

Session 5—D (Sw Visualization (SE Center)) Chair Seung Yeob Yu(Namseoul Univ,)

o 14:30~15:50 Tuesday June 30, 2015

01. W-07-06_Computer Simulation on HPDC Process by Filling and Solidification Analysis / 360
Tae—Hoon Yoon(Namseoul Univ., Korea), Hong—Kyu Kwon(Namseoul Univ., Korea)

99' W-13-09_FExtracting Software Architecture based on Reverse Engineering / 362
Woo Sung Jang(Hongik Univ., Korea), Chae Yun SEQ(Hormil Imiv Knaras) B Vaima Chif Kim(Hongik Univ., Korea),

Woo Yeol Kim(Daegu National Univ. of Education, Korea,

@ W-13-10_Internal Code Visualizat' ~= £~ *~~"="=~ 7~~~ “-—yplexity / 3064
So Young Moon(Hongik Univ., Korea 2. Youngchul Kim(Hongik Univ., Korea)

@2&, W-13-11_Replacing Source Navigator with Abstract Syntax Tree Metamodel (ASTM) on the open source
oriented tool chains for SW Visualization / 366
Limim @rnimm @anllnnsils Hinic - Korea), So Young Moon(Hongik Univ., Korea), R, Young Chul Kim(Hongik Univ., Korea),

@, W-13-12_Requirement Tracking Visualization for Validating Recmiremant Qaticfactinn / 241
Bokyung Park(Hongik Univ., Korea), Haeun Kwon{Hongik Univ., Korea)
R. Young Chul Kim(Hongik Univ., Korea)

,’b@_ W-13-13_Mobile Based Testing with Code Visualization / 370
Keunsang Yi(Hongik Univ., Korea), Hyeoseok Yang(Hongik Univ., Korea), R, Young Chul Kim(Hongik Univ., Korea)

07. W-33-06_Content Analysis of Green Advertisements in Korea / 372
Mi—Jeong Kim(Hanyang Univ,, Korea), Sangpil Han{(Hanyang Univ., Korea)

08. W-33-09_Online Public Opinion Dissonance between Korean and Chinese Netizens: its Causes, Functions
and Solutions / 374
JiHye Lee(Namseoul Univ., Korea), SeungYeobYu(Namseoul Univ., Korea)

-5 =

The 5" International Conference on Convergence Technology 2015
June 29 - July 2, 2015, Chateraise Gateaux Kingdom Sapporo Hotel, Hokkaido, Japan

Mobile Based Testing with Code Visualization

. 'Keunsang Yi, "Hyeoseok Yang, “R. Young Chul Kim
1.2.%3 Corresponding Awhor gy a b - Dept. of Computer and Information Communication, Hongik
University, Sejong, Korea, {Keunsang, Yang” bob " }@selab.hongik.ac.kr

Abstract Android platform applications are
developed with two separated ways: Ul design
and source code. It's very hard to analyze
mobile SW complexity by module, class, and
package units which are the existing measuring
elements of SW complexity. To solve this
problem, we suggest to visualize an activity call
graph between activities which are the basic unit
of android platform, and measure the complexity
between intents for analysis of code complexity
of mobile software. By code visualization
through implementing A Tool-Chain, we can
build up an activity call graph, and to analyze
malfunction of android mobile codes.

Keywords: Code Visualization, Mobile Based
Testing, Complexity, SW Quality, SW
Visualization in Nipa's Sofiware engineering
Center

1. Introduction

In these days, mobile SW is required to be
developed, and works on various mobile
platforms with original functions which are
developed in the existing development
environment. These mobile SW need highly
advanced and efficient resources. Especially
poor optimization of advanced smart devices
makes it difficult to develop mobile SW. Code
complexity becomes increased and it leads to an
increase in SW defects of devices.

Android mobile applications are developed
with UI code and the core code apart. For a
static analysis, A Tool-Chain visualizes source
code based on the existing SW visualization [1].
It's impossible to visualize mobile SW code
expressing interactions between activities by
intent. We reinforce visualization of internal
structure of mobile application SW through
intent between android activities. With this
visualized structure, we diagnose the reasons of
Bad-smell structure for refactoring, and finally
suggest an automatic static analysis of mobile
application SW through reassignment of

370

modules.

Therefore, it is organized as follows: Chapter
2 describes mobile application testing technique
as related research, Chapter 3 shows automatic
static analysis mechanism, and Chapter 4
mentions to utilize Tool-Chain for a static
analysis of mobile application code. Chapter 5
describes conclusion and future research.

2. Related Research

Since mobile applications work in various
platform environments, mobile application
testing is different from the existing SW testing.
To meet requirements of mobile application
testing, it carries out testing activities and
objectives like functional and behavior testing,
interoperability testing, usability testing, and so
on. In order to test mobile SW accurately, each
application on various platform devices would
run. However, testing all the devices would take
great expense. Mobile application testing
includes Emulation-based Testing, Device-based
Testing, Cloud Testing and Crowd-based
Testing.

