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Abstract Nowadays, the SW industry in Korea
considers the quality of SW in the viewpoint of
its performance. It should also identify the
various properties of its performance quality in
accordance with the SW requirements. This
paper proposes an identification method about
the performance degradation factors through
Code Visualization, and suggests a mechanism
to visualize the extract factors. SW developers
can improve the quality of SW performance and
prevent coding practices to degrade SW
performance.

Keywords: Code Visualization, Nipa's SW
Visualization, Performance,

1. Introduction

Today's software industry has grown in and
brought about the issue about its high quality.
However, compared to the growing industry, a
shorter period in market shipping has made the
code centralized development for faster
improvement in the scene of industry. As a
result, software of poor quality have been mass-
produced because the SW invisibility makes it
difficult to manage them properly. Code
Visualization becomes necessary, that it, it needs
to manage the quality properties through the
extract from the Code Visualization [1].

This paper describes an extracting method
for factors of performance degradation among
quality property requirements through Code
Visualization. Therefore, it is organized as
follows: Chapter 2 describes Code Visualization
as related work, Chapter 3 shows to detect and
apply factors harmful to performances, and
Chapter 4 refers to Conclusion and future
research.

2. Related Work: Code Visualization
Essential are software development and
management, process, test automation, and
quality certification, etc. for successful software
development and management. However,
resources and professional personnel are too lack
to carry out such work and Code Visualization is
recommended as a technique to improve the
efficiency for maintenance and quality
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management [1-3]. Figure 1 shows one example
of code visualization.
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Figure 1.one example of Code Visualization

3. The Extraction Method for
Performance Improvement
The degradation factors include

environmental problems such as lack of memory,
problems about Java virtual machine, etc.
according to 2005 Information System
Management Guidance [4], but 33% of the
degraded SW performance is occupied by SW
design and source code occurs. Therefore, a
method is required to extract elements of SW
performance degradation.

3.1 degradation factor extraction method
Figure 2 represents a method for extraction a
degradation factor by Code Visualization.
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Figure 2. System Configuration
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If you enter an existing source code in the
Tool Chain, you can analyze the source and
extract the quality properties fit in the
architecture image Dashboard. Also, if you input
the source code and the extraction rule about
performance degradation factors in Cppcheck
[51, you can output violations in the Dashboard.

Table 1.degradation factor extraction rule

Loop [a-z,A-Z, ]([a-z,A-Z, ,0-9])*

\&lt ; ([0-9])+ ; [a-z.A-Z, ]([a-

z,A-Z, ,0-9])* \+\+
[a-z,A-Z, ([a-z,A-Z, ,0-9])*
\&It; ([0-9])+ ; [a-2,A-Z, ]([a-
z,A-Z, 0-9])* \+\+\) \{if \(
if \( ([a-z,A-Z, ,0-9,\b,\s,\+,-
V\*\% %, -
\&gt; \&gt; \&lIt; \[,\]])* == ([0-
9D+

Control
Statement

Tablel is a regular representation of a
performance degradation factor pattern.

3.2 performance degradation factors

Table 2.degradation factor example

Loop int sum =0;
for(i= 0 ; i<1000; i++ ){
sum += array[i]:}

for (i=0;i<1000 ;i++ ){
if(i & 0x01){
do_odd(i);
telse{
do_even(i);

}

Control
Statement

H

ifla==1){

telse if(a==2){
telse if(a==3){
telse ifla==4){

Table 2 shows an example of a SW
performance degradation factor.

Static Analysis Tools | CPPCheck

Style Violation  Wamning Violation  Performance Viokation
203 38 1
128 58 1
123 £ °
143 a2 °
142 a2 [
[} » [
23 33 [
a a4 o
& 44 °
o a3 1
& 4 o
o a4 a

Figure 3. Result of Dashboard
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Figure 3 shows the results of performance
degradation factor

If a performance degradation factor extraction
rule is applied, it can show the number of
violations like Fig. 3, and if the number is
clicked, it can indicate the location of the
violation (code line).

4. Conclusion

This study showed a simple pattern for
reducing SW performance, and it is possible to
extract a pattern to degrade its application and
performance in the tool chain by a regular
representation for a pattern rule. This can lead a
programmer to improve a poor practice of a
system performance and the existing system.
The future study will be about finding and
refactoring a lot of performance degradation
factors, and improving performances.
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