ISSN: 1738-9984

International Journal of Software
Engineering and Its Applications

. JSEIA

Vol.8, No.3, March, 2014

SCIENCE & ENGINEERING
RESEARCH SUPPORT SOCIETY

International Journal of Software Engineering and Its Applications
Vol.8, No.3 (2014)

Table of Contents

Performance Analysis of Anti-collision Algorithm for Tag Identification
Time Improvement 1

Chang-Su Kim, Bong-Im Jang and Hoe-Kyung Jung

Performance Analysis of ORB Image Matching Based on Android 11

Yu-Doo Kim, Jin-Tae Park, Il-Young Moon and Chang-Heon Oh

A Genetic Methodology for Object Evolution 21

Enas Naffar and Said Ghoul

A Case Study of Quality Improvement for Water Resource Management
System based on ISO/IEC 9126 39

Kidu Kim and R. YoungChul Kim

Model Transformation Rule for generating Automatic Database Schema of
Business Process Framework 47

Chae Yun Seo, Hyun Seung Son and R. Young Chul Kim

Enhancing Red Tide Image Recognition using Semantic Feature and
Rotation of Algae Image Angle 55

Sun Park, Myeong Soo Choi, Yeonwoo Lee and Seong Ro Lee

A Regression Test Selection Technique for SOA Based Applications 65

Rajani Kanta Mohanty, Binod Kumar Pattanayak and
Durga Prasad Mohapatra

xvii

International Journal of Software Engineering and Its Applications
Vol.8, No.3 (2014), pp.39-46
http://dx.doi.org/10.14257/ijseia.2014.8.3.04

A Case Study of Quality Improvement for Water Resource
Management System based on ISO/IEC 9126

Kidu Kim' and R. YoungChul Kim?

! Telecommunications Technology Association
?Hongik University
. kdiim@tta.or.kr, zbob@hongik‘ac.kr

Abstract

Software testing organization in the company always tries to verify the completeness of
developed code before product release, but difficult to do that. The program, which has
shipped without verification of non-functional defects, causes user inconvenience or an
irreparable loss. In this paper, we show to improve software quality of water resources
management system based on ISO/IEC 9126 including developer-centric functional test.

Keywords: ISO/IEC 9126, embedded software, SCADA, TAG

1. Introduction

Most software companies had lack of testing capability with empirical practice of
software testing experiences in TTA(Telecommunications Technology Association).
Especially, there are lots of empirical practice for development, not for testing and
management in the area of software system. Because a product is released only after
verifying source code, it has latent faults which causes the end user inconvenience or an
irreparable loss.

The TEmb [1] method is published in the Testing Embedded Software by Bart
Broekman and Edwin Notenboom. TEmb is a method that helps to assemble a suitable
test approach for a particular embedded system. It provides a mechanism for assembling
a suitably dedicated test approach from the generic elements applicable to any test
project and a set of specific measures relevant to the observed system characteristics of
the embedded system.

2. Related Works

2.1, ISO/IEC 9126

ISO/IEC 9126 (1991): Software product evaluation - Quality characteristics and
guidelines for their use, which was developed to support these needs, defined six
quality characteristics and described a software product evaluation process model. As
quality characteristics and associated metrics can be useful not only for evaluating a
software product but also for defining quality requirements and other usage, ISO/IEC
9126 (1991) has been replaced by two related multipart standards: ISO/IEC 9126
(Software product quality)[2] and ISO/IEC 14598 (Software product evaluation)[3].

The software product quality characteristics defined in this part of ISO/IEC 9126 can
be used to specify both functional and non-functional customer and user requirements.
ISO/IEC started work on SQuaRE (Software product Quality Requirements and

ISSN: 1738-9984 |JSEIA
Copyright © 2014 SERSC

International Journal of Software Engineering and Its Applications
Vol.8, No.3 (2014)

Evaluation), a more extensive series of standards to replace ISO/IEC 9126, with
numbers of the form ISO/IEC 250mn. For instance, ISO/IEC 25000[4] was issued in
2005, and ISO/IEC 25010[5], which supersedes ISO/IEC 9126-1, was issued in March
2011. ISO 25010 has eight product quality characteristics (in contrast to ISO 9126's
six), and 31 sub characteristics.

ISO/IEC 9126 defines terms for the software quality characteristics and how these
characteristics are decomposed into sub-characteristics (Figure 1). The sub-
characteristics can be measured by internal or external metrics. Software quality can be
evaluated by measuring internal attributes (typically static measures of intermediate
products), or by measuring external attributes (typically by measuring the behavior of
the code when executed).

software
product

quality

functibnality reliability usabilty effciency maintainakility portahility
suinbdty matwty understanchbility analysa ity adapeabilyy

accuracy rmm*r;“ leamabiiy timebdiavour chmgeabity nsulbbilty
nigoperdiiy) opaabliy resource uikaton stabiity co-exigence

= recoverability H
security attractiveness compliance tesubity repheeabliy
: complance *

compliance compliance complance compliance

Figure 1. ISO/IEC 9126 Software Product Quality [2]

1) Functionality: the capability of the software product to provide functions which
meet stated and implied needs when the software is used under specified
conditions.

