

Code Structure Visualization with A Tool-Chain

Method

So Young Moon
1
, R. Youngchul Kim

2

1Dept. of Computer and Information Communication, Hongik University, Sejong, Korea, 339-701

msy@selab.hongik.ac.kr
2*Dept. of 1Dept. of Computer and Information Communication, Hongik University, Sejong, Korea, 339-701

bob@hongik.ac.kr

Abstract - It is an important issue to deliver high-quality
software products with huge-scale codes and shorter time-to-
market. While developers still focus on code-based
development across the board, the domestic software industry
is witnessing a shift to development/testing process and
maturity measurement as a means of implementing high-
quality software. Yet, the challenging issues of software
quality remain rarely addressed, e. g., invisibility, increasing
complexity and unfavorable development environment in
small businesses, which impedes proper software quality
management. More importantly, existing legacy systems fail
to preserve their original design, while their code complexity
increases due to more patching of the original codes. To
address these problems, we adopted a code visualization
technique that substantially reduces the code complexity
between modules. To do this, we suggest a tool chaining
method based on the existing open source software tools,
which extend NIPA’s Software Visualization techniques.
More specifically, the proposed technique serves two
purposes: 1) rectifying overall bad development habits, and 2)
maintaining software codes with visualization with no need
for design-related specification and documentation. This paper
presents how to visualize the inner structure of codes and how
to improve the quality of software codes using the proposed
Tool-Chain. In addition, refactoring is used to fix bad coupling
of the quality measurement indicators in code visualization.
As a result, it is possible to quantitatively analyze source
codes and rectify developers’ bad smells. Ultimately, the
proposed method is conducive to delivering high-quality
software products.

Keywords - SW Visualization; Tool-Chain; Reverse
Engineering

I. INTRODUCTION

Software has been widely used across diverse fields,

serving as a key to add values to final products and ensure their
competitive edge. However, its invisibility and complexity as
well as domestic SMEs (Small and Medium Enterprise)
software development environment have thwarted software
quality management [1]. High-quality software development
requires 1) certifying the quality of software products. In
Korea, SP (Software Process) and GS(Good Software)
certificates are recommended. Furthermore, TMMi and CMMi
are used to improve and assure the quality of software. 2) The

latest software development methodologies or processes need
to be employed to develop high-quality software. 3) Once
developed, software undergoes a series of test processes for
debugging and ultimately for quality enhancement. These
approaches, however, impose cost and other burdens on SMEs.
In this context, the present paper intends to contribute to high-
quality software development by focusing on visualization of
core domains of software, viz. visibility of development
process, reduction of complexity, and the absence of
documentation about development and design. In addition,
source underpinning software need be updated in time to
reflect up-to-date information for the operability of software, at
the same time the quality must be kept at its highest, as
software can be explained by its source codes only [2]. Thus,
the present paper applies the Software Visualization Technique
developed by the NIPA(National IT Industry Promotion
Agency) with a view to: 1) detect, alter and modify the
problems of legacy codes; 2) provide guidelines for rectifying
software developers’ bad smells by applying a reverse
engineering technique via code visualization; and 3) cope with
the absence of developers or relevant documentation to help
maintain legacy systems. To visualize the internal structure of
codes, this paper constructs a tool chain by connecting a range
of open sources, i.e., Source Navigator, DOT Script and
SQLite. Then, using the tool-chain method, JAVA-based
software is applied to the visualization of software and thus
derives a visualized output that gives some insight into original
code structures. Also, the coupling measurement module and
quality indicators are defined to perform refactoring (with the
output) in order to develop high-quality software.

This paper presents the following chapters. Chapter 2
elucidates software visualization and reverse engineering in
light of related studies. Chapter 3 discusses the method of
configuring the tool chain. Chapter 4 illustrates cases of
application. Chapter 5 mentions the conclusion and future
studies.