3. Automatic Static Analysis

Mechanism

On development of android mobile
applications, it can be described with mutual
relationship of class and activity.

o

- ——

L3

i
Software 1 Parser,
Work = Semantic
Product {

SQlite
[Tool-Chain for Statically Analyzing Object Oriented Code)

Figure 1. Improving SW Quality through SW
Tool-Chain

The 5" International Conference on Convergence Technology 2015
June 29 - July 2, 2015, Chateraise Gateaux Kingdom Sapporo Hotel, Hokkaido, Japan

It is important to work activities in the
android mobile devices. Data transferring and
calling between activities is delivered using the
object called intent. The existing visualization
Tools, which can’t analyze intent-based activity
calls, are not suitable in the android-based
mobile development environment. Figure |
shows Improving SW Quality through SW Tool-
Chain,

Mobile Application S W Static Analvsis Mechanism

Sopl Snsre s Sarpd Dk ore Dol Moo Tkl St
Modi R Mot | Mabbowrwn Vosbraian
Stable Agy Code Moble Agy Code JrT— e
I B R B - P
[[oase [pade RV ¥ -
—— —\ N - i
Nl Ay Ol [¥ > =
skl M
P S TR P A=
[s (o) (] Dy

Nowigre |

G | Tonren

— = P Siovde A Cace
st |[e ke Doterses Adinctas T
SN DU b
Soeph Cocte Vol Combemiomion Mmspemens Tk sr1 Syt Rems Amiria
Rrdears Teken | | WX ’
W _— Ba.
Mobde Agy Conde Collgumion _
Mg Deseer
| e |

Mebde Ay Cocte

Figure 2. Process Mechanism for Automatic Static Analysis
of Mobile Applications

4. A Tool-Chain for Analyzing the
Mobile Software Code

We use each open source tool comprising
Tool-Chain in this approach [1,2] such as Parser
(Source Navigator 6.0(SN)), Database(SQLite),
and View Composer(DOT). Use Case Diagram
Drawing Tool is based on JAVA.

When analyzing mobile source codes through
parsing of source navigator, SN DB FILE is
extracted. By DBdump this extracted SN DB
FILE is transformed into text and saved in
SQLite database. Each SN DB FILE has peculiar
information to fit its role. Each information is
saved in tables and analysis of each column is
carried out. To do Query Call for Extraction of
Coupling between Activities, we analyze codes
through the source navigator which is extracted
as SN DB files. After this information of SN DB
files is saved in SQLite database. Each SN DB
file saved in database has information of mobile
application source codes to match its role. Its
needed information is extracted through SQLite
query based on coupling example codes. Figure 2
mentions process mechanism for Automatic Static
Analysis of Mobile Applications.

Activity Call Visualization: unlike the existing
Java environment, one of characteristics of the

3N

android environment is communicating with
users through activities. Activities are the basic
units constituting user interface, and according
to users’ demand, work activities which are
sequentially called. They are called through
intent, and it’s hard to analyze them through the
existing analyzing method of Java code.

5. Conclusion and Future Research

This study suggests building up automatic
static analysis mechanism for mobile application
SW testing, and methods to reduce defects of
mobile application SW through activity call
graph visualization.

A static analysis oriented Tool-Chain
process is suggested, and it can enhance quality
control and visualization by the existing static
analysis of SW code. Android codes are divided
into internal function and UI. When the existing
Tool-Chain process analyzes android mobile
application SW, it is important to call and
transfer data between activities as the basic unit
of android UI that can’t be analyzed and
visualized. We suggest setting up mechanism for
basic static analysis of SW, and an activity call
graph of android mobile application SW. This
measure reduced coupling of mobile application
SW, and stopped unnecessary calls and data
transfer by visualizing calls between activities.
For future study, we suggest activity-related Ul
design, and reduce cyclomatic complexity of
coupling & cohesion.

Acknowledgments. This research was
supported by Basic Science Research Program
through the National Research Foundation of
Korea (NRF) funded by the Ministry of
Education (NRF-2013R1A1A2011601) and
Research and Development Service through the
Telecommunications Technology Association
(TTA) funded by the National IT Industry
Promotion Agency (NIPA).

References

[1] Bokyung Park, Haeun Kwon, Hyeoseok Yang,
Soyoung Moon, Young Soo Kim, R. Young Chul
Kim, “A Study on Tool-Chain for statically
analyzing Object Oriented Code”, KCC2014,
KIISE, pp.463-465, 2014.

www.nipa.kr

Haeun Kwon, Bokyung Park, Keunsang Yi,
Young B. Park, Young Soo Kim, R. Young Chul
Kim, *“Applying Reverse Engineering through
extracting Models from Code Visualization™, The
2014 Fall Conference of the KIPS, KIPS, USA,
vol. 21, no. 2, pp.650-653, 2014

(2]
(3]

