
1 23

Wireless Personal Communications
An International Journal

ISSN 0929-6212

Wireless Pers Commun
DOI 10.1007/s11277-015-3152-1

Software Vulnerability Detection
Methodology Combined with Static and
Dynamic Analysis

Seokmo Kim, R. Young Chul Kim &
Young B. Park

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Software Vulnerability Detection Methodology
Combined with Static and Dynamic Analysis

Seokmo Kim1
• R. Young Chul Kim2

• Young B. Park3

� Springer Science+Business Media New York 2015

Abstract Software vulnerability is the attack surface. Therefore, vulnerabilities innate in

software should be detected for software security assurance. Vulnerability detection

method can be divided into static vulnerability detection and dynamic vulnerability

detection. Static vulnerability detection is more commonly used for vulnerability detection.

This method has many benefits, but it also creates false positives. Therefore, this paper

proposes a method to combine static and dynamic detection to reduce false positives

created from static vulnerability detection. The proposed method verifies the vulnerability

by implanting a fault, based on the information received from static code analysis.

Keywords Vulnerability � Instrumentation � Fault injection � Model-to-text

transformations

Special Issue: ‘‘Convergence Interaction for Communication’’, Guest Edited by Prof. Jong Kyung Ryu,
jkryu.hci@gmail.com.

& Young B. Park
ybpark@dankook.ac.kr

Seokmo Kim
seokm0@naver.com

R. Young Chul Kim
bob@selab.hongik.ac.kr

1 Department of Computer Science & Engineering, Dankook University, Yongin, Republic of Korea

2 Department of Computer Information Communication, Hongik University, Sejong, Republic of
Korea

3 Department of Computer Science, Dankook University, 119, Dandae-ro, Dongnam-gu,
Cheonan-si 31116, Chungnam, Republic of Korea

123

Wireless Pers Commun
DOI 10.1007/s11277-015-3152-1

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-015-3152-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-015-3152-1&domain=pdf

1 Introduction

As software becomes larger and complex, vulnerability is also increasing. According to the

statistics of National Vulnerability Database [1] (Fig. 1), 19 new vulnerabilities in average

were reported daily in 2014. This is notably higher than the statistics of 2013. In addition,

approximately 80 % of the newly reported vulnerabilities are from the application layer.

The fact that the attack on the application layer increased can be seen on the report of

SANS in 2009 [2]. Therefore, to decrease these risks and guarantee software security,

analysis of innate vulnerability in software is needed [3]. Due to remarkable growth of

mobile devices [4], mobile application got especially bigger and complex. Therefore, the

threat to the software used in mobile devices is increasing consistently. Also, as mobile

devices are always connected to the network, it is easy for attackers outside to access it [5].

In addition, as users carry their mobile devices persistently, it holds much personal

information [6]. For example, it may hold the user’s current location, contacts, or even

medical information. Therefore, to decrease the security threat in the mobile application

field, the effort to detect software vulnerability is needed.

Software analysis method such as the vulnerability detection is largely divided into

static analysis method and dynamic analysis method. Static analysis inspects the code itself

without operation, and dynamic analysis inspects the behaviors during the runtime. Static

analysis is mostly used when detecting vulnerabilities, but due to low accuracy, it produces

many false positives [7]. Many false positives of static analysis have the advantage of

showing every vulnerability issue that has even the slightest possibility to the testers, and

making them to check it. However, too many false positives can make the user stop using

the method (or tool), or waste too much time checking it [8]. So there needs to be a method

to verify the vulnerabilities detected by static code analysis.

Therefore, this paper proposes a way to verify the vulnerability detected from static

code analysis which is actually inherent in software, and exploitable for an attack. The

proposed method is a combined method of both static and dynamic analysis. This method

detects all possible vulnerabilities through static analysis. Then, the vulnerabilities should

be verified by dynamic analysis. Therefore, dynamic analysis should use the information

acquired from static analysis. However, as the vulnerability information acquired by static

analysis is in its code level, it is hard to be applied to dynamic analysis which cannot be

operated in the code level. To solve this problem, this paper uses instrumentation. And to

automatically create instrumentation code, it used model-to-text transformations.

Fig. 1 The number of vulnerabilities from National Vulnerability Database

S. Kim et al.

123

Author's personal copy

The proposed method has the high coverage, short analyzing time, and various vul-

nerability processing capacity of static analysis, and also the high accuracy of dynamic

analysis. In addition, this method can check whether the attacker can access the vulner-

ability through vulnerability-centric data flow analysis.

This paper uses instrumental techniques that automatically insert specific code to the

source files under analysis to materialize a tool to combine static analysis and dynamic

analysis to verify the proposed idea. Also, an experiment to analyze SQL injection vul-

nerability was done by analyzing sample programs with the materialized tool.

The rest of this paper is organized as follows. Sections 2 and 3 provide a brief

description of existing techniques for vulnerability detection, Sect. 4 describes instru-

mentation technique, Sect. 5 describes model-to-text transformations. In Sect. 6, we pre-

sent our proposal. Then, in Sect. 7, we describe a prototype implementation of out

approach and the results of its experimentation. Finally, conclusions are given in Sect. 8.

