and Similarity of Latent Dirichlet AIOCEtON «......v..e.eeeoeooeooeoeooooooo 78

Jun Tang, Ruilong Huo, and Jiali Yao

Improvement on ABDOM-Qd and Its Application in Open-Source Community
Software Defect DISCOVETY PrOCESSviuiueueiiieeieieieceeeeeeeeeeee et 84
Zhitao He, Haihua Yan, and Chao Liu

Locating Faulty Code Using Failure-Causing Input Combinations
i COMDINALOMAI TESHNG ...ttt et s e e 91
Chunyan Ma, Yifei Zhang, Jie Liu, and Mengzhao

Research on Loop Path Selection in Coverage TeStNGo.ooveeeeeeeeeeeeeeeeeoeeeeeeeeoeoeeeeeo 99
Qiang Wang, Jun-Fei Huang, and Yun-Zhan Gong

Theory and Formal Methods

Model Checking CTMDP against Temporal Specifications Characterized
DY REGUIAT EXPIrESSIONScuirieiiieieies ettt et tee e s et es e ees e e e eses e e s e es e saes 107
Jun Niu, Guosun Zeng, Jun Niu, and Weihua Zhan

vi

Abstract—The Software defect management has become a
- eritical issue with its increasing importance in sensor networks
area. In this paper, it focuses on black box approach. Software
dzfects can be found through model based testing. A state
SSagram is a good dynamic model that can test such a logical
error of execution. However, the state diagram has a problem
=i complexity on the existing states and transitions. It is
mecessary to derive a state diagram in state based testing and
find a method to solve its complexity problems. In order to use
state diagram in software testing, its complexity has to be
salved without the change of state and transition. This paper
smggests a new notation called STMT (State Transition
Mapping Tree) to solve the derived complexity without
changing the state or transition. It also proposes an STMT
=atomatic generation technique to derive a state diagram from
= Java source code automatically. The suggested diagram can

mprove complexities partially, compared with UML state
diagram.

Keywords-STMT; Software Testing, Automatic Generation
Method, State Diagram;

1. INTRODUCTION

The software defects can be detected through software
testing. It is being studied as model-based testing and formal
specification-based testing. Recent test techniques have been
sudied on state diagram. The state diagram plays an
fmportant role to understand the behavior of objects in the
svstem and express the behavior pattern of the system
dyvnamically so that it can represent objects clearly and
beighten the potentials to complete a system which meets the
requests [1]. The state diagram can be a dynamic model to
test the logical execution errors and identify the visual
behavior pattern of a software system dynamically, using
UML State Diagram. However, it can be very complex,
depending on the size of software systems [2]. It is necessary
to consider how to show a state diagram and it can be
accessed as a problem of Depth of the tree structure by
applying its concept.

The existing state diagram approaches have solved the
complexity by removing or changing the state and transition.
They are useful in the field of automatic analysis, but have a

978-1-4799-2883-5/13 $31.00 © 2013 IEEE
DOI 10.1109/WCSE.2013.15

69

2013 Fourth World Congress on Software Engineering

A Method of State Addreviation for Verification of Class Model

Soo-kyung Choi”', ByungHo Park >, Robert Young Chul Kim” Young B. Park™

“Dept. Computer Science & Engineering, University of Dankook
Cheonan, Republic of Korea
'krsoogom @gmail.com "ybpark@dankook.ac.kr

“SE Lab, Dept. CIC(Computer and Information Communication), University of Hongik
, Sejong Campus, Republic of Korea
“sunsonbob@naver.com *bob@selab. hongik.ac.kr

limit to increase the danger of deriving unnecessary test
cases from the viewpoint of software testing. Also, state
based testing needs a derived state diagram which maintains
the state and transition and has to solve its complexity. This
paper suggests a new notation of STMT (State Transition
Mapping Tree), a state diagram generated in order to solve
the complexity of the state diagram derived without any
change of the state or transition. In addition, it generates the
state and transition from the Java source code and suggests
an automatic generation technique of STMT with a single
class and an STMT state diagram.

