

A Case Study on Performance Improvement

through extracting Software Performance

Degradation Factors

Geon-Hee Kang
1
, R.Young Chul Kim

2*
, Jae-Hyup Lee

3

1,2*Dept. of Computer Information & Communication, Hong-ik University, Sejong, Korea

{1kang, 2*bob}@selab.hongik.ac.kr
3Dept. of Computer Engineering, Koreatech University, Korea

3jae@koreatech.ac.kr

Abstract - Modern software industry is getting bigger on code size.
Software is being used everywhere in our community, which needs
the rapid development of the software. In this situation, nobody may
guarantee software either high or low quality in software engineering.
So there is a big issue how to make software high quality. According
to these, software needs to be fixed for rapidly changed requirements.
We suggest how to improve performance through extracting software
performance degradation elements during refactoring of code
complexity in software visualization. Due to adapting this visualized
process with performance degradation extraction, we can do better
performance of the legacy system, and fix the bad coding habits to
programmers.

Keywords - component; Software Performance, Software
Analysis, Code Visualization, Factors against performance
degradation

I. INTRODUCTION

As modern software industry is getting bigger, there is an

issue about high quality of software. However, the software
industry is growing, which has focused on a code-centric
development for the rapid release of the software. So the
software is possible to produce the lower quality. Most
software can be the invisibility which makes it difficult to
manage them. Through resulting the code visualization, it is
needed to manage software quality [1]. There are various
quality attributes of the software such as, accuracy, reliability,
efficiency, integrity, maintainability, portability,
interoperability, time behavior, etc.

This paper introduces how to extract software performance
degradation factors with the rule-checker, and also shows to
compare performance on either changing or removing of
performance degradation factors with a case study.

The paper consists as follows; Chapter2 explains what
software performance and code visualization are. Chapter3
mentions the extracting method for performance improvement.
Chapter 4 shows the improvement of the software performance
through change and remove the Software Degradation on Case
Study. Chapter 5 gives Conclusion and future works.

.

II. RELATED WORKS

2.1 Software Performance

Performance in computer science can be interpreted in
various aspects, especially, availability, size and weight,
response time. Software availability refers the probability that
the Software will operate according to the requirements at the
time. Availability calculation is calculated from the mean time
between failure (MTBF) and the mean time to repair (MTTR).
MTBF is the average time the application is run until an error
occurs. MTTR means the average time required to repair &
restore the service after a failure. Size and Weight can have a
significant impact on performance because resources are
limited in the Embedded System. Response time means the
time it took to respond back from the input to the system or the
execution unit. System speed will decrease as a response time
is longer [2]. We use a case study extracted some elements
which are related to Software Performance in this study, and
compare them before/after removing and changing it.

2.2 Code Visualization

In order to be successful in software development and
management, there are essential ways like software
development processes, test automation, and quality
certification. But, it is too lacking in resources and
professional engineers to carry out such work. Therefore, we
consider that the absolutely essential way is how to do Code
visualization. It is also a technique to improve the efficiency
of maintenance and quality control. Code Visualization consist
of the visualization and the documentation. First, the
visualization is a way to overcome software invisibility and
easily understand the entire software development process to
perform a quality control. Second, the documentation is a way
to know how to develop the enterprise management, to plan
for communicating with the outside or in certain
circumstances, and also to enhance business’s understanding
between internal staff [1]. We use our tool chain code to show
the package achitecture through a code visualization. Figure 1
shows the package achitecture with code visualization.

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.90 (2015)
 © Research India Publications; http/www.ripublication.com/ijaer.htm

315

Figure 1. Package achitecture with code visualization [1]

III. THE EXTRACTION METHOD FOR
PERFORMANCE IMPROVEMENT

Figure 2. Software Performance Degradation Factors [3]

Figure 2 shows the causes of the Software performance
degradation. According to 2005 information system
management guidelines [3], Software performance degradation
factors include environment problems such as insufficient
memory problem and the Java virtual machine issues. However,
33% of the Software performance degradation is occupied with
the Software Architecture and Source Code error. In the actual
development field, it seems to match the key elements of the
development for the company without considering problems
due on the due date. In this current situation, it is necessary to
extract the performance degradation factors, and also improve
the performance of the software quality.