2 Static Vulnerability Detection

Static vulnerability detection is a way of analyzing the source code (or the binary code or

the object code) without actually executing programs. The advantage of static vulnerability

detection is that is has 100 % code coverage, and that it can deal with various vulnera-

bilities. And also, as it is done without the execution of programs, the analyzing time is

short and it is suitable to be applied to early Software Development Life Cycle. In addition,

as the analysis is done at the code level, it is easy to edit the source code to remove the

vulnerability. However as there is no information of behavior of the program, every

vulnerability with even the slightest possibility is reported, and many false positives are

included in the detected vulnerabilities. The techniques that can be used in static vulner-

ability detection include pattern matching, lexical analysis, parsing, data flow analysis,

taint analysis.

2.1 Pattern Matching

Pattern matching is finding the string that concords with the vulnerability pattern set

beforehand from the source code. Finding the function such as strcpy() that can cause

buffer overflow from C-language is an example. These pattern matching has the advantage

that it can be materialized simply. However, this method produces many false positives.

This is because the analysis through simple string matching has no information about the

structure or meaning of the program. Flawfinder [9] is the tool in which this method is

applied.

2.2 Lexical Analysis

Lexical analysis alters the code into token stream, and vulnerability pattern matching is

operated using this token stream, Token stream makes pattern matching more accurate.

This is because the lexer can manage the irregular blanks and code form. This technique is

very simple and fast. But this technique also cannot decipher the structure and meaning of

the program. Therefore, it still causes many false positives. ITS4 [10] is a tool using this

technique.

Software Vulnerability Detection Methodology Combined with…

123

Author's personal copy

2.3 Parsing

Parsing parses the source code, and expresses the source code into abstract syntax tree.

This parsing tree analyzes the program’s structure and meaning. Lexical analysis cannot

separate the function and variable with the same name. However, AST(Abstract Syntax

Tree) analysis can decipher the types of identifiers. So, pattern matching using AST is

complex, but quite accurate. So it can detect vulnerabilities that cannot be found using

lexical analysis. PMD [11] is a tool with this technique applied.

2.4 Data Flow Analysis

Data flow analysis is a traditional compiler technique to solve buffer overflowor format string

problem. This technique can also be used in vulnerability detection. This technique is a

technique that collects possible expression or variable cost while the program is operating.

3 Dynamic Vulnerability Detection

Dynamic vulnerability detection analyzes vulnerability based on the behavior of software.

Therefore, the actual execution of a program is done. These techniques are operated as if a

malicious user attacks software. So the vulnerabilities detected from this analysis have less

false positives because of its high accuracy. However, this technique has a drawback of

restricted code coverage. In addition, it has a difficulty of creating many test cases, and it

uses much time to detect vulnerability. Techniques that can be used in dynamic vulnera-

bility detection are such as fault injection, fuzz testing.

3.1 Fault Injection

Fault infection is a technique that injects various errors in a system to see how the software

reacts to the error. Fault injection is a good way to test the tolerance or the robustness of a

system against errors, and it is especially suitable for stress test in which critical error that

does not appear in typical test is injected [12]. This testing technique makes the system

enter an error, and analysis the reaction against the error or fault [13]. The objects that can

be injected are such as protocol, register, memory value, or code.

Fault injection is comprised of Hardware Implemented Fault Injection(HWIFI) and

Software Implemented Fault Injection(SWIFI). SWIFI has two methods of compile-time

injection and runtime injection. Compile-time injection adjusts the source code in order to

inject an error in the system. This method may edit the existing source code, but mostly it

injects an error-causing code without adjusting the existing source code. And runtime

injection uses a software trigger to inject an error while the software is operating. There are

many fault injection techniques as explained, and the mostly used way to test high level

software is instrumentation [14]. This paper also uses instrumentation to inject errors.

Instrumentation is explained in Sect. 4 below.

3.2 Fuzz Testing

Fuzz testing provides random data from the input value to test if the program is accurately

working. This method is easier to materialize than fault injection. This is because it is

S. Kim et al.

123

Author's personal copy

simple to design the test, and no advance information is needed. However, this method has

the limit that it can be done only at the entry point of the program. In addition, as random

entry is done, there are too many test cases. Therefore, the time spent on analysis is too

much. Web scanner is one of these tools.

4 Instrumentation

There are many techniques to collect a program’s runtime information [15]. In general,

runtime data collection method can be divided into hardware-assisted and software-only

collection scheme. Hardware-assisted collection scheme requires a hardware device that is

added to the system for data collection. So it is costly. On the other hand, software-only

collection schemes are less costly because it does not require an additional hardware

device. There are two approaches of software-only collection schemes. One is simulating,

emulating, or translating a program’s code, and the other is instrumenting a program’s

code. Code emulation technique simulates the hardware execution of the target program by

fetching, decoding, and emulating each instruction of the test program. The main advan-

tage of this tool is that it supports cross-simulation, and that the code can be operated

without hardware. This technique, compared to instrumentation technique, is slower than

instrumented binary when collecting runtime information such as emulated binary.