This paper is organized as follows. Section 2 looks at the
related studies and Section 3 explained the suggested STMT
notation and the automatic generation method. Section 4
compares STMT with UML State Diagram, using the
example of Car Audio System and shows an example to
generate STMT from the Java source code automatically
with the example of Turnstile. Finally, Section 5 describes
the conclusion and the future research directions.

II. RELATED WORKS

A. Notation

The typical notations of the state diagram are the
traditional finite state machine based on Harel's Statechart
and the State Diagram [3]. The one refers to a machine with
a finite number of states and the other is a method to describe
complex reactive systems and event-driven systems and
include concurrency, hierarchy, internal events, and global
variables. The State Diagram of UML is a method to extend
Harel's Statechart notation. It can express the dynamic aspect
of the system and appear as an event of the state and
transition like the existing state diagram [4].

In addition, the State Diagram of UML has a notation of
action and guard, and allows the overlapped state that one
state includes the other. The State Diagram of UML provides
Construct such as the Inter-level transition in order to model
a complex system.

B. Complexity

A variety of studies to measure the complexity of state
diagram has been conducted, and the existing ones have been

cps

Conlarence Publiching Sernces

done to measure the structural characteristics and size of a
model. ARACOS Research Group suggests 9 metrics to
measure the complexity with the structural characteristics
and size of state diagram, and use the proposed Metric of
complexity as an assessment standard of understanding state
diagram [5-7].

Not only ARACOS Research Group but also studies to
measure understanding of the state diagram have been used
the main characteristics of cohesion and combination as the
main characteristics [8-9]. They have measured the cohesion
and combination degree per state, considering a partition, a
semantic state unit and the former and/or later conditions,
and assessed the understanding degree of the state diagram
with the average value of the measured cohesion and
combination degree.

This paper uses the state diagram to propose its
complexity studies of state as an indicator of the
performance evaluation in a method of complexity
improvement. Also, it has been studied with such a purpose
from the viewpoint of the complexity in the software system
itself so that it has used the measurement metric of the
existing state diagram.

C. Automatic Generation Method

The studies, which draw a state diagram from a design
document or a software system, can be divided into scenario-
based ones and non-scenario-based ones. The studies on the
derivation of the existing state diagram have been conducted
as those to draw a dynamic model primarily from scenarios
[10]. Typical scenario-based studies include S. Uchitel and J.
Kramer's research, J. Whitlte and J .Schumann’s, J. Whittle,
R. Kwan, and Saboo’s [11-13]. The common feature of
scenario-based studies is to use Message Sequence Chart and
UML Sequence Diagram as a notation for the specification
of the scenario. S. Uchitel and J. Kramer's research uses
Message Sequence Chart (hereafier MSC) in the
specification of the scenario, and on the other hand, J.
Whittle and J. Schumann's and J. Whittle, R. Kwan, and
Saboo’s use UML Sequence Diagram in the specification of
the scenario. These scenario-based studies use Sequence
Diagram of MSC and UML for the specification of the
scenario sefting, and then transform the specified MSC and
UML Sequence Diagram, using State Vector and Domain
Knowledge, and then the state diagram is derived.

The studies on the derivation of the non-scenario-based
state diagram specify the information about the state and the
state diagram transition, using the specification language
such as OCL and ODL of the state diagram itself. They use
the specified information to automate the state diagram or
change the state and transition to solve the complexity [14-
15]. The non-scenario-based studies of state diagram use the
specification in order to generate a state diagram and derive
it from a class. Also, they require the information about the
state and transition in advance, but they neither need
Sequence Diagram like scenario-based ones nor ask a
specific scenario as a pre-condition.

70

III. AUTOMATIC GENERATION METHOD OF STMT

State diagram-based software testing needs a derived
state diagram of the state and transition and a method to
solve the complexity of the state diagram. This section
defines the notation of STMT (State Transition Mapping
Tree, hereafter STMT) and suggests a technique of is
automated generation.