2) Reliability: the capability of the software product to maintain a specified level of
performance when used under specified conditions

3) Usability: the capability of the software product to be understood, learned, used
and liked by the user, when used under specified conditions

4) Efficiency: the capability of the software product to provide appropriate
performance, relative to the amount of resources used, under stated conditions.

5) Maintainability: the capability of the software product to be modified.
Modifications may include corrections, improvements or adaptation of the
software to changes in environment, and in requirements and functional
specifications.

6) Portability: the capability of software product to be transferred from one
environment to another.

2.2. Embedded Software

An embedded system is a computer system with a dedicated function within a larger
mechanical or electrical system, often with real-time computing constraints such as

40 Copyright © 2014 SERSC

International Journal of Software Engineering and Its Applications
Vol.8, No.3 (2014)

cellular phone, railway signaling system, hearing aid, missile tracking system. An
embedded software is sometimes used interchangeably with firmware, although
firmware can also be applied to ROM-based code on a computer, on top of which the
OS runs, whereas embedded software is typically the only software on the device in
question. Figure 2 shows a generic layout, which is applicable to virtually all embedded

systems.
Embedded systems are designed to do some specific task, rather than be a general-

purpose computer for multiple tasks. Embedded systems usually consist of CPU,
memory, input devices, output devices, communication interface, efc, and embedded
software is stored in non-volatile memory (NVM).

Pilant Embedded system
e — ey
][] - ;
5 [~ -
- . B e s3
B
5 & 3
£ 2 g g i;?
2 o P = 5
2 3 5 B g
& = =
e 3 % S
£ — Ty Processing
M ﬁ ORI = <—-—————-> unn
e]
, S W \. . \ A

Interface with other systems Ji

Figure 2. Generic Scheme of an Embedded System [1]

2.3. Embedded Software Characteristics

Each embedded software is developed for a specific purpose, but it has some
characteristics as follows:

1) Specific development purpose: Embedded software is typically specialized for
the particular hardware, such as refrigerator, car, and cellular phone. It tightly
interfaces with hardware.

2) Real-time processing: General-purpose systems typically use most resources
effectively, but embedded software has time and memory constraints. Embedded
software comes in a wide variety of operating systems, typically a real-time
operating system (soft real-time, hard real-time).

3) Mass production: We find easily embedded systems in living: Washing machine,
refrigerator, game console. Embedded systems are mass-produced, benefiting from
economies of scale.

4) Durability: Embedded system should be operated in high temperature, and humidity
even with external impact or some mal-function.

Copyright © 2014 SERSC 41

International Journal of Software Engineering and Its Applications
Vol.8, No.3 (2014)

3. Testing Embedded Software (TEmb)

Embedded software testing shares much in common with application software
testing. Developer codes a software, compiles, and tests to check the function. This is a
developer centric test and is not sufficient to reduce latent faults.

There are just few embedded software testing methodologies. TEmb uses the four
cornerstones of structured testing as defined by the test management approach
TMap[1]:

1) Lifecycle: This defines which activities have to be performed and in what order.
It gives testers and managers the desired control over the process.

2) Infrastructure: This defines what is needed in the test environment to make it
possible to perform the planned activities.

3) Techniques: This helps with how to do things, by defining standardized ways to
perform certain activities

4) Organization: This defines the roles and required expertise of those who must
perform the planned activities and the way they interact with the other
disciplines.

However, TEmb testing methodology is for the procedures and management to test
effectively, and performed by developers along with product development. It is difficult
to apply after the development is completed, and to analyze the fault or test coverage
information.

In order to complement this, we use ISO / IEC 9126 software quality attributes and
metrics for performing test and managing faults. We describe the case study in the next
chapter.

4. Testing Embedded Software for Water Resource Management System

The sequence for testing is described in Table 1.

Table 1. Testing Procedure

Task Procedure
. Test planning
Preparation . _
Setup testing environment
_) Identify test item
Analysis & Design .)
Wirite test scenario & test cases
. Testing(make test incident report)
Testing
Patch the product(fix fault)
. Regression testing
Regression .
Analyze regression result
Reporting Write test report

42 Copyright © 2014 SERSC

International Journal of Software Engineering and Its Applications
Vol.8, No.3 (2014)

4.1. Preparation

Product under test is a water resource management system, which controls water
level of a dam, and monitors condition. It requires real-time commands and controls,
but we use both simulated system and real system for testing.