Instrumentation technique operates by rewriting the target program while the program is

operating to collect runtime information. Logical behavior of the instrumented target

program is alike the one before instrumentation. Then the native hardware of the original

program still operates the program. But the routines for data collection are invoked at the

righteous point during the operation of target program to collect runtime information. The

mechanisms to invoke run-time data collection routines consist of microcode instrumen-

tation, operating system trapping, and code instrumentation. The most typically used

approach is to directly edit the program’s code. This approach injects extra instructions to

the target program to collect wanted runtime information. The data collection of this

method causes minimum overhead. This is because the programs in this method run in

native mode. In this, only the overhead of procedure call to invoke data collection routine

may exist.

Code instrumentation can be divided in three due to the point in which the code is

instrumented. Executable instrumentation (Late code instrumentation) is done after the

executable is created. This does not require source file. However, as there is less infor-

mation that can be used in binary file this method is most complex, and the instrumented

binary undergoes performance and liability problem. Next, link-time instrumentation is

done while object linking. This method maintains source code independence, and it is

easier to instrument a program. Lastly source-level instrumentation is done before com-

piling. In this method, it has simple code instrumentation process because the code

information is enough. And it is able to make complex traces. This method requires a

program’s source code.

Also instrumentation can be used variously according to the inserted code. For example,

it can be used as code tracing to get runtime information, debugging to find the pro-

gramming error in the software development stage, profiling to measure dynamic pro-

gram’s movement, performance counter to appraise performance, computer data logging to

trace an application’s event [16]. Tools that can use instrumentation are Inter Pin frame-

work [17], DynamoRio [18].

Software Vulnerability Detection Methodology Combined with…

123

Author's personal copy

5 Model to Text Transformations

Traditionally models have been used in software development to define and understand the

problem domain or the different aspects of a system’s architecture. Especially, modeling in

model-driven architecture is the most important point in software development stage.

Reusing model and creating a code through the model is increasing productivity. Model to

model transformation is changing Platform Independent Model(PIM) into Platform

Specific Model(PSM), PIM to PIM, or PSM into PSM [19]. On the other hand, model-to-

text transformation is changing the model into text product such as code, specifications, or

documents. These transformations need standard. For example, the statement of Object

Management Group [20] for model transformation language is one of these standards.

QVT standard of OMG standard is a standard for transformation, and MOF Model to Text

standard is a standard for model-to-text transformation.

6 Hybrid Vulnerability Detection

Vulnerability detection using static code analysis has high code coverage, can handle

various vulnerabilities, and has an advantage of short time of analyzing, but it has a

drawback of producing many false positives. The reason for the production of false pos-

itives is lack of analysis data of static code analysis. The analysis data in static code

analysis is only the code. The code has the program’s static information. Therefore, static

code analysis does not include the program’s dynamic(runtime) information. This limit

makes certain static code analysis method to only use the code without execution to

presume the program’s behavior. However, this presumption is not accurate. Therefore, if

this approach is used in vulnerability detection, it produces a lot of false positives. In

addition, vulnerability detection needs clear specification of the vulnerability. This spec-

ification is defined based on the syntax and semantics of vulnerability code. Therefore, the

static pattern is easy to be expressed in this specification, but the dynamic pattern is hard to

be expressed. So, clear specification of vulnerabilities requiring a program’s dynamic

behavior information is impossible. As a result, due to unclear specification, vulnerability

detection through static code analysis creates false positive.

Therefore, a process to judge whether the vulnerability detected through static security

analysis really exists in the software is needed. Many false positives have the advantage of

making testers or analyzers to check every possibility. However, as many false positives

become a reason for testers or analyzers to completely stop using the method (or tool), it is

a problem.

Therefore, the way to identify the vulnerability (false positive) among the vulnerabil-

ities detected through static code analysis that really exists in the software and can be used

in an attack is needed. And this identifying cannot be done with only static analysis. So the

approach of combining static analysis and dynamic analysis is needed. However, as static

code analysis is in the code level, the analysis result is also code level information. On the

other hand, code level information of static code analysis cannot be used in dynamic

analysis because dynamic analysis is not in the code level. Therefore, to combine static

analysis and dynamic analysis, a method to use the code level information of static analysis

in the dynamic analysis should be proposed. This paper therefore uses instrumentation

technique to solve this problem.

S. Kim et al.

123

Author's personal copy

Briefly explaining the method this paper proposes, firstly vulnerability is detected

through static code analysis. Then, the code to verify these detected vulnerabilities is

inserted into the target program’s source code. Then by actually executing the program

with the verification code, it is analyzed whether the detected vulnerability can be used

in a real attack. So, the proposed method comprises of vulnerability detection stage

through static code analysis, instrumentation stage to link static code analysis and

dynamic analysis, dynamic analysis stage of injecting an error and monitoring the impact

on a program. In the first stage of static code analysis, vulnerability is detected through

pattern matching using abstract syntax tree. Then the accessibility of the vulnerability is

checked through data flow analysis. Next, in instrumentation stage, which is the second

stage, instrumentation code is created using the vulnerability information acquired

through static code analysis to verify the detected vulnerability through static code

analysis. And this code is inserted into the analysis target program. The role of instru-

mentation code is to inject the error that activates the vulnerability, and then to monitor

the effect of the error. The third stage, which is the dynamic analysis stage, actually

executes the manipulated program with the instrumentation code inserted. During the

runtime, the inserted instrumentation code injects an error, and the activation of the

vulnerability is monitored. And the effect of this activated vulnerability is traced. The

Fig. 2 below expresses the proposed method.