A. Notation

STMT has been studied on the basis of UML State
Diagram and its state is marked with state names and data
types different from the notation of the existing state diagram
because the state action and guard of STMT are assumed to
have already been satisfied. Also, STMT Construct such as
Inter-level transition and History are provided by UML State
Diagram and excluded due to the overlapped ones.

The STMT map is means a single class with more than
one state, and they are tied to a map. In other words, a map is
a set of states. This paper adds the concept of Map and
defines a single class-unit as a map, which is defined to have
its sub-states. The type of a map is divided into maps, map
nodes, and map roots. Map nodes mean a map which has one
as a state inside itself, and map roots refer to the top-level
root node. A STMT tree structure is derived, using such
maps, and in addition, a state diagram should be drawn as a
hierarchical structure so as to derive a tree structure. The
relationship between the maps is classified as M, M-MN, and
MN-MN Relationships, and M refers to a map, MN a map
node, and MR a map root. Map node and Map root have the
same internal operation and configuration only with the
difference in the existing number of the locations and states.
Thus, the definition of the relationship between maps is
overlapped with MN, and it becomes unnecessary to define.
Each node has its own information, and Map Type means M,
MN, and MR, types of nodes here in STMT. Additionally,
each node has its own name information, which is consistent
with a single class name. A single class defined in the above
Definition 1 can be written as a map, and when it is present
as a state inside another map. The relevant single class will
exist as a state. STMT nodes are derived from each single
class when STMT notation is used, and they are referred to
as STMT depending on the relationship between the state
and the map.

When expressed in STMT, a leaf node refers to a node
whose node type is a map, and a root node means a node
whose type is a map root. An example written in STMT
notation is shown in the following Fig. 1.

Figure 1. Example of STMT.

oy

|
|
|
£
|
i
|

Fig. 1 marked the relationship between nodes and STMT
node names randomly. In addition, the node names were
made consistent, and then one figure was added on the basis
of the assumption that the relationship between maps and
their internal states need to have the same type.

B. Automatic Generation Method

When the tree structure of STMT is used, it is possible to
derive the state and transition of STMT from Java source
code. Once Java AST (Abstract Syntax Tree) is utilized
provided by JDT (Java Development tool), the analysis
framework of Eclipse Java Syntax in the case of Java source
code, it is also possible to develop an automated tool of
STMT generation. In order to implement it, different
generation rules of STMT and several assumptions are
needed for analyzing Java source code and deriving the state
and transition of STMT.

STMT analyzes a single class as far as the unit of method
and it can draw the state and transition, depending on the
method type, besides, the definition about the depth value is
necessary to establish the relationship between the generated
maps. In the basic mapping of the state and transition, the
state is the value of property and the transition indicates a
behavior (movement) to cause changes so that they are
mapped depending on the type of mapping. Also, a map is
generated as a unit of a single class and exists as a state in a
map node if it is present under another node. Thus, the
transition information between map nodes inside themselves
become existing in a map node.

The following explains why the behavior to cause
changes of a state value in STMT is referred to as a method
unit. A single class can be largely expressed as a property
and a method, and include different types of syntax as its
internal factors. The state diagram of STMT has an interest
in the state change as a method unit so that it is not
necessary to search for detailed syntax. That is, the type of
Method Internal Syntax is limited to be used as a STMT
mapping factor because the information about the
relationship of Method Sending can be obtained with Return
Statement, Expression Statement, and Variable Declaration
Statement alone. Several assumptions are required to
generate STMT from Java source code, using Java AST of
Eclipse JIDT on the basis of fundamental definitions of
STMT generation. On the basis of such assumptions,
necessary information can be derived to generate STMT
from Java source code. Moreover, redefinition is required
for the class information derived with JAVA AST of
Eclipse JDT to be used as necessary information. Then the
field of Depth is added to store the depth information to
draw from the definition about the map relation in the
redefined class information. When it is referred to as
Clnfo(i), it can map the information about the state and
transition needed to generate STMT from Clnfo(i).

