Advanced and Applied Convergence Letters AACL 04

Advanced and Applied Convergence

1st International Joint Conference, LJCC 2015
Ho Chi Minh City, Vietnam, February 2015
Revised Selected Papers

_'f_able of Contents

Improving Utilization of GPS Data for Urban Traffic Applications / 1
Nguyen Duc Hai, Nguyen Tan Phuc, Doan Khus, Ta Ho Thai Hai, Pham Tran Vu, Huynh Nam and Le Thanh Van

Ontology-based Context Modeling for Smart Home Domain / 5
M, Robiul Hogue, M, Humayun Kabir, Toshiro Minami, Sung-Hyun Yang

Modeling of a Context-Aware System for Smart Space / 8
M. Humayun Kabir, M, Robiul Hoque, Sung-Hyun Yang

Optimal Placement of Medical Robotic System Using Genetic Algorithms / 11
Quoc Cuong Nguyen, Youngjun Kim, HyukDong Kwon

An Automatic Mechanism of Ui Code generation for iPhone Platform / 15
Hyun Seung Son, Woo Yeol Kim, R, Young Chul Kim

Stepped Impedance Resonator Filter for Cognitive Radio System / 19
Seong Ro Lee

Feedback Linearization for Non-linear Time Varying System / 21
Jong-Yong Lee, Kye-dong Jung, Seongsoo Cho

Development of Vuforia VR Platform Based miniature Geobukseon / 23
Chul-Seung Yang, Jeong-gi Les, Han Byul Kang, Dae-Won Park, Bsomjin Kim, Sang-Hyun Lee

An Approach for Scheduling Problem in Port Container Terminals:Moving and Stacking / 26
HA Phuoc Lan, LE Ba Toan, HUYNH Tuong Nguyen , NGUYEN An Khuong, NGUYEN Van Minh Man

Apparatus for displaying search results for keyword inputted by user with mulii formatted data
indexingmethodinbigdataplatform / 31

Wooyung Lee, Daesu Chung, Jeong-Jin Kang, Young-Dae Lee, Joon Lee

A Study of Software Defect Rate Estimation Technigue in Complete Repeat Testing Environments / 34
Young B, Park, Mahmoud Tarokh, R, Young Chul Kim

A Framework of the 3D Geofence System for Location Awareness / 37
Byungkook Jeon, DORJ Ulzii Orshikh, Sungjin Cho, Sungkuk Cho

A Study on LED Emotion Light Control Method Using Moving Mean Filter / 40

Soonho Jung, Junwoo Kim, Minwoo Lee, Seungyoun Yang, Jaekwon Shin, Jintae Kim, Kyounghwa Yoon,
Juphil Cho, Nguyen Quoc Cuong, Jaesang Cha

- vii —

A Study of Software Defect Rate Estimation Technique
in Complete Repeat Testing Environments

Young B. Park*, Mahmoud Tarokh**, and R. Young Chul Kim***

*Dankook University, Chonan, Korea
e-mail : ybpark@dankook.ac.kr
**San Diego State University, San Diego, USA
***Hongik University, Sejong Korea
e-mail : bob@selab.hongik.ac.kr

Abstract

Software testing is performed to find software defect, but it is always not enough tests are made to test all
the cases. Re-testing such as regression test, cannot grantee sofiware quality. It only provides confidence on
the changed code. In this paper a defect estimation technique is proposed. Using this technique, number of
re-testing can be calculated to achieve target defect rate. This technique can be applied to the automated
testing via software testing tool, it will shows when the test stops.

Keywords: Complete Repeat Testing, Defect Rate Estimation, Regression Test.

1. Introduction

Testing is a complex and cost taking activity which requires time and resources[2]. Re-testing-all is a basic
re-testing mechanism. Even though re-testing-all mechanism is applied, there is no way to guarantee the
defect rate of the software. Re-testing subject has been studied in the field of repeat inspection. In 1980’s,
Raouf, Jain, and Sathe were the first one to develop a model for determining the optimal number of repeat
inspections[3]. Raz and Thomas proposed the inspection line with a series of multiple inspections[4]. Drury,
Karwan, and Vanderwarker examined different ways of combining the results of two different sequential
inspections using dynamic programming[1]. Tang provided a rule for determining the optimal sequence of
inspection[5]. Repeat inspection and re-testing has a same back ground; by the mean of repeating tests, the
quality of the target can be improved. With proposed framework the quality of target can be estimated.