Fig. 2 The proposed method for vulnerability detection

Software Vulnerability Detection Methodology Combined with…

123

Author's personal copy

6.1 Phase 1: Static Code Analysis

Static code analysis inspects the source code itself without execution. The proposed

method performs two static code analysis, the first is pattern matching using abstract syntax

tree, and the other is data flow analysis. The former aims to detect the vulnerability existing

in the source code, and the latter aims to check whether the attacker can access the detected

vulnerability.

Pattern matching using abstract syntax tree first parses the source code, and expresses

the source code in the abstract syntax tree form. This parsing tree is used to detect

vulnerability through pattern matching. The vulnerability pattern used here is defined

beforehand. If the correspondent vulnerability pattern is found in the target, this analysis

gives information of the identity of vulnerability (Vuln.Id) and the position of vulnerability

(Vuln.Position). Vuln.Id is the name of the vulnerability pattern correspondent with the

target program’s source code, and the Vuln.Position is the code line number in which the

vulnerability exists in the target program’s source code.

And to exploit a vulnerability, the attacker need to be able to access the vulnerability

through external interface or such [21]. And to succeed in an attack, the vulnerability used

by the attacker should influence the software or the system. For example, it is hypothesized

that the web application contains a function with command injection vulnerability. If the

value of argument of this function is used as an external input value, the attacker can do

command injection attack through the malicious input value. But if the input value is not

the value of argument, the attacker cannot input the malicious data, and so the command

injection attack is impossible (this is when the attacker cannot access the vulnerability).

And even if the value of argument of this function can be manipulated, if affecting is

impossible such as not being able to operate malicious command due to privilege, com-

mand injection attack is impossible. So the proposed method performed data flow analysis

to check the accessibility of vulnerability and to trace the effect of vulnerability. The Fig. 3

shows the accessibility and effect of vulnerability through data flow diagram.

Vulnerability is triggered by activator. And when more than one sequence of activator is

linked to the external entity which is the attacker, the attacker can use the vulnerability.

And the effect of the activated vulnerability is peppered through the flow of data. Data flow

Fig. 3 Data flow diagram focused on vulnerability

S. Kim et al.

123

Author's personal copy

analysis can distinguish the activator of vulnerability (Vuln.Activator) and the Sequence of

Activators (Vuln.ActivatorSequence). And the Vuln.Propagation can be predicted. The

information acquired in phase 1 is in Table 1.

6.2 Phase 2: Instrumentation

Instrumentation stage is the advance preparation stage to verify the vulnerability detected

through static code analysis. This preparation stage is for combining the static code

analysis with the dynamic analysis. And this stage is operated based on the vulnerability

information acquired through static code analysis. Instrumentation is a technique to insert

code with particular purpose on the original code. The proposed method uses this technique

to inject simulated faults into the target program and to monitor the effects of the injected

fault.

The instrumentation code that injects fault is injecting error into the vulnerability. The

faults injected into activators of the vulnerability identified from static code analysis.

Among the vulnerability activators, the activator included in the activator sequence linked

to an external entity(attacker) becomes the fault injection target. This is because for the

attacker to exploit the vulnerability, the activator needs to be accessible to the attacker, so

that manipulation can be done. The fault data is either supplied by the existing database, or

created through random generator if no fault data is defined. The operation of monitoring

code is to observe the impact propagation of the injected fault. Therefore, this code logs the

state of the contamination, which is a component of the set of the activated vulnerability’s

propagation gained from static code analysis. Contamination is comprised of contaminated

process and contaminated data, but the information that actually gets the logging is the

contaminated data. Contaminated data is the input/output data of contaminated process.

Table 2 is the operation of instrumentation code simply expressed into pseudo code.

Instrumentation code is various according to object and situation. And this code must be

executable when inserted into the original source code of program. Therefore, it must be

written in accordance with the syntax and semantics of a programming language. There-

fore, when the tester manually writes the code, it takes a lot of time. So in this research, a

method of creating instrumentation code automatically based on the defined model

beforehand is used. If the instrumentation code is automatically created, the time for

writing the code can be saved. And the model defined one time can be reused. And in this

research, a template based approach is used to define the model. A template based

approach is used wherein a template specifies a text template with placeholders for data to

Table 1 Acquired vulnerability’s information in phase 1

Analysis Acquired information

AST pattern matching Identity of vulnerability (Vuln.ID)

Position of vulnerability (Vuln.Position)

Data flow analysis Activator to trigger vulnerability (Vuln.Activator)

Sequence of activators to trigger vulnerability
(Vuln.ActivatorSeq{Vuln.Activator1, Vuln.Activator2, Vuln.Activator3…})

Set of the activated vulnerability’s propagation
(Vuln.Propagation{Contamination1, Contamination2, Contamination3…})

Software Vulnerability Detection Methodology Combined with…

123

Author's personal copy

be extracted from models. So the template specification expresses instrumentation code,

and the instrumentation code is automatically created based on this specification. So this

specification and transformation needs to be defined. MOF Model to Text Transformation

Language (MOFM2T) is a specification of Object Management Group (OMG) for model

transformation language. This is especially relatively well defined standard that can be

used to model-to-text transformation. Therefore, in this paper MOFM2T is used to create

instrumentation code from instrumentation model.

