

Developing a Visualization Tool for Mobile

Software Testing

Keunsang Yi
1
, Hyun Seung Son

1
, R. Young Chul Kim

1*

1 SELab., Dept. of Computer and Information Communication, Hongik University, Sejong, Korea

bob@selab.hongik.ac.kr

Abstract— Android platform applications are developed with two
ways: UI design and Source code implementation. How to analyze
mobile SW complexity? It is difficult to do with the previous
measuring elements of SW complexity such as module, class, and
package units. To solve this problem, we suggest to visualize an
activity call graph between activities as the basic unit of android
platform, and measure the complexity between intents for analysis of

code complexity of mobile software. For code visualization, we
develop the open source based Tool-Chain like a static analysis tool.
By inputting mobile source code into this tool, we can build and
analyze an activity call graph. We can see inner code structure
through this visualization, which then diagnose to cause some
complex code to potentially occur malfunction of android mobile
codes.

Keywords-Code Visualization; Mobile Based Testing; Complexity;

SW Quality; SW Visualization in Nipa‟s Software engineering
Center;

I. INTRODUCTION

In these days, mobile SW is required to be developed for

works on various mobile platforms with original functions
which are developed in the existing development environment.
These mobile SW need highly advanced and efficient
resources. Especially poor optimization of advanced smart
devices may make it difficult to develop mobile SW. The more
code complexity becomes increased, the worse it leads to an
increase in SW defects of devices.

Android mobile applications are developed with both UI
code and the core code apart. For a static analysis, our
Tool-Chain also visualizes source code based on the existing
SW visualization [1-2]. But it‟s impossible to visualize mobile
SW code expressing interactions between activities by intent
on Android. We reinforce visualization for the internal code
structure of mobile application SW through intent between
android activities. With this visualized structure, we diagnose
the causes of Bad-smell structure for refactoring, and finally
suggest an automatic static analysis for mobile application SW.

Therefore, it is organized as follows: Chapter 2 describes
mobile application testing technique as related research,
Chapter 3 shows automatic static analysis mechanism, and
Chapter 4 mentions our enhanced Tool-Chain for a static
analysis of mobile application code. Chapter 5 describes
conclusion.

II. RELATED RESEARCH

2.1 Mobile Applications Testing Technique

Since mobile applications work in various platform
environments, mobile application testing is different from the
existing SW testing. To meet requirements of mobile
application testing, it carries out testing activities and
objectives like functional and behavior testing, interoperability
testing, usability testing, and so on. In order to test mobile SW
accurately, each application on various platform devices would
run. However, testing all the devices would take great expense.
Mobile application testing includes Emulation-based Testing,
Device-based Testing, Cloud Testing and Crowd-based Testing
[3].

2.1.1 Emulation based Testing

Figure 1. Emulation-based testing

Emulation based testing carries out tests actual device
environments using a virtual environment emulator. With
emulation based testing as shown in Figure 1, it is difficult to
test behavior that occurs in an application due to a difference in
memory and speed from actual device.

2.1.2 Device-based Testing

Figure 2 shows a device based testing structure. It has
virtues in that it can test all scenarios using an actual device. It
can also grasp problems on an actual device which cannot be
measured in an emulation based test.

Figure 2. Device-based testing

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.90 (2015)
 © Research India Publications; http/www.ripublication.com/ijaer.htm

287

However, a device-based testing technique requires great
expenses in comparison to other testing methods due to
purchase of an actual device. Although mobile service
companies purchase a mobile device for testing, it has
difficulties in terms of test quality and efficiency.

2.1.3 Cloud-based Testing

Cloud based testing implements existing testing techniques
in cloud service environment. Currently, the cloud based
mobile test supporting tool is Keynote, Although there is a
demand for testing cloud based mobile applications and
services, development and support for it are in short supply.

2.1.4 Crowd-based Testing

Figure 3 shows an implementation of testing multiple
clients that possess a broad range of mobile devices of various
types for cloud testing.