2. Problem Modeling

In the software testing, test is performed when the iteration or project stage is finished. Once the code is
tested, all the testing results are reported to the developer team for rework. After the developer team
performs debugging work, re-test the software until it meets the target quality. This process can be modeled
as follow (Figure 1);

Figure 1. Complete Repeat Testing

1.J. Kang et al. (Eds.): IICC 2015, AACL 04, pp. 34~36, 2015
© The Institute of Internet, Broadcasting and Communication 2015

A Study of Software Defect Rate Estimation Technique in Complete Repeat Testing Environments 35

where P is an initial probability of the software being defective. Each stage has two components, one is
inspection and the other one is rework. Let’s Pis a given probability of being defective when the entering i
th stage. And let P is a residual probability of being defective after i th rework. Figure 2 shows each stage;

\P’_/

Inspection 7

Rework /

Pi.r

Stage /
Figure 2. i'th Single Stage

In this paper, it is assumed that there are n testing stages for n inspector. Let’s say there are n
Inspectors(ly, I, =+, Ip).

3. Experimental Analysis

There are two kinds of human errors (decision mistakes) in an inspection; the one is false decision of
being defective which is not defective (Type I error) and the other one is false decision of being
non-defective which is defective (Type II error). Falsely reject means the former (Type I error) and falsely
accept means the latter (Type II). Let’s say Pri is a probability of falsely reject for inspector [; and Paiis a
probability of falsely accept for inspector I;. In software testing, since the software testing is performed by
automatic testing tools, Pri are relatively small (it is most unlikely making false decision). But since it is
impossible to cover all kinds of testing, Pai can be relatively large. Usually Pai is associated with testing
coverage. In this paper, we assumed Pri = & (where £ is small constant). Table 1 shows the probabilities of
being “non-defective” and “defective” within “Accept” and “Reject”

Table 1. Probability Table

Accept Reject
Non-defect | (1-P)(1- Pr) (1-7) Pry
Defect P« Pa; Pi-(1- Pay)

Now, consider out-quality after the inspection. The probability of being defective after inspection is as
follow;
P,: X Pai

P =
? (1"'.P!)(1"‘PTI)+ Pi-Pai

After rework or debugging, it contains defection in the software. The probability of rework is same as
probability of the reject;
Reject = (1=P) +Pr; + P;- (1 — Pa;)

Since P is a residual probability of being defective, the probability of being defective can be achieved by
multiplying P/ with Reject.

P(; = Pfr . (P[* (1 = Pal- = PT’;) + PT’i)

36 YoUNG B. P4rx, MAHMOUD TAROKH, AND R. YoUNG CHUL Kim

Since the result of i th stage is the input of i+1th stage, after rework, the probability of begin defective can
be archived as follow;

Pi+1= Pi'Pai'i' P{-(Pi-(l—Pai—PTf)+PT‘5)

Final quality of software can be calculated as fallow;

stepl set B=Pand i=1

calculate

step 2 ,
B, = BoPays B «[B «(1—Pag=g+E)

step3 set b=P,,and i=i+1
step4 repeat step 2 and step 3 untili=n

step5 submit B as aresult

4. Conclusion

As software is getting complex, it is very difficult to perform enough test. As a result automated testing
tools are introduced in the software development process. Since an automated testing tool can test
automatically, repeat testing is much convenient than ever. But testing coverage is another matter, automated
testing tool cannot design testing model, as a result, after testing it is not easy to tell how much defects are
left in the software. In this paper a defect estimation model is proposed and demonstrated its usage. Along
with automated software testing tool, this technique can provide visible defect rate estimation.

5. Acknowledgement

This research was supported by Next-Generation Information Computing Development Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future
Planning (No. 2012M3C4A7033348) and the ICT R&D program of MSIP/IITP. [10044457, Development of
Autonomous Intelligent Collaboration Framework for Knowledge Bases and Smart Devices]

6. References

[1] Drury, C.G., Karwan, M. H. and Vanderwarker, D. R., “The two-inspector problem”, IIE Transactions, 18/2,
174-181, 1986.

[2] H. Do, S. Mirarab, L. Tahvildari, G. Rothermel, "The effects of time constraints on test case prioritization: A
series of controlled experiments," Journal of IEEE Transactions on Software Engineering, vol.36, no.5,
Pp.593-617, Sep/Oct. 2010.

[3] Raouf, A., Jain, J.K., and Sathe, P.T., "A cost minimization model for multicharacteristic component inspection",
I1E Transactions, 15, pp. 187—194, 1983.

[4] Raz, T.and Thomas, M.U., “Method for Sequencing Inspection Activities Subject to Errors”, IIE Transactions,
15(1), pp. 12-18, 1983.

[5] Tang, K., "Economic Design of Product Specifications for a Complete Inspection Plan", International Journal of
Production Research, 26(2), pp. 203-217, 1987.

