
  
 

Extending Reverse Engineering for Software 

Maintenance  

Woo-Sung Jang 1, R.Young Chul Kim2*, Jae-Hyup Lee3 
1, 2*SE Lab, Hong-ik University, Sejong, Korea 

{jang, bob}@selab.hongik.ac.kr 
3Dept. of Computer Engineering, Koreatech University, Korea 

jae@koreatech.ac.kr 
 

Abstract - Software Maintenance is an important portion in the cost 
of an entire software development. However, it is not possible to 
prepare with protecting all risks at the stage of design. Applying 
maintainability with ISO/IEC 9126 can be improved. But in the case 
of complex software, it will take a lot of time to find the location of 
the risk elements for improvement. To solve this problem, we 
propose an improved solution based on reverse engineering. First, 
calculates the scoring of maintainability through expanding the 
calculation method of ISO/IEC 9126 maintainability. Second, lists 
the priority of the location to require an improvement. And also 
enhances the user understanding with a whole class-related diagram, 
that is, displaying the entire system based on layer architecture. 

Keywords - Maintainability; Reverse Engineering; Layer 
Architecture; ISO/IEC 9126 

I. INTRODUCTION 
Software maintainability and modifiability are important 

the quality characteristics of software. The quality 
characteristics are known to occupy a major portion of the cost 
of software development life-cycle (SDLC). Therefore, 
maintainability of a software system can have a great effect on 
software cost [1]. According to Fred Brooks‟ Software 
Engineering, maintenance cost for a typical program occupies 
more than 40% of the total cost. Hewlett-Packard (HP) 
mentioned that about 60~80% of R&D personnel participates 
in maintenance activities, and maintenance cost constitutes 
about 40~60% of production cost [2]. In order to reduce this 
maintenance cost, a thorough design is required. However, it is 
not possible to anticipate to deal with all risks at design stage. 
In modifications to maintain completed software involves an 
unexpected risk. 

ISO/IEC 9126 defines characteristics with product quality 
of software, and presents objective methods to measure its 
characteristics [3]. As maintainability is one of the 
characteristics of ISO/IEC 9126, it can improve with the use of 
ISO/IEC 9126. However, in the case of complex software, it 
takes a lot of time to locate a part to require maintenance.   

In this paper, we propose a solution for a software 
maintainability improvement based on reverse engineering. 
First, scores for maintainability, PMD, LOC, and Coupling 
extracted from a completed software source code using the 
Score Tool Chain. Extracted scores are outputted on Dash 
Board. A connection diagram is drawn of modules in software. 
The diagram can be expanded or reduced at component (class), 
package, or system level. And in order to present the part to 

require an improvement preferentially according to the 
maintenance goal of the organization, the eight values are 
added to 4 sub-characteristics of maintainability. The user can 
identify the location to require an improvement on Dash Board 
as well as the corresponding class & connected classes. In this 
case, the work period is limited, it can be enhanced by 
improving the function that is close to the maintenance goal of 
the project preferentially.  

This paper is as follows: As a related study, Chapter 2 
discusses measurement methods of maintainability scores on 
ISO/IEC 9126, and classification methods for quality attributes 
of Clarrus Consulting Group Software. Chapter 3 discusses on 
software maintainability improvement solution based on 
reverse engineering. Chapter 4 discusses on an application 
examples using our proposed methods. Lastly, mentions the 
conclusion and future research.  

II.  RELATED WORKS 

2.1 Measurement Methods of ISO/IEC 9126 Based on 
Maintainability Scores 

ISO/IEC 9126, an international standard, defines 
characteristics of software quality and metrics of quality 
assessment, and provides an explanation from the perspective 
of a user or a developer. These characteristics and sub-
characteristics are shown in Figure 1. Figure 1 mentions 
characteristics and sub-characteristics of ISO/IEC 9126 [4]. 

 

 
Figure 1.  Characteristics and sub-characteristics of ISO/IEC 

9126 [4] 

 
Defense Agency for Technology and Quality has created 

metrics used to define quality standard of software based on 
maintainability characteristics of ISO/IEC 9126. In order to 

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.90 (2015) 
                      © Research India Publications; http/www.ripublication.com/ijaer.htm

474



  
 

quantify the result of source code analysis, and to support the 
result visibly, these formulas have been defined to generate 
source code based on scores [5]. More detailed explanations 
are provided as shown in Table 1. Table 1 shows 
Maintainability Sub-characteristics Formulas. 