Figure 3. Crowd-based Testing

Cloud testing can reduce cost required for developing
mobiles. Especially, as it can discover errors of mobile
applications in a short period of time, it is utilized by such
companies as eBay, Amazon, GE, Microsoft, Google, and
Facebook. However, with diverse App testing techniques that
we have examined thus far, a large-scale testing is difficult
since there is a shortage of automated infrastructure for
integrated testing among heterogeneous platforms. Especially,
we are in need of standardization of script solutions that can
provide support for integration and interoperability among
mobile applications testing tools.

2.2 Software Visualization

In order to develop good software, it is essential to manage
the process of software development and implement tests. In
this, mobile applications development is no exception.
Furthermore, quality of software can be enhanced through such
engineering certification of software as SP (Software Process)
and GS (Good Software) of Korea, CMMI (Capability
Maturity Model Integration) from abroad, or TMMI (Test
Maturity Model Integration) which is based on CMMI.

However, due to difficulty involved in manpower and cost,
1-person companies of mobile software, venture companies,
and SMBs are pursuing coding-oriented development rather
than engineering-oriented quality control. To detect and
manage SW changes in temporal perspective, Christian
Collberg [4] used control-flow graphs, call graphs, and
inheritance graphs. However, it is difficult to grasp information
on diverse changes at once using this approach due to shortage
of visual function. Michele Lanza [5] tested SW using diverse
metrics (class, special feature). Although possible to see

diverse information on each element, this approach does not
allow a bird‟s eye view of program flow and SW architecture.

In order to solve these problems, an effort was made in this
research to present a visualization of object-oriented SW
structure and related processes through SW visualization and to
study procedures for quality improvement of coupling based
software [6]. Reverse Engineering technique is used to grasp
the structure of SW that have been developed already through
separation of code-oriented development process and to discern
interrelationship among software components (modules),
which allows a higher level representation [7].

2.3 Construction of Tool-Chain for statically analyzing Mobile

software applications

Static analysis of mobile applications consists of three
stages such that 1) at the first stage, program sources are
analyzed (using a parser or analyzer), at the second stage the
analyzed information are transformed into a database, and at
the third stage with information contained in DB, a structural
analysis is carried out and visualized inner code structure. We
do then refactoring to reduce complexity with quality metrics
implemented on visualization [8]. Figure 4 shows the
Tool-Chain mechanism.

Figure 4. The previous Tool-Chain mechanism

For parsing or analysis, Source Navigator (SN) [9] is used,
and the tool chain is included to link DOT script and SQLite
[10].

Step 1: The code of a mobile App is analyzed using SN.
General information on App source code such as
class, inheritance relationship, local variable, global
variable, and parameter are extracted.

Step 2: SN DB files which are extracted in binary format in
Step 1 are converted to texts stored in SQLite DB,
and are stored in each table of the database.

Step 3: The association relationships with module units are
defined, and each level of couplings is recognized as
extracting with queries for quantitative metric
scoring.

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.90 (2015)
 © Research India Publications; http/www.ripublication.com/ijaer.htm

288

Step 4: Based on defining the quality metrics it is created DOT
script with extracted information with queries. Then
a graph is visualized with DOT script on DOT tool.

III. AUTOMATIC STATIC ANALYSIS MECHANISM

On development of android mobile applications, it can be
described with mutual relationship of class, module, and
activity. It is important to work activities in the android mobile
devices. Data called and calling between activities is delivered
with the object called intent. The existing visualization Tools,
which can‟t analyze intent-based activity calls, are not suitable
in the android-based mobile development environment. Figure
5 shows improving SW Quality through SW Tool-Chain.

3.1 The Static Analysis Mechanism of Mobile Applications

Software

Static analysis process of mobile applications, which
consists of the below 4 stages, is used to obtain quantitative
results of corrections and improvements on the basis of
pre-refactoring graphs and post-refactoring graphs at
visualization stage, and to grasp the structure of the entire
software codes. After the stage of result analysis, for
corrections and improvements, manually correct the codes and
then repeat the tool chain process.

Step 1: Source analysis. Mobile App codes are analyzed using
a source navigator.

Step 2: Storing data in DB. The factor elements such as
extracted classes, methods, and variables are stored
in a table using Source Navigator (SN). Association
relationships among classes, methods, and variables
are stored through 1:1 mapping.

