

Session 5—C (SW Visualization (SE Center)) Chair R. Young Chul Kim(Hongik Univ.)

03.

- 05,

.06,

07.

08,

e 13:00~14:20 Tuesday June 30, 2015

R

wrr A A v 1 1 1~ . A . e TN X Toll it e £ie Cnlmter /[DD e
\W_la_oz_compatlblhty Enhancing Acant frar Manaaina Qaftwrare Tonlchain / 264 \
Eun Seung Lee(Dankook Univ., Korea) 3yungho Park(Hongik

Univ., Korea), Young B. Park(Dankook wiuv., rwicay S

W-13-03_A Visualized Blocking Methtod againist a Hidden Malware in the Image / 206
Byungho Park(Ministry of National Defence, Korea), R.Young Chul Kim(Hongi" ''m#/ Waran) Vainma R ParkiNgnkook

liniv Karaal Nasrhan! ShinfKorea e—Government Exp, Associations, Korea,

. W-13-04_A Guideline for Realization on extracting automatic size maturity level of diverse component

via Source Codes / 268
JunSun Hwang(Hongik Univ., Korea), R. Youngchul Kim{Hongik Univ., Korea)

W-13-05_Design of a Flamework of 3D Geofence and Geocode / 270 Y

Jun Cho(Gangneung—Wonju National Univ,, Korea), Kihyun Kim(Gangneung—Wonju National Univ., Korea),
Jinhyung Park(Gangneung—Wonju National Univ., Korea), Sungjin Cho{Gangneung—Wonju National Univ., Korea),
Byungkook Jeon{Gangneung—Wonju National Univ., Korea), Sungkuk Cho{Gangneung—Wonju National Univ., Korea)

W-13-00_Design of a Temporal Geofence System / 272

Kihyun Kim(Gangneung—Wonju National Univ., Korea), Jun Cho{Gangneung—Wonju National Univ., Korea),
Jinhyung Park(Gangneung—Wonju National Univ., Korea), Sungjin Cho{Gangneung—Woniju National Univ., Korea),
Byungkook Jeon(Gangneung—Wonju National Univ., Korea), Sungkuk Cho(Gangneung—Woniju National Univ., Korea)

W-13-07_Extracting Designs via Code on Reverse Engineering / 274 =
Hasin KwnnfHanaik 1niv - Korea), Bokyung Park(Hongik Univ., Korea), R. Youngchul Kim{Hongik Univ., Korea),

W-13-08_Extracting performance factors against performance degradation through Code Visualization
/ 276
Geon—Hee Kana(Hongik Univ., Korea), R.Young Chul Kim{Hongik Univ., Korea

The 5" International Conference on Convergence Technology 2015
June 29 - July 2, 2015, Chateraise Gateaux Kingdom Sapporo Hotel, Hokkaido, Japan

Extracting performance factors against performance degradation

through Code Visualization
' Geon-Hee Kang, »2 R.Young Chul Kim, i SangEun Lee, # Su Nam Jeon
I, First Author, *2,Corresponding Author 1oy - of CIC(Computer Information Communication), Hongik
University, Sejong, Korea, {kang, bob}@selab.hongik.ac.kr
34 NIPA, Seoul, Korea, {selee, snjeon}@nipa.kr

Abstract Nowadays, the SW industry in Korea
considers the quality of SW in the viewpoint of
its performance. It should also identify the
various properties of its performance quality in
accordance with the SW requirements. This
paper proposes an identification method about
the performance degradation factors through
Code Visualization, and suggests a mechanism
to visualize the extract factors. SW developers
can improve the quality of SW performance and
prevent coding practices to degrade SW
performance.

Keywords: Code Visualization, Nipa's SW
Visualization, Performance,

1. Introduction

Today's software industry has grown in and
brought about the issue about its high quality.
However, compared to the growing industry, a
shorter period in market shipping has made the
code centralized development for faster
improvement in the scene of industry. As a
result, software of poor quality have been mass-
produced because the SW invisibility makes it
difficult to manage them properly. Code
Visualization becomes necessary, that it, it needs
to manage the quality properties through the
extract from the Code Visualization [1].

This paper describes an extracting method
for factors of performance degradation among
quality property requirements through Code
Visualization. Therefore, it is organized as
follows: Chapter 2 describes Code Visualization
as related work, Chapter 3 shows to detect and
apply factors harmful to performances, and
Chapter 4 refers to Conclusion and future
research.