3.1 Degradation factor extraction method

Figure 3. Degradation Factor Extraction Mechanism for
Software Performance Improvement

Figure 3 show degradation factor extraction mechanism for
software performance improvement. This mechanism is as
follows; Enters the existing source code in the Source
Navigator [4], extracts the source code for complete
information, calculates quantitative index with the extracted
information, and prints the Architecture View and Dashboard
[5]. Finally, input the rule to define a performance degradation
pattern in the regular expression, and then extract performance
degradation with the Rule-Checker (CPPCheck [6]).

Software performance degradation factor can be divided
into two different thing. The first is a degradation factor for the
loop. The loop is repeated without reducing the unnecessary
number of iterations. The second is a hinder for the control
statement. Impediments to the control statement is generated
when the multi- control statement with an unnecessary control
structures and variables of the inner loop [7].

Table 1. Degradation factor extraction rule & Expected code

 Regular Expressions The expected
code

Loop

[a-z,A-Z,_]([a-z,A-Z,_,0-9])*
\< ; ([0-9])+ ; [a-z,A-Z,_]([a-

z,A-Z,_,0-9])* \+\+

int i = 0 ; i <
20 ; i++

Control
Statement

[a-z,A-Z,_]([a-z,A-Z,_,0-9])*
\< ([0-9])+ ; [a-z,A-Z,_]([a-
z,A-Z,_,0-9])* \+\+ \) \{ if \(

int i = 0 ; i <
20 ; i++){

if(

if \(([a-z,A-Z,_,0-9,\b,\s,\+,-
,\/,*,\%%,-

\>,\>,\<,\[,\]])* ==
([0-9])+ \)

if(a == 1)

An example of a code extraction is expected over the rule
pattern. Table 1 shows the regular expression rules for
software degradation extraction. In the case of the loop, the
internal condition of for-loop expression is a single variable to
hold the pattern in 1 increments repeat. One of the variables are
to spot the pattern when compared with the value from the if
statement and if a loop in front of a case of a control statement
with an if statement immediately after it exists.

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.90 (2015)
 © Research India Publications; http/www.ripublication.com/ijaer.htm

316

3.2 Factors against performance degradation

Table 2 is an example of the modified code for performance
improvement, which includes the performance impediments.

Table 2. Factors against performance degradation [6]

 Degradation code Transformation code

Loop

int sum =0;
for(i = 0 ; i<1000; i++){

sum += array[i];
}

int sum = 0;
for(i = 0; i<1000; i+=4){
 sum+= array[i];

sum+= array[i+1];
sum+= array[i+2];
sum+= array[i+3];

}

Control
Statement

for (i=0;i<1000 ;i++){
if(i & 0x01){

do_odd(i);
}else{

do_even(i);
}

}

for(i = 0;i<1000;i+=2){
do_odd(i);
do_even(i+1);

}

if(a==1){
}else if(a==2){
}else if(a==3){
}else if(a==4){
}.....

switch(i){
case 1:
break;
case 2:
break;
case 3:
break;
case 4:
break;
default :
break;

}

An example of a loop is the code that adds the value of the

array during the i-th iteration. The changed code indicates the
number of iteration of the loop reduced down to one-fourth of
original by increments i by 4 which means that it makes
computer to skip from i to i+3 process. Speed is getting better
as long as the number of loops is reduced. If the if-else
statement in the for-loop statement carried out in an odd or
even number, this can be done the same as the original code if
you remove the if-else statement to the variable I, and assign
the value of i and i + 1 value. When multiple if-else statement,
the condition value is a form of "variable == value” which can
be changed by the switch case statement. Such changes may
improve the speed by reducing the unnecessary repetition of
the control statement.

IV. CASE STUDY

Figure 4 shows the execution screen of the RoboCAR
simulator developed by SELab researcher of Hong-ik
University. The simulator can easily control the RoboCAR to
have four wheels using the script language, and perform the
robot in virtual environment. It is also possible to build
customization of the virtual environment, and to communicate
the HiMEM modeling tool using TCP/IP [8].

Table 3 shows the result to remove the unnecessary control
statements in getAABB method of CODERoboCarbody class.
After the change works, we measure the average speed to
perform 1,000 times repeated. In the result, we can get a speed
increase 53.13% due to reduce the speed of the code from
0.000032ms to 0.000015ms.