Step 3: Relationship information between modules are
extracted from the factor information and also
association relationship information classified at Step
2.

Step 4: A visualization stage. A visualization graph is created
based on structural analysis of factor information
stored in SQLite database.

3.2 Activity Call Graph for Intent Visualization between

Activities

In Android based mobile SW, functions of mobile software
and activities of UI are developed in separation. Therefore,
internal information can be analyzed by defining activities in
class such that there exist data transmissions and calls between
activities which cannot be interpreted by the existing Java call
graph.

Figure 6 shows the basic call structure between activities. For
visualization of call graph between activities, the intents that
are objects of call between activities are defined by stamp
coupling. The previous static analysis tool chain process based
on software visualization was developed using common
development languages C, C++, and Java.

Figure 5. Automatic Static Analysis for Mobile Application
Software Testing

Figure 6. The basic call structure between activities

This means that the call analysis between activities is not
possible, but if call between activities is visualized, internal
structure of mobile applications software can be grasped. In
this paper, visualization of individual implementation of UI,
which is a characteristic feature of Android language, is
proposed. Apart from the call between classes and display of
coupling, the activity call is visualized using a separate
representation method.

Figure 7. The activity calls graph

Figure 7 is a graph that represents activity calls. Calls
between activities are represented by dotted line and calls
between classes are represented by solid line arrows. As in the
previous graphs, coupling results between classes are
represented by score.

IV. AN ENHANCED TOOL-CHAIN FOR ANALYZING
THE MOBILE SOFTWARE CODE

We enhance the previous Tool-Chain in this approach [8]

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.90 (2015)
 © Research India Publications; http/www.ripublication.com/ijaer.htm

289

such as Parser (Source Navigator (SN) 6.0), Database
(SQLite), and View Composer (DOT). We used the Use Case
Diagram Drawing Tool based on JAVA.

4.1 Analysis of SN DB FILE Schema

When analyzing mobile source codes through parsing of
source navigator, SN DB FILE is extracted. By DBdump this
extracted SN DB FILE is transformed into text as shown Table
1, and saved in SQLite database. Each SN DB FILE has
peculiar information to fit its role. Each information is saved in
tables and analysis of each column is carried out. To do Query
Call for Extraction of Coupling between Activities, we analyze
codes through the source navigator which is extracted as SN
DB files.

Table 1. Schema Information

NAME
START

_LINE_NO
PATH

END

_LIN

E_N

O

ATT

RIB

UTE

Bustable 000011.013
E:\CICAppVer1.0_2\src\hongik

\cic\cicapp\freetalk\Freetalk.java
11.21 0x4

CICApp 000031.013
E:\CICAppVer1.0_2\src\hongik

\cic\cicapp\freetalk\Freetalk.java
31.19 0x4

Diet 000010.013
E:\CICAppVer1.0_2\src\hongik

\cic\cicapp\freetalk\Freetalk.java
10.17 0x4

Freetalk 000039.013
E:\CICAppVer1.0_2\src\hongik

\cic\cicapp\freetalk\Freetalk.java
39.21 0x4

FreetalkDat

a
000003.013

E:\CICAppVer1.0_2\src\hongik

\cic\cicapp\freetalk\Freetalk.java
3.25 0x4

Homepage 000011.013
E:\CICAppVer1.0_2\src\hongik

\cic\cicapp\freetalk\Freetalk.java
11.21 0x4

Login 000020.013
E:\CICAppVer1.0_2\src\hongik

\cic\cicapp\freetalk\Freetalk.java
20.18 0x4

Mainmenu 000011.013
E:\CICAppVer1.0_2\src\hongik

\cic\cicapp\freetalk\Freetalk.java
11.21 0x4

∙

∙

∙

Setting 000021.013
E:\CICAppVer1.0_2\src\hongik

\cic\cicapp\freetalk\Freetalk.java

21.

20
0x4

SettingConstant

s
000005.017

E:\CICAppVer1.0_2\src\hongik

\cic\cicapp\freetalk\Freetalk.java

5.3

3
0x404

UserData 000018.013
E:\CICAppVer1.0_2\src\hongik

\cic\cicapp\freetalk\Freetalk.java

18.