2. Related Work: Code Visualization
Essential are software development and
management, process, test automation, and
quality certification, etc. for successful software
development and management. However,
resources and professional personnel are too lack
to carry out such work and Code Visualization is
recommended as a technique to improve the
efficiency for maintenance and quality

276

management [1-3]. Figure 1 shows one example
of code visualization.

[XML]
e

|app)

Abwantae 13) ‘

e Dibem) 12 |

]

Figure 1.one example of Code Visualization

3. The Extraction Method for
Performance Improvement
The degradation factors include

environmental problems such as lack of memory,
problems about Java virtual machine, etc.
according to 2005 Information System
Management Guidance [4], but 33% of the
degraded SW performance is occupied by SW
design and source code occurs. Therefore, a
method is required to extract elements of SW
performance degradation.

3.1 degradation factor extraction method
Figure 2 represents a method for extraction a
degradation factor by Code Visualization.

r

Source code

Architecture

image
Degradation
Factor
Extraction
ot Dashboard
Figure 2. System Configuration

The 5" International Conference on Convergence Technology 2015
June 29 - July 2, 2015, Chateraise Gateaux Kingdom Sapporo Hotel, Hokkaido, Japan

If you enter an existing source code in the
Tool Chain, you can analyze the source and
extract the quality properties fit in the
architecture image Dashboard. Also, if you input
the source code and the extraction rule about
performance degradation factors in Cppcheck
[51, you can output violations in the Dashboard.

Table 1.degradation factor extraction rule

Loop [a-z,A-Z,]([a-z,A-Z, ,0-9])*

\< ; ([0-9])+ ; [a-z.A-Z,]([a-

z,A-Z, ,0-9])* \+\+
[a-z,A-Z, ([a-z,A-Z, ,0-9])*
\&It; ([0-9])+ ; [a-2,A-Z,]([a-
z,A-Z, 0-9])* \+\+\) \{if \(
if \(([a-z,A-Z, ,0-9,\b,\s,\+,-
V*\% %, -
\> \> \&lIt; \[,\]])* == ([0-
9D+

Control
Statement

Tablel is a regular representation of a
performance degradation factor pattern.

3.2 performance degradation factors

Table 2.degradation factor example

Loop int sum =0;
for(i= 0 ; i<1000; i++){
sum += array[i]:}

for (i=0;i<1000 ;i++){
if(i & 0x01){
do_odd(i);
telse{
do_even(i);

}

Control
Statement

H

ifla==1){

telse if(a==2){
telse if(a==3){
telse ifla==4){

Table 2 shows an example of a SW
performance degradation factor.

Static Analysis Tools | CPPCheck

Style Violation Wamning Violation Performance Viokation
203 38 1
128 58 1
123 £ °
143 a2 °
142 a2 [
[} » [
23 33 [
a a4 o
& 44 °
o a3 1
& 4 o
o a4 a

Figure 3. Result of Dashboard

277

Figure 3 shows the results of performance
degradation factor

If a performance degradation factor extraction
rule is applied, it can show the number of
violations like Fig. 3, and if the number is
clicked, it can indicate the location of the
violation (code line).

4. Conclusion

This study showed a simple pattern for
reducing SW performance, and it is possible to
extract a pattern to degrade its application and
performance in the tool chain by a regular
representation for a pattern rule. This can lead a
programmer to improve a poor practice of a
system performance and the existing system.
The future study will be about finding and
refactoring a lot of performance degradation
factors, and improving performances.

Acknowledgments. This research was
supported by Basic Science Research Program
through the National Research Foundation of
Korea (NRF) funded by the Ministry of
Education (NRF-2013R1A1A2011601) and
Research and Development Service through the
Telecommunications Technology Association
(TTA) funded by the National IT Industry
Promotion Agency (NIPA).

References

[1] Nipa SW Engineering Center,

“SOFTWARE ENGINEERING WHITE

BOOK: KOREA 20137, Nipa, KOR, 2013.

Geon-Hee Kang, Keun Sang Yi, Dong Ho

Kim, Jun Sun Hwang, Young Soo Kim,

Young B. Park, R. Young Chul Kim, “A

Practical Study on Tool Chain for Code

Static Analysis on Procedural Language”,

KCC2014, KIISE, pp. 559-561, 2014.

Bo Kyung Park, Ha Eun Kwon, Hyeo Seok

Yang, So Young Moon, Young Soo Kim, R.

Young Chul Kim, “A Study on Tool-Chain

for statically analyzing Object Oriented

Code”, KCC2014, KIISE, pp. 559-561,

2014.

[4] NIA, “Guideline for Performance
Management of information System”, NIA,
KOR, 2005.

[5] http://cppcheck.sourceforge.net/

(2]

(3]