After the instrumentation code generation is over, the instrumentation code required to

perform dynamical analysis based on static code analysis is all created. Then the original

source code of the target program is backed up, and instrumentation code is inserted. After

that target program that can be executed through compiling, linking and such process that

is needed to execute a program is formed. Therefore, instrumentation process is comprised

of 4 steps, generating instrumentation code, backup the original code, inserting instru-

mentation code into the original code, and constructing the new executable.

6.3 Phase 3: Dynamic Analysis

The execution of target program is done at the dynamic analysis phase. And the code for

analysis is already imbedded in the target program by the former phase (Phase 2). During

runtime, the instrumented codes are executed. As mentioned formerly, instrumentation

code injects fault that can activate the vulnerability, And the effect of the injected fault is

monitored. If the vulnerability that was detected by static code analysis gets activated due

to the fault injection, this vulnerability can be used for real attacks. Seeing this from the

attacker’s point of view, the activator used to activate the vulnerability becomes the entry

Table 2 Pseudo code of instrumentation code

Instrumentation Code
oduesPevitcejbO Code

Fault Injection

function faultInjection (vuln){
IF vuln.ActivatorSeq IS accessible BY Attacker THEN

IF vuln.Id already exists IN database THEN
 GET faultData FROM database;

SET vuln.Activator TO faultData;
ELSE

 GET faultData FROM randomGenerator;
SET vuln.Activator TO faultData;

ENDIF
ELSE
 print Not exploitable ;
ENDIF
}

Propagation
Monitor

function monitor(vuln) {
IF faultInjection(vuln) IS NOT Not exploitable THEN
 FOR each contaminations IN vuln.Propagation
 Logging contaminatedData;
 Logging contaminatedProcess; //(Optinal)

ENDFOR
ENDIF
}

S. Kim et al.

123

Author's personal copy

point (attack point). And the fault data is malicious data used for the attack. Also the effect

is the result gained from successive attack using the activated vulnerability.

As dynamic analysis through fault injection can have more than one test case, the target

program can be executed repeatedly. Therefore, it has a collector to save the analysis

materials produced by every iteration. This collector saves the contamination states which

the instrumentation code monitors. As the saved data is the impact propagation of injected

fault, this collector is called propagation collector. Opposed to this propagation collector,

there is also a fault provider which provides fault data. This provides the instrumentation

code with fault data. The fault data may be from the fault database, or it can be created

from the random generator. So if the fault values from this fault provider are all used,

iteration of the execution for analysis is over. And as a result of whole iteration, if one or

more fault value activated the vulnerability, this vulnerability can be considered an

exploitable vulnerability. And this vulnerability is the true positive of the vulnerabilities

detected from the static code analysis.

6.4 Comparison of the Different Hybrid Proposals

The approach proposed in this paper is a composition of static and dynamic analysis

techniques. Therefore, in this section, we review the related works (Table 3) that are

combined with these two types of analysis. Balzarotti et al. [22] combine static and

dynamic analysis techniques to identify faulty sanitization procedures that can be bypassed

by an attacker. It identified novel vulnerabilities that stem from incorrect or incomplete

sanitization. Halfond et al. [23] proposed a novel technique to counter SQL injection. The

technique combines conservative static analysis and runtime monitoring to detect and stop

illegal queries before they are executed on the database. Rawat et al. [24] presents a hybrid

approach for buffer overflow detection in C code. The approach makes use of static and

dynamic analysis of the application under investigation.

Existing researches combining static and dynamic analysis mostly uses dynamic anal-

ysis to verify results from static analysis. Therefore, the way proposed which uses dynamic

Table 3 The existing hybrid proposals

Proposals Binding
sequence

Static technique Dynamic technique Main purpose

Balzarotti
et al.
[22]

Pre-static
and post-
dynamic
analysis

Data flow techniques to
identify the flows of input
values from sources to
sensitive sinks

Fault injection to inject
strings corresponding to
possible XSS and SQL
injection attacks to
dynamically execute parts
of the analyzed
applications

To analyze the
correctness of
the
sanitization
process

Halfond
et al.
[23]

Pre-static
and post-
dynamic
analysis

Building a conservative
model of the legitimate
queries that could be
generated by the
application

Inspecting the dynamically
generated queries for
compliance with the
statically-built model

To counter
SQL-
injection

Rawat
et al.
[24]

Pre-static
and post-
dynamic
analysis

Calculating taint dependency
sequences (TDS) between
user controlled inputs and
vulnerable statements

Executing the program along
TDSs to trigger the
vulnerability by generating
suitable inputs

To detect
BoF(Buffer
over Flow)
vulnerabilities

Software Vulnerability Detection Methodology Combined with…

123

Author's personal copy

analysis to solve static analysis accuracy problem is similar to existing researches. How-

ever, existing researches mostly handle vulnerabilities due to the input of untrusted data.