21
0x4

After this information of SN DB files is saved in SQLite
database. Each SN DB file saved in database has information
of mobile application source codes to match its role. Its needed
information is extracted through SQLite query based on
coupling example codes. Table 2 shows queries used to extract
data and stamp couplings. Data and stamp coupling denotes
unit communication such as data-type, array or object.

Table 2. Query Used for extracting Stamp Coupling

String query = String.format("select BY.REFERRED_CLASS_NAME,

 BY.REFERRED_SYMBOL_NAME,

BY.REFER_CLASS_NAME, BY.REFER_SYMBOL_NAME,

BY.LINE_NO, BY.PATH as REFER_PATH, CL.PATH

as REFERRED_PATH, MD.ARGUMENT_TYPES as TYPES “

 + "from SNDB_BY as BY, SNDB_CL as CL, SNDB_MD as MD “

 + "where BY.REFERRED_TYPE='mi' "

 + "and NOT

 BY.REFERRED_CLASS_NAME=BY.REFER_CLASS_NAME "

 + "and BY.REFERRED_CLASS_NAME=CL.NAME "

 + "and BY.REFERRED_CLASS_NAME=MD.CLASS_NAME "

 +"and BY.REFERRED_SYMBOL_NAME=MD.METHOD_NAME "

 + "and NOT MD.ARGUMENT_TYPES='{}';");

4.2 Activity Call Visualization

Activity Call Visualization: unlike the existing Java
environment, one of characteristics of the android environment
is communicating with users through activities. Activities are
the basic units constituting user interface, and according to
users‟ demand, work activities which are sequentially called.
They are called through intent, and it‟s hard to analyze them
through the previous analyzing method of Java code. Table 3
shows the code of Mainmenu.jave.

Analysis is more difficult when it is processed by
asynchronous classes that are executed in background thread
like „AsyncTask‟. When a class that inherited AsyncTask relies
on the result of asynchronous processing or implements
asynchronous processing after inhering an AsyncTask class,
analysis and maintenance are especially difficult due to low
coherence and high coupling. Figure 8 shows Visualization for
asynchronous classes. In codes that use AsyncTask, coupling is
reduced by visualization of activity call graphs and AsyncTask
codes. Table 4 shows the Code of CICAppDoInitialization
AsyncTask

Table 3. The Code of Mainmenu.java

switch(v.getId()) {

case R.id.buttonMainmenuNotice:

intent = new Intent(Mainmenu.this, hongik.cic.cicapp.notice.Notice.class);

 break;

case R.id.buttonMainmenuBoard:

 intent = new

Intent(Mainmenu.this,hongik.cic.cicapp.market.MarketMain.class);

 break;

case R.id.buttonMainmenuFreeTalk:

intent = new Intent(Mainmenu.this,

hongik.cic.cicapp.freetalk.Freetalk.class);

break;

case R.id.buttonMainmenuDiet:

intent = new Intent(Mainmenu.this, hongik.cic.cicapp.diet.Diet.class);

break;

case R.id.buttonMainmenuBusTaBle:

intent = new Intent(Mainmenu.this,

hongik.cic.cicapp.bustable.Bustable.class);

break;

case R.id.buttonMainmenuSetting:

intent = new Intent(Mainmenu.this,

hongik.cic.cicapp.setting.Setting.class);

finish();break;

}

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.90 (2015)
 © Research India Publications; http/www.ripublication.com/ijaer.htm

290

Table 4. The Code of CICAppDoInitialization AsyncTask

V. CONCLUSION AND FUTURE RESEARCH

This study suggests building up automatic static analysis

mechanism for mobile application SW testing, and methods to

reduce defects of mobile application SW through visualizing

activity call graph. A static analysis oriented Tool-Chain

process is suggested, and it can work quality control and

visualization enhanced by the previous static analysis of SW

code.