Table 1. Maintainability Sub-characteristics Formulas [5] 

Sub-
characteristics 

Formula ETC 

Analyzability 

WMC X 25 + 
STMT X 25 + 
DIT X 25  
+ CD X 25 

WMC (Weighted 
Methods per Class) 
STMT (Number of 
Statements) 
DIT (Depth of 
Inheritance) 
CD (Comment 
Density) 

Testability 
RFC X 25 + CBO 
X 25 + DIT X 25  
+ NOM X 25 

RFC (Response for a 
Class) 
CBO (Coupling 
Between Object) 
DIT (Depth of 
Inheritance) 
NOM (Number Of 
local Method) 

Stability 
WMC X 25 + 
LCOM X 25 + 
CBO X 25  
+ DIT X 25 

WMC (Weighted 
Methods per Class) 
LCOM (Lack of 
Cohesion Of 
Methods) 
CBO (Coupling 
Between Object) 
DIT (Depth of 
Inheritance) 

Changeability 
WMC X 25 + 
RFC X 25 + SIX 
X 25  
+ PubMR X 25 

WMC (Weighted 
Methods per Class) 
RFC (Response for a 
Class) 
SIX (Specialization 
Index (%)) 
PubMR (Public 
Methods Ratio (%)) 

 

2.2 Selective Clustering Diagram System for Software 
Architecture  

Selective Clustering Diagram System for Software 
Architecture is a Toolchain to draw module connection 
diagrams through an analysis of source codes based on reverse 
engineering. We can extract architecture possible to component 
(class), package, or system level for manually selection of 
modules per each level. And we can automatically draw a 
graph with DOT library [7]. The entire structure is shown 
below in Figure 2. Figure 2 shows the tool chain to generate 
the architecture graph based on reverse engineering. 

 

 

Figure 2.  The Toolchain for extracting the architecture graph 

 

Figure 3 shows actual implementation of Selective 
Clustering Diagram System for extracting Software 
Architecture. On the right side of figure 3, an input window 
displays to enter the user‟s selection, whereas it displays to 
generate a graph on the left side of figure 3. 

 

 

Figure 3.  Selective Clustering Diagram System for extracting 
Software Architecture  

III. SOFTWARE MAINTAINABILITY 
IMPROVEMENT SOLUTION BASED REVERSE 

ENGINEERING 
 We propose a method to extract design from software 

source codes based on reverse engineering techniques, and to 
provide indexes to maintain the source codes. The method 
extracts maintainability scores from codes with Score 
Toolchain to display them on Dash Board, and also to show the 
visual graph of the modules within the source codes.  

The graphs can be expanded or reduced with component 
(class), package, or system level respectively on Graph 
Toolchain for Selective Clustering Diagram System for 
extracting Software Architecture. When the user selects class 
level, package level, or system level, it automatically draws a 
desired component (class, package, or system) with a 
connected diagram. In the diagram, the coupling scores on each 
component are displayed. 

The user can identify classes to fix on Dash Board, and 
refactor the source codes for the improvement. Then after 
rebuilding the improved source codes, it re-shows the 
improved maintainability score. Figure 4 shows Software 
maintainability improvement mechanism based reverse 

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.90 (2015) 
                      © Research India Publications; http/www.ripublication.com/ijaer.htm

475



  
 

emgineering.  

 

 

Figure 4.  Software maintainability improvement mechanism 
based reverse emgineering 

3.1 The Calculation Method of the Score Toolchain’s  
Maintainability Score 

The maintainability score of the Score Toolchain is 
calculated on using Prioritization of Selected Quality 
Attributes[6], which assigns the priority weight value applied at 
the second stage of the classification method of quality 
attributes of Clarrus Consulting Group software. We use the 
weight value for modifying source code in prior.  

 In order to calculate the formulas in Prioritization of 
Selected Quality Attributes[6], we need to sum 10 attribute 
values. The 10 attribute values can be extracted through 
parsing of source codes. As for a tool for extracting attribute 
values, there exist quite a few open source libraries. But for 
attributes not supported by libraries, we use a self-created 
algorithm to extract the values for source code analysis.  

Weight values for 4 sub-characteristics of maintainability 
are differently assigned depending on the property of a 
particular project. Table 2 shows weight values of a project for 
changeability-oriented maintenance. In order to multiply each 
formula by weight value, it adds „1‟ to each score.  

Table 2. Prioritization of Maintainability Sub-characteristics 
based on [6] 

 Score Analyz
ability 

Change
ability 

Stabilit
y 

Test
abili

ty 

Analyza
bility 

2  > > < 

Changea
bility 

4   < < 

Stability 3    < 
Testabili

ty 

1     

 

Maintainability score is calculated through multiplication of 
sub-characteristics by corresponding weight value. The 
formula is shown in Table 3. Table 3 shows the maintainability 

formula with added weight values. 

Table 3. Maintainability Formula with Added Weight Values 

Attribute Formula 

Maintainability Analyzability x 2 + Changeability x 
4 + Stability x 3 + Testability x 1 

3.2 The Score Toolchain 

In addition to maintainability score, the Score Toolchain 
extracts scores of PMD, LOC (Line of Code), and Coupling as 
well as class connection graphs from the source codes inputted 
by the user. The extracted data are stored in XML, and image 
files. The stored files can be viewed on Dash Board. Figure 5 
shows the detailed structure of the Score Toolchain. 