So, dynamic analysis of these focuses on making input of untrusted data. Therefore, these

researches proposed efficient ways to analyze vulnerabilities by the use of untrusted data

such as SQL injection or buffer over-flow. However, these proposed methods have diffi-

culty in handling various types of vulnerabilities. But as the way proposed in this paper can

materialize various and complex executable test suite through the modeling of Source

instrumentation and Instrumentation, many vulnerabilities can be tested. In addition, it has

reusability because a model once defined can be used again.

7 Implementation and Experimentation

7.1 Implementation

In this paper, to verify the proposed method, a tool was materialized which allows the

application of static code analysis to dynamic analysis using instrumentation. Therefore,

this tool automatically creates instrumentation code based on static code analysis infor-

mation. Then the instrumentation code is inserted into the target program’s source code.

And the executable of the instrumented target program is formed. After that, the vulner-

abilities identified from static code analysis are tested using the formed executable whether

it is a false positive or not. So this tool must mainly perform static code analysis,

instrumentation, and dynamic analysis. And as the proposed method can be applied in the

early software development life cycle, it can also be applied to integrated development

environment (IDE). So we developed a tool using one of IDE, platform of Eclipse [25].

Especially, Eclipse can add plug-in so that additional function is added, or original function

is expanded. So to develop this tool which needs toolchain to link with various tools,

Eclipse platform was used.

The static analysis part of this tool used PMD, one of an open source tool. This is JAVA

source code analyzer based on ruleset. This tool deciphers the potential problem on the source

codewhichmatches the ruleset defined by patternmatching usingAST parsing. This does not

largely support ruleset detecting security vulnerability. But it can write custom rules using

XPath or Java classes. And this tool can comprehend the structure andmeaning of source code

because it usesASTparsing. So the static code analysis can be accurately conducted.After the

vulnerability is detected, code level information can be acquired. And instrumentation should

work based on this. Instrumentation was realized by expanding the function of the tool

Acceleo [26]. Acceleo is a pragmatic implementation of the Object Management Group

(OMG) MOF Model to Text Language (MTL) standard [27]. This tool helps make code

generator. Then, dynamic analysis of verifying the vulnerability using instrumented source

code. So, open source dynamic analyzer named JUnit was used. This tool is the most famous

unit test framework for java language. The aforementioned tools are supported by Eclipse

plug-in. And the tool developed in this paper alsowasmade in Eclipse plug-in. The developed

tool consists of Instrumentation Code Outline, Instrumentation Preferences for general

instrumentation settings, and Source Code Viewer. The Fig. 4 is a tool developed through

Eclipse Plug-in Development Environment (PDE).

S. Kim et al.

123

Author's personal copy

7.2 Experimentation

We prepared web service which is an example program written in java for experiment.

This web service receives ID and password from users for authentication. Also, users can

save and inquire their GPS data through this web pages. And this web service has an

additional database to save the log of database management system. This web service

interacts with three databases in total.

We performed an experiment to detect SQL injection flaw by using tools developed

using the proposed method. As the result of the experiment, five SQL injection vulnera-

bilities in total were detected in the static code analysis phase. And two out of five results

which was verified by detecting vulnerabilities through dynamic analysis were vulnera-

bilities innate in real software. SQL injection vulnerabilities detected by static code

analysis occurred one in query disposal side which is used in interaction with user certi-

fication database, two in query disposal side used in interaction with GPS database, and

two in query disposal side used in interaction with logging database. Of these, the vul-

nerability that was verified from the dynamic analysis that exists in the real software and

that can be used for an attack appeared at the interaction of location database. Rest were

false positives. Analyzing these false positives, interaction of logging database records log

information inside the system, so it does not use the user’s input. So the accessibility to the

vulnerability does not exist. This was the same for data flow analysis. In addition, the query

handling used in the log-in database interaction used prepared statements (parameterized

queries) [28], so as the query and data was separate, it could not be used for real attack. On

the other hand, vulnerability detected in the query part used in location information

database was activated, and string of the fault data used here was ‘or’1‘=’1. And the

vulnerability activator that injected this fault value was user-id, and the sequence of this

activator was linked to an external entity. And the activated vulnerability could access or

manipulate other user’s location information. In conclusion, this vulnerability is accessible

to attackers, and the activated vulnerability can affect the system.

Fig. 4 Screenshot of the developed tool

Software Vulnerability Detection Methodology Combined with…

123

Author's personal copy

7.3 Contemplation of the Reduce of False Positive

We performed our experiments on a suite of tree web services. These web services contain

vulnerabilities intended for the experiments. Our experiment attempts to evaluate the

improvement by showing the reduce rate of false positive. Table 4 shows how much the

proposed hybrid vulnerability detection is able to reduce false positives.

In Table 4, the reduced rete of false positive is a rate in the percentage showing the

reduced amount of false positive rate deciphered by hybrid approach in relation to static-

only approach. 40.6 % of false positive rate’s reduction in average has been found through

dynamic analysis of hybrid approach. In addition, the deviation of false positive rate in the

three experiments occurred due to the difference of each system’s vulnerability type and

distribution. This happens due to the difference of code each target system has.