Figure 8: Visualization for asynchronous classes with

dotted hexagon

Android codes are divided into internal function and UI. When

the existing Tool-Chain process analyzes android mobile
application SW, it is important to call and transfer data between

activities as the basic unit of android UI that can‟t be analyzed

and visualized. We suggest setting up the static analysis

mechanism, and an activity call graph of android mobile SW

application. This reduced coupling of mobile application SW,

and removed unnecessary calls and data transmission by

visualizing calls between activities. For future study, we are

still keeping activity-related UI design, and reducing McCabe‟s

cyclomatic complexity of coupling & cohesion.

ACKNOWLEDGMENT
This work was supported by 2014 Hongik University Research Fund and Basic

Science Research Program through the National Research Foundation of Korea

(NRF) funded by the Ministry of Education (NRF-2013R1A1A2011601).

REFERENCES
[1] Park, B.K., Kwon, H.E., Yang, H.S., Moon, S.Y., Kim, Y.S. and Kim, R.

Y.C., 2014, “A Study on Tool-Chain for statically analyzing Object

Oriented Code,” Proc. of Korea Computer Congress 2014, pp. 463-465.

[2] National IT Industry Promotion Agency (NIPA), http://www.nipa.kr

[3] Gao, J., Bai, X., Tsai, W. T. and Uehara, T., 2014, “Mobile Application

Testing: A Tutorial,” Computer, 47(2), pp. 46-55.

[4] Collberg, C., Kobourov, S., Nagra, J., Pitts, J. and Wampler, K., 2003,

“A System for Graph-Based Visualization of the Evolution of

Software,” Proc. of The SoftVis '03 ACM symposium on Software

visualization, pp. 77-86.

[5] Lanza, M., 2001, “The Evolution Matrix: Recovering Software

Evolution using Software Visualization Techniques,” Proc. of The

IWPSE '01, pp. 37-42.

[6] Kang, G.H., Yi, K.S., Kim, D.H., Hwang, J.S., Kim, Y.S., Park, Y.B.

and Kim, R. Y.C., 2014, “A Practical Study on Tool Chain for Code

Static Analysis on Procedural Language,” Proc. of Korea Computer

Congress 2014, pp. 559-561.

[7] Kwon, H.E., Park, B.K., Yi, K.S., Park, Y.B., Kim, Y.S and Kim, R.

Y.C., 2014, “Applying Reverse Engineering through extracting Models

from Code Visualization,” The 2014 Fall Conference of the KIPS, 21(2),

pp. 650-653.

[8] Kang, G.H., Kim, R. Y.C., Yi, K.S., Kim, Y.S., Park, Y.B. and Son,

H.S., 2015, “A Practical Study on Code Static Analysis through Open

Source based Tool Chains,” KIISE Transactions on Computing Practices,

21(2), pp. 148-153.

[9] SN group, Source Navigator User Guide [Online], Available:

http://sourcenav.sourceforge.net/

[10] SQLite, About SQLite [Online], Available: https://www.sqlite.org

class DoInitialization extends AsyncTask<Void, String,
Void> {

protected void onPreExecute() {
 super.onPreExecute(); }
protected Void doInBackground(Void... arg0) {

try {
URL url = new
URL("http://cic.hongik.ac.kr/_android/freetalk_
select.php");
HttpURLConnection conn =
(HttpURLConnection) url.openConnection();
. . .
//Send to Server
StringBuffer buffer = new StringBuffer();
. . .
//XmlPullParser Instance Object Creat for
Recive Talk List
. . .
//XmlPullParsing Start
. . .;
String tag;
FreetalkData data = new FreetalkData();
while((parserEvent = xpp.next()) !=
XmlPullParser.END_DOCUMENT) {

switch(parserEvent) {
case XmlPullParser.START_TAG:

 .. case XmlPullParser.END_TAG:
. . . f(inTitle2) {

data.setText(xpp.getText());
. . .
if(data.getId().equals(user.getId(

))) {
publishProgress(null,

data.getText(), null, "0");
} else {

publishProgress(data.getId(
),data.getText(),data.getName(),"1");

}
}
break;

}
}
conn.disconnect();

}
catch (IOException e) { e.printStackTrace();}
catch (XmlPullParserException e) {

e.printStackTrace(); }
return null; }

}

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.90 (2015)
 © Research India Publications; http/www.ripublication.com/ijaer.htm

291