[1] SCADAH 1 3] RTU [2] SCADAAME2
Microsoft Windows XP Microsott Windows XP
Professional(SP2) Professional (SP2)

3 . & : \\:: ;
%
1] 5CADA w1 [2) 8CAD N2 13] o8 Mt 4] 08 Me2 15] 206 v
e I WIS e Eamer

Microsoft Windows Sever Microsolt Windows Sever
2003 Enterprisa(SP2) 2003 Enterprisa(SP2)

| s & &

] ps [GELILL 0] SaNEEr [CELTEE
Mcrotot Wk St Lcrsast Wincows X icroeoh Wrous P Lhcronc Wit X7
2000 ErtarcrmalSFT) Profsesoray) Proivsiorat]

Figure 3. Testing Environment (Simulated System and Real System)

There are SCADA(Supervisory Control And Data Acquisition) server and
DBMS(Database Management System) server in each testing environment. In simulated
system, there is a RTU(Real Time Unit) to generate virtual data and execute control.

4.2. Analysis and Design

With consideration of the characteristics of embedded software, we wrote test cases,
and added more test cases in progress of testing. The test case has a unique ID,
expected result, and execution result.

Table 2. Test Case

Alarm set

S2-01

System running

1 Select ‘alarm’ tab in 'Analog Input Tag'| move to 'alarm' | move to 'alarm'

2 Input integer(1) to 'High' 1 1
3 Input integer(10) to 'High' 10 10
4 Click 'Apply' button Execute Alarm | Sound an alarm

Table 2 is a part of test cases for ‘Alarm set’. When writing test cases, we validated
test cases through review meeting.

Copyright © 2014 SERSC 43

International Journal of Software Engineering and lts Applications
Vol.8, No.3 (2014)

4.3. Testing

When performing the test, we found several faults, and classified based on ISO /1EC
9126 quality characteristics. We found 90 faults on 4 quality characteristics
(functionality, reliability, usability, portability) (Figure 4).

Functionality Reliability Reliability Usability Maintainability Partability

Quality Characteristics

Figure 4. Faults per Quality Characteristics

4.4, Regression Testing

After correcting the fault, we performed regression testing, and validated the system.
We also assert the system had no defect with 7 days (over 168 hours) continuous
running.

60

30

20

pE [T nenitiisn s

Functionality Reliabiity Efficiency Usability Maintainability Portability

mBefore =] =2 u3 w4

Figure 5. Faults per Quality Characteristics after Patch

44 Copyright © 2014 SERSC

International Journal of Software Engineering and Its Applications
Vol.8, No.3 (2014)

There was 4 patches to fix all found faults. In 1st stage, developer fixed faults
without information of quality characteristics. After 2nd stage, developer fixed faults
with information of quality characteristics. Rate of patch was only 6% in st stage, but
68% in 2nd stage. (Table 3). So providing information of quality characteristics helped
developer to comprehend what was error. We also found latent fault, during patch.

Table 3. Rate of Patch

Content 1st stage 2nd stage 3rd stage 4rd stage

Rate of Patch 6% 68 % 80 % 100 %

5. Conclusion

Previous embedded software testing was verifying source code using functional
testing, so testing was not sufficient except program function. In this paper, we tested
an embedded system for water resources management based on ISO / IEC 9126. As a
result, providing information of quality characteristics improved efficiency of
modification 60%, and prevented mistake of developer’s modification. However, the
case study of ISO/IEC9126 based test is not sufficient. Later, we will derive items to
improve the quality except the quality characteristics of ISO / IEC 9126.

Acknowledgements

This work was supported by the IT R&D Program of MKE/KEIT [10035708, "The
Development of CPS(Cyber-Physical Systems) Core Technologies for High Confidential
Autonomic Control Software"] and Basic Science Research Program through the National
Research Foundation of Korea(NRF) funded by the Ministry of Education
(2013R1A1A2011601).

References

[1] B. Broekman and E. Notenboom, “Testing Embedded Sofwtare”, (2002).

[2] ISO/EC TR 9126, Software engineering-Product quality-Part 1, 2, 3, 4, (2005).

[3] ISO/EC 14598, Information Technology-Software Product Evaluation-Part 1,2,3,4,5,6, (2005).

[4] ISO/EC 25000, Software Engineering-Software Product Quality Requirements and Evaluation-Guide to
SQuaRE, (2005).

[5] ISO/IEC 25010, Software Engineering-Software Product Quality Requirements and Evaluation-Quality
Model, (2005).

Authors

Kidu Kim, received the B.S. and M.S. degree in Software
Engineering from Hongik University Graduation, Korea in 2005. He is
currently a researcher in Telecommunications Technology Association
(TTA). His research interests are in the areas of Test Maturity Model
(TMM) and Test Process.

Copyright © 2014 SERSC 45

International Journal of Software Engineering and Its Applications
Vol.8, No.3 (2014)

] R. Young Chul Kim, received the B.S. degree in Computer Science from
Hongik University, Korea in 1985, and the Ph.D. degree in Software
Engineering from the department of Computer Science, Illinois Institute of
Technology (IIT), USA in 2000. He is currently a professor in Hongik
University. His research interests are in the areas of Test Maturity Model,
Embedded Software Development Methodology, Model Based Testing,
Metamodel, Business Process Model and User Behavior Analysis Methodology.

46 Copyright © 2014 SERSC