Figure 4. Our Simulation tool of Robocar[8]

TABLE 3. Removing the inner loop of the control statements

Removing
the inner

loop of the
control

statements

Before

for(int i = 0; i< m_meshCount[idx];i++){
 for (int j = 0;j =

m_pTrimesh[idx][i].vertexCount*3 ;j++){
 if(0==i%3){
 maxX =

max(maxX,m_pTrimesh[idx][i],vertices[j]);
 minX =

min(minX,m_pTrimesh[idx][i],vertices[j]);
 }else if(1==i%3){
 maxY =

max(maxY,m_pTrimesh[idx][i],vertices[j]);
 minY =

min(minY,m_pTrimesh[idx][i],vertices[j]);
 }else if(2==i%3){
 maxZ =

max(maxZ,m_pTrimesh[idx][i],vertices[j]);
 minZ =

min(minZ,m_pTrimesh[idx][i],vertices[j]);
 }
 }
}

After

for(int i = 0; i< m_meshCount[idx];i++){
 for (int j = 0;j =

m_pTrimesh[idx][i].vertexCount*3 ;j+=3){
 maxX =

max(maxX,m_pTrimesh[idx][i],vertices[j]);
 minX =

min(minX,m_pTrimesh[idx][i],vertices[j]);
 maxY =

max(maxY,m_pTrimesh[idx][i],vertices[j+1]);
 minY =

min(minY,m_pTrimesh[idx][i],vertices[j+1]);
 maxZ =

max(maxZ,m_pTrimesh[idx][i],vertices[j+2]);
 minZ =

min(minZ,m_pTrimesh[idx][i],vertices[j+2]);
 }
 }
}

Table 4 shows the comparison between the control
statement and the switch case statement. If we discover the
multiple if-then-else codes, the code is translated to the switch-
case statement. For example, the method named with “create”
in CODESignalCode class has several if-then-else statements,
which are manually changed like table4. To obtain a
measurement result of the modified parts, we repeatedly
performed 1,000 times to change the code in both the before
and the after. In the result, we can get a speed increase 26.69%
on average such that the before change is 0.00251ms, and the
after change is a 0.000184ms.

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.90 (2015)
 © Research India Publications; http/www.ripublication.com/ijaer.htm

317

Figure 5 is a part of the architecture view including speed

information of the module. Like this, the developer or

Table 4. Comparison between the Control Statement and the
Switch-Case Statement

Multipl
e If then
else ->

Switch
Case

Before After

if (idx == 0){
dBodySetPosition(m_visionI

D[idx],pos[0],
pos[1],pos[2]);

dMassSetZero(&mass);
dMassSetBox(&mass, m,

side[0], side[0],
side[1],side[2]);
dBodySetMass(m_visionI

D[idx], &mass);
SetMass(&mass);

}else if (idx == 1){
dBodySetPosition(m_visi

onID[idx],pos[0]
,pos[1]-0.2 *

SCALE_FACTOR, pos[2]-
0.07f *

SCALE_FACTOR);
}else if (idx == 2){

dBodySetPosition(m_visi
onID[idx],pos[0],

pos[1]* 0.35f *
SCALE_FACTOR, pos[2] *

0.31f *
SCALE_FACTOR);

dMatrix matrix;
dRFromEulerAngles(matx

rix,90*
(M_PI/180.f), 0);
dBodySetRotation(m_visi

onID[idx],
matrix);
dMass sub_mass;
dMassSetZero(&sub_mas

s);
dMassSetBoxTotal(&sub_

mass, 0.001f,
side[0],side[1],side[2]);
dBodySetMass(m_visionI

D[idx],
&sub_mass);

}else if (idx == 3){
dBodySetPosition(m_visi

onID[idx],pos[0],
pos[1]* 0.17f *

SCALE_FACTOR, pos[2] *
0.44f *

SCALE_FACTOR);

dMass sub_mass;
dMassSetZero(&sub_mas

s);
dMassSetBoxTotal(&sub_

mass, 0.001f,
side[0],side[1],side[2]);
dBodySetMass(m_visionI

D[idx], &sub_mass);