II. RELATED WORK

2.1 SW Visualization

High-quality software development needs to go through
development, test automation and quality certification. Above
methods, however, are challenging to venture start-ups, SMEs
and even established companies in the IT industry due to
personnel cost and other expenses. NIPA’s software

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.90 (2015)
 © Research India Publications; http/www.ripublication.com/ijaer.htm

214

visualization may be fit for high-quality software development
at IT venture startups, SMEs and even established entities that
are typically constrained by a lack of personnel and financial
resources [3]. Software visualization is a technique intended for
the betterment of software quality control and maintenance by
visualizing and documenting source codes and development
processes.

First, visualization addresses the most challenging aspect of
software development, i.e., invisibility, putting an entire
software development process into perspective for the benefit
of controlling the quality of both the software and its
development process. Second, the documentation serves to
manage corporate know-how of software development, to
enhance intra-organizational understanding of tasks and to
support communication with third parties in certain situations.
SW visualization aims to manage sources and development
processes, specifically involving visualization and
documentation as a means of managing the quality of SW
development. An entire process of software development
needs be efficiently managed to produce valuable software. It
takes clear-cut goal setting, efficient fulfillment, on-going
monitoring and control activities to successfully manage
software development. SW visualization enables 1)
clarification of goals in line with guidelines, 2) system-based
efficient development activities, and 3) continuous monitoring
and controlling via visualization so as to lay a foundation for
successful management of software development. SW
developers draw on SW visualization to overcome the
invisibility of software and ensure the transparency of an
entire process of SW development, this contributes to
securing SW quality, detecting development-related issues
early on, reducing development cost and ultimately attaining
corporate competitiveness [1].
Third, by providing options for documentation of diverse
outputs piled up inside the system in the course of
development the SW visualization minimizes related
workloads while at the same time maximizing the usability.

2.2 Reverse Engineering

Forward engineering starts with outputs from high-level
abstraction including requirements specification and then
progressively goes through meticulous analysis and design to
implement software products. On the contrary, reverse
engineering is the process of analyzing software with the
objective of recovering its design and specification. Reverse
engineering can extract the design information from a source
code [4]. The software source code is usually available as the
input to the reverse engineering process. The objective of
reverse engineering is to derive the design or specification of a
system from its source code. Reverse engineering, which is
used to develop a better understanding of a system is often part
of or the re-engineering process. Reverse engineering is used
during the software re-engineering process to recover the
program design which engineers use to help them understand a
program before reorganizing its structure [5]. Reverse
engineering is used for system analysis with the intent to
identify software components, their interactions, and to restore
different forms or higher levels of abstract representations.

The first and foremost reason that reverse engineering is
used for visualization is to understand certain software

programs without the help of original developers. The second
reason is to inspect legacy systems without any in-depth
analysis. Therefore, reverse engineering may be viewed as a
system analysis technique for identifying software components
and their inter-relations or for restoring different forms or
higher levels of abstract representations [1].

Figure 1. Reverse Engineering Process

Figure 1 schematizes the reverse engineering process,
where tracing goes from the implementation phase to the
design phase. This makes it possible to restore the design and
requirements in the implementation step. Using this technique,
the present paper carries out the visualization to analyze and
understand software without the help of developers, and thus to
inspect legacy systems. Differently put, reverse engineering is
used for software visualization as it addresses traceability and
complexity issues, restores lost information, detects adverse
effects and consequently enables reuse of software. This paper
is consist of a tool for the visualization and reverse-engineering
by using the open-source tools. We will talk more about the
consistent in chapter 3.

III. TOOL-CHAIN METHOD

Existing tools for reverse engineering/static code analysis
have difficulties in visualizing architectures of certain
companies. The present paper employs a static code analysis
method composed of tool-chain process and software quality
improvement. Figure 2 shows the tool-chain process built on
existing open sources.

The proposed Tool-Chain process is based on open sources
such as Source Navigator[6], SQLite[7], Graphviz[8].

3.1 Description of each step of tool-chain

 Step 1: Source Code Analysis

This step analyzes source codes from SN (Source
Navigator). Once analyzed, the source code is
extracted in compliance with the parser’s format.
Extracted files (SNDB Files) contain overall
information about the program code (e.g., class,
method, local variables, global variables and
parameters).