A mapping algorithm for STMT state search for the
information of field which a single class has per each, and
then if any information is mapped with STMT, it will be
derived and stored in the object of state information. After

e

71

the mapping for STMT state is finished, the mapping for
STMT transition occurs, and the transition in STMT
indicates mapping the transition information which can
determine Source or Destination as a unit of a single class
from the derived CInfo list. The STMT transition mapping
requires three types of syntactic analyses are required in the
method body, and they are analyzed by the algorithm of
STMT syntactic analysis to parse the internal syntax of the
method body.

The transition information of STMT is refurned as a
result of the syntactic analysis. The returned information is
stored as the transition of STMT, and the derived state and
transition information of the derived STMT is stored as map
information of a single class. If any single classes do not
satisfy the prior assumption and definition during the
mapping process, they are not defined as maps, and only
satisfactory single classes are mapped as STMT maps.

Such automatic technique of STMT generation can
implement an automated tool to generate STMT from Java
source code. It analyzes a source code and derives necessary
information to generate STMT, and also, it is used to
generate the state diagram between STMTs.

IV. CASE STUDY: COMPARE BETWEEN “UML-STATE
DIAGRAM” AND “STMT-STD”

This section presents a case study, which compares State
Diagram of UML and STMT notation suggested in this
paper, using the state machine of Car System [16] and
measures the complexity of each state diagram.

Table 1 shows the definition for the basic state of Car
Audio System state machine [16).

TABLE 1.

[1] State of Car Audio System:: Audio Player

[2] Audio Player : ON(Tuner Mode, CD Mode, Tape Mode), OFF
[3]1 Tuner Model : P1, P2, P3, P4

[4] CD Mode : Playing, Next, Former

[5] _Tape Mode : Playing, Forward, Backward

DEFINITION FOR STATES OF CAR AUDIO SYSTEM

In the Car Audio System, the sub-state of Audio Player is
largely divided into ON and OFF, and the sub-states of ON
such as Tuner Mode, CD Mode and Tape Mode indicates
that the present sub-state of ON state is chosen respectively.
Fig. 3 shows the result represented as the State Diagram of
UML with the example of Car Audio System [16].

Figure 2. Car Audio System: UML State Diagram.

The notation of STMT state diagram depends on the
depth setting. The part of ON state is represented partially. In
other words, it is set as one map in the STMT State diagram,
and the Depth can be increased in order to express the
internal state of ON.

Figure 3. Car Audio System: STMT State Diagram (Depth=2).

Fig 3 is the STMT state diagram derived with the value
of increased Depth 2 as a standard and the representation of
ON can be identified as far as its internal state. Similarly, the
sub-state of ON is a map type which has its own internal
state, and when expressing such diagrams, Depth can only be
set to Depth=3 with the increase of 1. However, Depth 3 is
omitted because it derives the same as UML state diagram
when Depth is set to 3.

Table 2 shows the result of complexity calculation for the
derived UML and STMT state diagrams by the complexity
measurement Metric of the existing state diagram [5].

TABLE 1L COMPLEXITY: “UML STATE DIAGRAM” AND “STMT-STD™
NSS NSC NT CC .
UML State Diagram 11 4 24 11
STMT-STD(Depth=1) 2 - 2 2
STMT-STD(Depth=2) 4 1 8 2
STMT-STD(Depth=3) 11 4 24 11

It is identified that the complexity of Car Audio System,
which is expressed as STMT state diagram, becomes
different by the change of Depth, a partial measurement of
expression method through Table 2. In other words, the
notation of STMT state diagram is seen to improve the
complexity of a state diagram partially, and also, if STMT
state diagram is expressed as far as the overall inside without
the improvement of partial complexity, it can have the same
complexity as that of UML state diagram. STMT state
diagram improves the complexity of state diagram partially
with the use of Depth. Furthermore, it can do it by searching
for only the interesting part in Top-Down method.