8 Conclusions and Future Work

The main reason for making many false positives that are made by static vulnerability

detection technique is the absence of program operation information. Therefore, the pro-

posed method verifies vulnerability, which is detected by the static code analysis through

dynamic analysis. Also, instrumentation technique is used for applying the result of the

static code analysis to dynamic analysis. As a result, of the many vulnerabilities acquired

through static code analysis, vulnerabilities that can be used in real attack could be verified.

This method can check out whether attackers are able to access vulnerabilities though entry

point, and trace the effect that influence software and system when vulnerabilities are used

for attacking.

The proposed method injects the fault by manipulating the data in data flow sequence of

vulnerability, instead of injecting the fault to external inlet. Therefore, it is easy to make

error that activates vulnerabilities. The reason is that in order to activate vulnerabilities by

manipulating the external input, you have to know target program’s execution path but also

how to manipulate input data. Without knowing this information, random data should be

injected repeatedly. However, if the input data format is complicated or software and

system is complicated, the difficulty of generating many test cases is occurred. In this

regard, the error injecting method that is used in the proposed method is efficient. And

since the developed tool inject errors by using source instrumentation technique, it is

possible to inject various errors that could be generated by programing language which is

used in target program development. And since this tool generates automatically based on

the model that defined by instrumentation code in advance, testers don’t have to make the

code manually to inject errors. And this method is complementary because it is a combined

form of dynamic analysis and static analysis. Imprecision of static analysis is supplemented

Table 4 The reduce of false positives

Experiment # Rate of false positives (%) Reduced rate (%)

Static-only detection Hybrid detection

1 25.3 (21/83) 15.7 (13/83) 38.0

2 60.9 (39/64) 43.8 (28/64) 28.2

3 33.3 (9/27) 14.8 (4/27) 55.6

S. Kim et al.

123

Author's personal copy

by dynamic analysis, and difficulty of generating many test cases of dynamic analysis is

supplemented by static analysis. Therefore, vulnerability detection technique that is rela-

tively precise and does not spend much time in analysis is proposed by combining static

analysis and dynamic analysis. However, the proposed method is not perfectly improved in

the precision side. The proposed method can identify the false positive among the vul-

nerabilities that is detected by static analysis, but false negative that is not detected by

static analysis can not be identified. It is because this method is verifying vulnerabilities

detected by static analysis, by dynamic analysis. And since the developed tool use source

instrumentation, overhead of recompiling instrumented source code is occurred. In this

paper, the method that detects vulnerabilities by using static analysis and dynamic analysis

is identified reasonable as a method to reduce false positives through developed tool.

Therefore, in the future study the method to identify false negative that is a threshold of

this tool will be researched, the way to use binary instrumentation to reduce overhead will

be found. In addition, a method to write this model in a diagram to easily write instru-

mentation model will be found.

Acknowledgments This work was supported by the ICT R&D program of MSIP/IITP. [R0101-15-0144,
(EXOBRAIN-4)] development of autonomous intelligent collaboration framework for knowledge bases and
smart devises] and ‘‘employment contract based master’s degree program for information security’’
supervised by the KISA (KOREA INTERNET SECURITY AGENCY) (H2101-14-1001).

References

1. National Institute of Standards and Technology (NIST). (2014). National vulnerability database.
Retrieved September 28, 2014. http://nvd.nist.gov.

2. Dhamankar, R., Dausin, M., Eisenbarth, M., King, J., Kandek, W., Ullrich, J., & Lee, R. (2009). The top
cyber security risks. Tipping Point, Qualys, the Internet Storm Center and the SANS Institute faculty,
Tech. Rep.

3. Gopalakrishna, R., Spafford, E., & Vitek, J. (2005). Vulnerability likelihood: A probabilistic approach
to software assurance. CERIAS, Purdue Univeristy Tech. Rep, 6, 2005.

4. Vassilaras, S., & Yovanof, G. S. (2010). Wireless innovations as enablers for complex & dynamic
artificial systems. Wireless Personal Communications, 53(3), 365–393.

5. Garitano, I., Fayyad, S., & Noll, J. (2015). Multi-metrics approach for security, privacy and depend-
ability in embedded systems. Wireless Personal Communications, 81(4), 1359–1376.

6. Gladisch, A., Daher, R., & Tavangarian, D. (2014). Survey on mobility and multihoming in future
internet. Wireless Personal Communications, 74(1), 45–81.

7. McGraw, G. (2006). Software security: Building security in (Vol. 1). Boston: Addison-Wesley
Professional.

8. Chess, B., & McGraw, G. (2004). Static analysis for security. IEEE Security and Privacy, 6, 76–79.
9. Wheeler, D. (2006). Flawfinder home page. Web page: http://www.dwheeler.com/flawfinder.
10. Viega, J., Bloch, J. T., Kohno, Y., & McGraw, G. (2000). ITS4: A static vulnerability scanner for C and

C?? code. In Computer Security Applications, 2000. ACSAC’00. 16th Annual Conference (pp.
257–267). IEEE.