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.90 (2015)
 © Research India Publications; http/www.ripublication.com/ijaer.htm

215

Figure 2. Tool-Chain Method Process

 Step 2: SNDB Files Analysis

SNDB files contain the data extracted from SN in
binary formats. To analyze the binary file content,
dbdump.exe provided by SN is run internally and
transformed to text formats.

 Step 3: Create DB from SNDB Processor

The data analyzed in Step 2 is stored in a table
generated in the DB. This step saves the information of
all files extracted in the DB for the purpose of all
analyses.

 Step 4: Extract Data for Architecture

This step for extracting data for architecture
reinterprets the sorted information in the database in
compliance with pre-defined modules. It also extracts
modules from the sorted components. This paper
defines classes as the module unit and writes query
statements. This generates the information about the
relations between classes, between classes and
methods, and between classes and variables. This also
quantifies the quality indicators.

 Step 5: Visualization

This visualization step runs the queries written in Step
4, reinterprets their results, and generates a DOT script
and its graph to run Graphviz’s DOT.

 Step 6: SW Quality Improvement

Developing high-quality software requires a weaker
inter-module coupling and a stronger inter-module
cohesion [4]. The present paper defines the coupling as
a quality indicator and performs the visualization
accordingly.

3.2 Modulity

 Module Definition

The module definition step defines a module unit
suitable for the target software code to be visualized.
The present paper defines classes as modules.

 Quality Indicator Definition

In designing software, inter-module coupling needs
minimizing whereas inter-module cohesion needs
increasing in order to develop high-quality software.
Thus, quantitative measurement indicators for coupling
and cohesion need be set [9]. Figure 3 illustrates the
coupling status represented as good to bad conditions.
Here, coupling refers to inter-dependence or inter-
relation between two modules. High inter-module
coupling means strong inter-dependence between
modules. This has adverse effects on transformation,
maintenance and reuse of modules. Independent
modules require low inter-module coupling and
dependence. Coupling is sub-divided into data, stamp,
control, external, common, and content couplings.
Inter-module dependence increases in the direction of
the content coupling while decreasing in the direction
of the data coupling.

Figure 3. Coupling Spectrum

a) Data Coupling

In data coupling, the interface between modules consists
solely of data. As a module calls another, it hands over
the data as parameters or arguments. At the same time
the called module returns the results of data processed.
Here, the data coupling is most desirable in the modules
that never affect each other. Therefore there is no need
to know about the content.

b) Stamp Coupling

In stamp coupling, data structures such as arrangements
or records are delivered as inter-module interfaces. Both
modules view a data structure. Any changes in the data
structure of a module affect the other module even when
it is not referred to.

c) Control Coupling

Control coupling provides control components (e.g.,
Function Code, Switch, Tag, and Flag) used to control
logical flows. Control coupling occurs when a higher
module controls a lower module. This includes knowing
the procedural details of its processing or when the
functions for processing are designed separately
between the two modules.

d) External Coupling

In external coupling, data (variables) that a module
externally declares are referred to by another module.

e) Common Coupling

In common coupling, multiple modules share a common
data domain. Any changes in the content of the common

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.90 (2015)
 © Research India Publications; http/www.ripublication.com/ijaer.htm

216

data domain affect all modules sharing the domain,
which weakens the independence.

f) Content Coupling

In content coupling, a module directly refers to or
modifies the internal functions or data of another
module.

 Code Pattern Analysis

A code pattern is determined in the code pattern
definition. As the present paper defines classes as
module units, the coupling is decided in line with
classes and inner class relationships.

 Refactoring

Source codes are directly refactored to lower the high
levels of coupling between modules.

IV. CASE STUDY

The case employed here is a system developed in Struts
Framework-based JAVA. The proposed tool chain is used to
analyze the source code.

 Source Code Analysis: In the source code analysis
step, the source codes in SN are located for automatic
code analysis. Based on the content analyzed, SNDB
files are generated. The SNDB files have such
extensions as 1, by, cl, mi, f, mv, lv, and iv.

 SNDB Files Analysis: The SNDB files contain
different types of binary data extracted from the SN.
To analyze the content of binary files, dbdump.exe
from the SN is run internally and transformed to text
formats.

 Create DB from SNDB Processor: The data from the
analysis of SNDB files are analyzed further using the
parser developed here, and stored in the DB Tables in
the DB.