}

switch(idx) {
case 0:
 dBodySetPosition(

m_visionID[idx],pos[0],
pos[1],pos[2]);
 dMassSetZero(&m

ass);
 dMassSetBox(&ma

ss, m, side[0], side[0]
, side[1],side[2]);
 dBodySetMass(m_

visionID[idx], &mass);
 SetMass(&mass);
 break;

case 1:
 dBodySetPosition(

m_visionID[idx],pos[0],pos
[1]-0.2 *

SCALE_FACTOR, pos[2]-
0.07f *

 SCALE_FACTOR);
 break;

case 2:
 dBodySetPosition(

m_visionID[idx],pos[0],pos
[1]* 0.35f *

SCALE_FACTOR, pos[2] *
0.31f *

 SCALE_FACTOR);
 dMatrix matrix;
 dRFromEulerAngle

s(matxrix, 90 *
 (M_PI/180.f), 0);
 dBodySetRotation(

m_visionID[idx], matrix);

 dMass sub_mass;
 dMassSetZero(&su

b_mass);
 dMassSetBoxTotal(

&sub_mass, 0.001f,
 side[0],side[1],side[2]);
 dBodySetMass(m_

visionID[idx], &sub_mass);
 break;

case 3:
 dBodySetPosition(

m_visionID[idx],pos[0],pos
[1]* 0.17f *

SCALE_FACTOR, pos[2] *
0.44f *

 SCALE_FACTOR);

 dMass sub_mass;
 dMassSetZero(&su

b_mass);
 dMassSetBoxTotal(

&sub_mass, 0.001f,
 side[0],side[1],side[2]);
 dBodySetMass(m_

visionID[idx], &sub_mass);
 break;

Figure 5. Architecture View for Class_name (#method, LOC
of the class, #method over 25 LOC, the speed data of the

module)

administrator obtains the related information in architecture
view [5] to display the speed of each module.

V. CONCLUSIONS

In this paper, we show the degradation pattern of software
performance such as unnecessary repetition, the loop control
statements, and multiple control structures on a variable. We
also extract threw degradation elements with applying the
performance patterns in Rule-Checker using regular
expression. We have to change the code to eliminate the
unnecessary control code in the loop statements, and to change
a multi-control with a switch case statement. These changes
can get a speed increase for each 53.13% and 26.69%. Also,
we visualize the speed information of module on architecture
view. It can be achieved to improve the performance of the
previous systems, and shows a bad coding habit to
programmer. The future study is finding more performance
degradation factors. Also, we will analyze and verify the
performance of static analysis as well the dynamic analysis.

ACKNOWLEDGMENT

This work was supported by the Human Resource Training Program for
Regional Innovation and Creativity through the Ministry of Education and
National Research Foundation of Korea (NRF-2015H1C1A1035548) and Basic
Science Research Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education (NRF-2013R1A1A2011601).

REFERENCES
[1] Nipa , 2013, “SW Engineering Center SOFTWARE ENGINEERING

WHITE BOOK : KOREA 2013,”Nipa
[2] Henry H. Liu, 2009, “Software Performance and Scalability: A

Quantitative Approach 1st Edition,” Wiley.
[3] NIA, 2005, “Guideline for Performance Management of information

System,” NIA
[4] http://sourcenav.sourceforge.net/
[5] Geon-Hee Kang, R. Young Chul kim, Geun Sang Yi, Young Soo Kim,

Yong B. Park, Hyun Seung Son, 2015, “A Practical Study on Code
Static Anlysis through Open Source based Tool Chains,” KIISE
Transaction on Computing Practices, 21(2), pp. 148-153.

[6] http://cppcheck.sourceforge.net/
[7] Geon-Hee Kang, R. Young Chul Kim, Sang Eun Lee, Su Nam Jeon,

2015, “Extracting performance factors against performance
degradation through code Visualization,” Proc. 5th International
Conference on Convergence Technology 2015, 5(1), pp. 276-277.

[8] Woo-sung Jang, Chan-Min Park, Cheul-Hee Lee, R. Young-Chul Kim,
2012, “A Study on test Case Extraction And Application For
Intelligent transport RoboCAR Drive Control Verification,” Proc. 38th
Korea info. Process Society Fall Conf. 2012, 19(2), pp. 1452-1455.

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.90 (2015)
 © Research India Publications; http/www.ripublication.com/ijaer.htm

318