11. Copeland, T. (2005). PMD applied. https://pmd.github.io. Accessed 19 Aug 2015.
12. Zhang, J. (2011). A mobile agent-based tool supporting web services testing. Wireless Personal

Communications, 56(1), 147–172.
13. Hsueh, M. C., Tsai, T. K., & Iyer, R. K. (1997). Fault injection techniques and tools. Computer, 30(4),

75–82.
14. Source code instrumentation overview at IBM website, http://www-01.ibm.com/support/

knowledgecenter/#!/SSSHUF_8.0.0/com.ibm.rational.testrt.doc/topics/cinstruovw.html.
15. Huang, J. C. (1978). Program instrumentation and software testing. Computer, 4, 25–32.
16. Introduction to instrumentation and tracing at Microsoft developer network website, https://msdn.

microsoft.com/en-us/library/aa983649(VS.71).aspx.

Software Vulnerability Detection Methodology Combined with…

123

Author's personal copy

http://nvd.nist.gov
http://www.dwheeler.com/flawfinder
https://pmd.github.io
http://www-01.ibm.com/support/knowledgecenter/%23!/SSSHUF_8.0.0/com.ibm.rational.testrt.doc/topics/cinstruovw.html
http://www-01.ibm.com/support/knowledgecenter/%23!/SSSHUF_8.0.0/com.ibm.rational.testrt.doc/topics/cinstruovw.html
https://msdn.microsoft.com/en-us/library/aa983649(VS.71).aspx
https://msdn.microsoft.com/en-us/library/aa983649(VS.71).aspx

17. Luk, C. K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., & Hazelwood, K. (2005). Pin:
Building customized program analysis tools with dynamic instrumentation. In ACM Sigplan Notices
(Vol. 40, No. 6, pp. 190–200). ACM.

18. Bala, V., Duesterwald, E., & Banerjia, S. (2000). Dynamo: A transparent dynamic optimization system.
In ACM SIGPLAN Notices (Vol. 35, No. 5, pp. 1–12). ACM.

19. Mens, T., & Van Gorp, P. (2006). A taxonomy of model transformation. Electronic Notes in Theoretical
Computer Science, 152, 125–142.

20. Object Management Group. http://www.omg.org.
21. Mell, P., Scarfone, K., & Romanosky, S. (2006). Common vulnerability scoring system. Security &

Privacy, IEEE, 4(6), 85–89.
22. Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel, C., & Vigna, G. (2008).

Saner: Composing static and dynamic analysis to validate sanitization in web applications. In Security
and Privacy, 2008. SP 2008. IEEE Symposium on (pp. 387–401). IEEE.

23. Halfond, W. G. J., Choudhary, S. R., & Orso, A. (2011). Improving penetration testing through static
and dynamic analysis. Software Testing, Verification and Reliability, 21(3), 195–214.

24. Rawat, S., Ceara, D., Mounier, L., & Potet, M. L. (2013). Combining static and dynamic analysis for
vulnerability detection. arXiv preprint arXiv:1305.3883.

25. Eclipse. https://www.eclipse.org/.
26. Acceleo, Eclipse plugin. http://www.eclipse.org/acceleo/.
27. MOFM2T. http://www.omg.org/spec/MOFM2T/1.0/.
28. Thomas, S., & Williams, L. (2007). Using automated fix generation to secure SQL statements. In

Proceedings of the Third International Workshop on Software Engineering for Secure Systems (p. 9).
IEEE Computer Society.

Seokmo Kim received the B.S. degree in Computer and Information
Communications Engineering from Hongik University, Korea in 2014.
He is currently a M.S. candidate in Dankook University. His research
interests are in the areas of Security Analysis, Testing and Secure
SDLC.

R. Young Chul Kim received the B.S. degree in Computer Science
from Hongik University, Korea in 1985, and the Ph.D. degree in
Software Engineering from the department of Computer Science,
Illinois Institute of Technology (IIT), USA in 2000. He is currently a
professor in Hongik University. His research interests are in the areas
of Test Maturity Model, Embedded Software Development Method-
ology, Model Based Testing, Metamodel, Business Process Model and
User Behavior Analysis Methodology.

S. Kim et al.

123

Author's personal copy

http://www.omg.org
http://arxiv.org/abs/1305.3883
https://www.eclipse.org/
http://www.eclipse.org/acceleo/
http://www.omg.org/spec/MOFM2T/1.0/

Young B. Park received the M.S. and Ph.D. degree from the depart-
ment of Computer Science, N. Y. Polytechnic University (NYU-Poly)
in 1991. He is currently a professor in Dankook University. His
research interests are in the areas of Intelligent Software Engineering,
Automatic Software Testing, Software Development Process
Enhancement and Software Refactoring.

Software Vulnerability Detection Methodology Combined with…

123

Author's personal copy

	Software Vulnerability Detection Methodology Combined with Static and Dynamic Analysis
	Abstract
	Introduction
	Static Vulnerability Detection
	Pattern Matching
	Lexical Analysis
	Parsing
	Data Flow Analysis

	Dynamic Vulnerability Detection
	Fault Injection
	Fuzz Testing

	Instrumentation
	Model to Text Transformations
	Hybrid Vulnerability Detection
	Phase 1: Static Code Analysis
	Phase 2: Instrumentation
	Phase 3: Dynamic Analysis
	Comparison of the Different Hybrid Proposals

	Implementation and Experimentation
	Implementation
	Experimentation
	Contemplation of the Reduce of False Positive

	Conclusions and Future Work
	Acknowledgments
	References