Figure 4. DB Tales and Contents of SNDB files

 Extract data for architecture: We extract data from
database in Figure 4 by using SQL.

Figure 5 shows the total number of coupling among
modules. For drawing this graph, we count callings
among modules. So we know intuitively how loosely
coupled among modules. “BaseAction” module in
Figure 5 is called 28 times from other modules.

Figure 6 shows the coupling weight value between two
modules. The coupling weight value of the
“ValuationMonitoringAction” module and the
“DmethodCall” module in Figure 6. is higher than
others. If the weight value is more than 100, it is
illustrated by a red line on the graph. So we see
intuitively how loosely coupled or tightly coupled two
modules are. If tightly coupled, we need to do a
refactoring source to reduce coupling weight values.

Figure 7 shows a class diagram. When you want to see
a structure of code without any SW documents, this
class diagram will help you. A module is a class, so a
higher level is a package. We describe a package with
a blue outlined (?) box, and it includes classes, also we
describe a relation among classes.
“com.hmpms.board.dao” package includes
“BoardDAOImpl” and “BoardDAO” classes.
“BoardDAO” class has methods such as selectList,
selectTree.

Figure 5. The total number of coupling of among modules

Figure 6. Coupling weight value of between two modules

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.90 (2015)
 © Research India Publications; http/www.ripublication.com/ijaer.htm

217

Figure 7. Class Diagram from Code Structure Visualization

V. CONCLUSIONS

The domestic software development industry focuses on
development/testing and maturity measurement to deliver high-
quality software. However, this is of little service to venture
start-ups, SMEs, and established entities engaging in software
development. For the purpose of developing high-quality
software, the present paper focuses on detecting and altering
problems of existing codes and rectifying software developers’
bad smells. Developers need to other tasks if they focus on the
development process, testing process, and maturity
measurement of high quality software. Especially above
methods cannot be the alternative to make high quality
software about legacy systems. To address this issue, the
proposed tool-chain method defines modules, quantifies the
complexity of codes based on software structures and the
frequency of inter-module relations, and digitizes the quality of
codes with quality indicators for inter-module coupling as part
of software visualization. The proposed method enables even
developers of bad smells to lessen the code complexity with
refactoring.

Future research will deal with the visualization of software
quality in terms of cohesion, extract design documents using
reverse engineering in addition to class diagrams representing
the inheritance while continuing to carry out software quality
measurement and refactoring to shed light on any patterns that
could help improve software quality, and finally to visualize
diverse cases of software using the proposed tool-chain
method. Last we will develop our parser for making up for
SN’s faults to show various useful graphs.

ACKNOWLEDGMENT

This work was supported by the National Research Foundation
of KOREA (NRF) and Center for Women In Science,
Engineering and Technology (WISET).

REFERENCES
[1] NIPA SW Engineering Center, 2013, “SW Development Quality

Management Manual (SW Visualization)”, pp. 3-4.
[2] Steve McConnell, 2001, “Code Complete (2nd ed.)", Microsoft Press.
[3] Geon-Hee Kang, R. Young Chul Kim, Geun Sang Yi, Young Soo Kim,

Yong B. Park, Hyun Seung Son, 2015, “A practical Study on Code Static
Analysis through Open Source based Tool Chains,” KIISE Transactions
on Computing Practices, vol. 21, no. 2, pp. 148-153.

[4] Roger S, Pressman, 2010, “Software Engineering: a practitioner’s
Approach (7th ed.)”, McGrawHill.

[5] Ivan Sommerville, 2001, “Software Engineering (6th ed.)”, Pearson
Education.

[6] http://sourceforge.net/projects/sourcenav/
[7] https://www.sqlite.org/
[8] http://www.graphviz.org/
[9] Bokyung Park, Haeun Kwon, Hyeoseok Yang, Soyoung Moon, Youngsoo

Kim, R. Youngchul Kim, 2014, "A Study on Tool-Chain for statically
analyzing Object Oriented Code", KCC2014, pp.463-465.

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.90 (2015)
 © Research India Publications; http/www.ripublication.com/ijaer.htm

218