V. CONCLUSION

Many damage cases are on the rise which has not been
properly validated after manufacturing defective products,
and have made execution errors, causing a huge quality cost
and deadly results in the development of software systems.
These software defects can be detected through software
testing, and state diagram is a good dynamic model to test
logical execution errors. In order to use state diagram in
software testing, its complexity has to be solved without the
change of state and transition. Therefore, this paper
suggested a new notation to solve the complexity of state
diagram derived without any change of state and transition,
and STMT to generate state diagram based on a single class
with the use of a tree structure. Additionally, this paper
suggested an automatic generation technique of STMT. It
was able to partially improve the overall complexity of state
diagram with the suggestion of STMT and proposed an
automatic generation technique of STMT which can
automate the derivation of STMT from Java source code.

Future research is expected to improve the constraints of
automatic generation techniques, and also, it needs to draw

test cases from the derived STMT in order to automate
software testing.

ACKNOWLEDGMENT

This work was supported by the IT R&D program of
MSIP/KEIT. [10044457, Development of Autonomous
Intelligent Collaboration Framework for Knowledge Bases
and Smart Devices] and Basic Science Research Program
through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education (2013R1A1A2011601)

REFERENCES

[1] IPL Information Processing LTd, “Testing State Machine with
AdaTEST and CANTATA,” IPL paper, Mar 2011.

[2] R.V.Binder, "Test Object-Oriented Systems: Models, Patterns, and
Tools," Addison Wesley, 1999,

[3] C. Larman, "Appyling UML and Patterns,"” PrenticeHall, 2004.26

[4] Scott W. Ambler, "The Elements of UML 2.0 Style," CAMBRIDGE,
May 2005.

[5] Jose A. Cruz-Lemus, Ann Maes, Marcela Genero, Geert Poels and
Mario Piattini, "The impact of structural complexity on the
understandability of UML statechart diagrmas,” Information Science:
and International Journal, Vol.180, Issue 11, pp.2209-2220, June 2010,

Marcela Genero, David Miranda and Mario Piattini, "Defining
Validating Metrics for UML Statechart Diagrams,” Lecture Notes in
Computer Science, vol 2814, pp.118-128, 2003.

Jose A. Cruz-Lemus, Marcela Genero, Jose A. Ovlivas, Francisco P.
Romero and Mario Piattini, "Predicting UML Statechart Diagrams
Understandability Using Fuzzy Logic-Based Techniques," Proceedings
of the sixteenth International Conference on Software Engineering &
Knowledge Engineering (SEKE 2004), pp.238-245, 2004.

Martin Hitz and Behzad Montazeri, "Measuring Coupling and
Cohesion In Object-Oriented Systems," In Proceedings of the
Intemnational Symposium on Applied Corporate Computing, 1995,

Jung Ho Bae, Yeon Ji Jeong, Heung Seok Cae and Crl K. Chang,
"Semantics Based Cohesion and Coupling Metrics for Evaluating
Understandability of State Diagrams,” Computer Software and
Applications Conference(COMPSAC) 2011 IEEE 35th Annual,
Pp-383-392, July 2011.

[10]H. Liang, J. Dingel and Z. Diskin, "A comparative survey of scenario-
based to state-based model synthesis approaches," In SCESM, pp5-12,
2006.

[11]S. Uchitel and J. Kramer, "A workbench for synthesizing begaviour
maodels from scenarios," In ICSE, pp.188-197, Jun 2001.

[12]). Whittle and J. Schumann, "Generating statechart designs from
scenarios,” In ICSE, pp.314-323, Jun 2000.

[13]J. Whittle, R.Kwan and J. Saboo, "From scenarios to code: An air
traffic control case study," In ICSE, pp.490-495, May 2003.

[14] Agung Fatwanto, "Software Requirements Translation from Natural
language to Object-Oriented Model," IEEE Control, System &
Industrial Informatics (ICCSII), pp.191-195, Sep 2012.

[15]Jung Ho Bae and Heung Seok Chae, "An Automatic Approach to
Generating a State Diagram from a Contract-Based Class," 2009 16th
Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, pp.323-331, Apr 2009.

[16] Dirk Seifert, "Test Case Generation from UML State Machines," Inria,
version 2-23, Apr 2008.

(61

[7

—

(8]

[