 

 

Figure 5.  The detained structure of the Score Toolchain 

Other scores on DOT are listed as follows:  

 PMD: A static rule-set based Java source code analyzer 
to identify potential problems. It has functions 
inspecting for possible bugs, dead code, 
overcomplicated expressions, suboptimal code, and 
duplicate codes. The inspected results are represented 
in score, provided by open libraries [8]. 

 LOC: Line of Code, that is, the total number of code 
lines used in the project.    

 Coupling: Coupling relationship between classes, 
existed by diverse open libraries.    

 DOT: Graph generation by matching the rule-set 
database with source codes.   

 

It displays the calculated scores and graphs on Dash Board. 
Table 4 shows the structure of Dash Board. The time on the 
Dash Board refers to the date built by the Toolchain. Coupling, 
PMD, and LOC refer to the scores calculated by respective 
libraries. It also displays maintainability graphs with detailed 
maintainability score at the implementation stage. 

Table 4. Structure of Dash Board 

Time 
Coupl

ing 
PMD 

Maintai
nability 

LOC Graph 

2015-
01-01 100 300 114500 21107 Link 

… … … … … … 

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.90 (2015) 
                      © Research India Publications; http/www.ripublication.com/ijaer.htm

476



  
 

IV. CASE STUDY 
We show our implementation of the software 

maintainability improvement solution based on reverse 
engineering in Figure 6, 7. Source codes are uploaded to 
Jenkins solution. During building, it executed by the Score 
ToolChain. Score data and graphs are inputted to Dash Board. 
The user can identify maintainability score at the Dash Board. 
Also, through Zoom In/Out, it is clearly identified their 
relationship between classes. When completed improvement of 
source codes, it can be built again through Jenkins and be 
identified the scores of improved source codes on Dash Board.  

The retrieved data in XML files on Dash Board are shown 
in Figure 6. When selecting values for each PMD and 
Maintainability, it is possible to see detailed information. When 
choosing a view link of Graph, it is possible to view graphs. 

 

 
Figure 6.  Implementation of  Dash Board 

 
Figure 7 shows the identified relationship between 

particular classes through Zoom In/Out. It is possible to display 
that only a part of the entire software structure is outputted.  

 

 
Figure 7.  Expanded Class Relationships 

 

V.   CONCLUSIONS 
This paper enhances maintainability of completed software 

and understanding of structure of the entire system to the 
developer or the manager. For the purpose, we suggest a 
solution based on reverse engineering to improve software 
maintainability. It is extracted scores of Maintainability, PMD, 
LOC, and Coupling from source codes with the Score 
Toolchain. For Maintainability and PMD, scores per class can 
be identified. That is, we propose an improved solution based 
on reverse engineering. First, calculates the scoring of 
maintainability through expanding the calculation method of 
ISO/IEC 9126 maintainability. Second, lists the priority of the 
location to require an improvement. And also enhances the user 
understanding with a whole class-related diagram, that is, 
displaying the entire system based on layer architecture. 

In the future, research will be carried out to represent 
information on Dash Board into Graph, so that they could be 
applied to diverse examples. 

ACKNOWLEDGMENT 

This work was supported by the Human Resource Training 
Program for Regional Innovation and Creativity through the 
Ministry of Education and National Research Foundation of 
Korea (NRF-2015H1C1A1035548) and Basic Science 
Research Program through the National Research Foundation 
of Korea (NRF) funded by the Ministry of Education (NRF-
2013R1A1A2011601). 

REFERENCES 

[1] Mehwish Riaz, Emilia Mendes, Ewan Tempero., 2009, “A Systematic 
Review of Software Maintainability Prediction and Metrics,” ESEM 
'09 Proceedings of the 2009 3rd International Symposium on Empirical 
Software Engineering and Measurement, pp. 367-377 

[2] Don Coleman, Dan Ash, Hewlett-Packard, Bruce Lowther, Micron 
Semiconductor, Paul Oman., 1994, “Using Metrics to Ecaluate 
Software System Maintainability,” IEEE Computer, 27(8), pp. 44–49  

[3] Yiannis Kanellopoulos, llja Heitlager, Christos Tjortjis, Joost Visser., 
2008, “Interpretation of Source Code Clusters in Terms of the 
ISO/IEC-9126 Maintainability Characteristics,” CSMR '08 
Proceedings of the 2008 12th European Conference on Software 
Maintenance and Reengineering, pp. 63-72 

[4] ISO., 2003, “ISO/IEC TR 9126-2: Software engineering - product 
quality - part 2: External metrics,” Geneva, Switzerland.  

[5] Defense Agency for Technology and Quality., 2012, “Weapons SW 
Quality Measurement Study” 

[6] Clarrus Consulting Group Inc., 2010, “Software Quality Attributes: 
Following All the Steps” 

[7] Graphviz., “http://www.graphviz.org” 
[8] PMD., “http://pmd.github.io” 
[9] Jenkins., “http://jenkins-ci.org” 

 
 

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.90 (2015) 
                      © Research India Publications; http/www.ripublication.com/ijaer.htm

477




