
   

 

Extracting Use Case Design Mechanisms 

via Programming based on Reverse Engineering 

Technique 

Haeun Kwon
1
,  R. Young Chul Kim

1*
 

1SE Lab, Hongik University Sejong Campus, Korea, 339-701 

{kwon, bob}@selab.hongik.ac.kr 

 
Abstract— In this time, there are gradually increasing the damages 
caused by defects in software. This increases the demand for high-
quality software [1]. The previous researches [2,3,4] proposed a tool-
chain mechanism, which automatically performs code visualization 
through reverse engineering technique. This paper suggests to extract 
possible designs such as object diagram, and sequence diagram via 
programming on code analysis based on an extension of the previous 
researches. In other words, it presents class, methods, and coupling 
relationship between classes, and extraction mechanism for sequence 
diagram. Thus we can trace designs via programming based on 
requirements. Therefore, it is expected for synchronization of codes, 
design, and documents in the development lifecycle. 

 

Keywords: Software Visualization, Class Diagram, Sequence 
Diagram, Use Case Mechanism; 

I. INTRODUCTION 

 
Today, it leads to an increase in the ranges and functions of 

software, and also rises the magnitude of the damage caused by 
software defects. Therefore, this increases the demand for high-
quality software [1]. One way uses the software development 
process and methodology to produce high-quality software. In 
the previous researches [2,3,4], we applied to the 
redevelopment process of legacy software to extract UML class 
diagram via code with a software visualization technique, and 
the method for the coupling relationship between classes.  

However, the class diagram of UML Diagrams is included 
with dependency, association and inheritance relationship 
between classes. But this diagram represents a difficulty in 
identifying the order in which the object is created, or the 
sequence of method calls. Therefore, this paper attempts to 
extract sequence diagram in the object-oriented paradigm to 
understand the operation of the entire system. Furthermore, it 
seeks to propose quality management techniques in the use 
case paradigm by extracting coupling graph, class diagram and 
sequence diagram on a single integrated development process 
based on reverse engineering. 

This paper is organized as follows. Chapter 2 introduces 
our software visualization and methods for management of 
coupling relationship between classes mentioned earlier [2,3,4]. 
Chapter 3 describes the entire process of extracting the use case 
paradigm in source code. It also explains the integrated process 
of extracting coupling graph, class diagram, and sequence 

diagram. However, it cannot be identified only with the class 
diagram mechanism such that the order in which the object is 
created, or the sequence of method calls. And then it is also 
difficult to know the operation of the entire system. To solve 
this problem, this paper attempts to extract the sequence 
diagram and class diagram in the object-oriented paradigm. In 
addition, the coupling corresponds to the message in the 
sequence diagram, which allows it to trace the process. Chapter 
4 shows the proposed process to apply the actual code. Lastly, 
Chapter 5 mentions conclusions and future work. 

II. RELATED WORK 

2.1 Software Visualization 

One of the characteristics of software is invisibility since it 
has no physical properties. Because of this, there exist 
difficulties in identifying the architecture or fining the potential 
error prior to the development. Software visualization is a 
technique to overcome the invisibility of software. In other 
words, it is a technique designed to improve understanding by 
visually representing the software. The software visualization 
is divided into architectural visualization, runtime‟s behavior 
visualization, and code visualization. The architectural 
visualization performs a static analysis of software at a 
structural view point of software. The runtime‟s behavior 
visualization monitors the operating procedures of software. 
Lastly, the code visualization uses easily understanding the 
internal code structure in a graph [5]. This paper mentions the 
architectural visualization, which extracts the use case 
paradigm through a static analysis of object-oriented code. 

2.2 A coupling oriented class diagram 

The metrics is one way to create the high-quality software 
[6]. It is measuring the quantitative elements in various 
software fields such as cohesion, coupling, complexity, and the 
number of line (LOC) [7]. Accordingly, we proposed the 
method for coupling between classes on the basis of software 
visualization techniques [2]. It measures the coupling between 
classes, and extracts the class diagram, one of design 
documents. To be more specific, we need the dependency, 
association, and inheritance relationship between classes. 
Figure 1 shows a part of the coupling oriented class diagram. 
First, it confirms to be a dependency relationship from 
COperationFactorSet class to COperationFactor class, and 
shows (1*6*1.7) = 10 on the coupling relationship. This value 

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.90 (2015) 
                      © Research India Publications; http/www.ripublication.com/ijaer.htm

503



   

 

is calculated with coupling indicators in Table 1. Our indicators 
include six items of data, stamp, control, external, common, 
and content. In addition, there has assigned lower point & 
weight for weak coupling between modules, and higher point 
& weight for strong coupling in accordance with the principles 
of coupling. The lowest coupling is data coupling with 1 and 
0.5 of a point and a weight respectively, followed by stamp, 
control, external, common and content coupling. Table 1 shows 
the detailed points and weights of them. In the end, the 
coupling value is represented by the product of weight, point 
and the number of the coupling relationship. For example, there 
is one content coupling between COperationFactorSet class 
and COperationFactor class in figure 1. Figure 1 shows an 
example of a coupling oriented class diagram.  

TABLE 1. COUPLING POINT AND WEIGHT 

 Data Stamp Control External Common Content 

Point 1 2 3 4 5 6 

Weight 0.5 0.5 1 1.3 1.5 1.7 

 

 

Figure 1.  A coupling-oriented class diagram. 

III. MATERIALS AND METHODS 

Figure 2 shows the proposed use case extraction process. 
As in the previous studies [2], this process is composed of four 
stages of code analysis, storing in database, architecture 
analysis, and visualization. First, a code is analyzed using a 
parser at the code analysis stage. In this stage, the code is 
decomposed into various components such as classes, methods, 
variables, method calls, and inheritance relationship. Second, 
the decomposed components are classified in the database at 
the storing database stage. This is to facilitate the architecture 
analysis through the query in the next stages. Third, it is 

reinterpreted the classified information extracted at the 
architecture analysis stage. The coupling data, class data and 
sequenced data are the intermediate deliverables for extracting 
coupling graph, class diagram and sequence diagram, 
respectively. For example, the methods are called between 
classes should be analyzed to extract the sequence diagram. 
This can be identified by the class data. As a result, the class 
diagram should be extracted first prior to the extraction of the 
sequence diagram. In addition, the information obtained from 
the coupling data needs to apply to the sequence diagram. 
Lastly, the interpreted information (intermediate deliverables) 
is converted to the script at the visualization stage. Finally, the 
converted script is entered into the view composer to obtain the 
final deliverables. 

 

Figure 2.  A Generation process of usecase paradiam. 

IV. CASE STUDY 

It describes the proposed process with the actual code, to 
and examines the results. The code is an example of a board 
application written in Java language. In order to extract the 
class & sequence diagram, the list of methods should be 
extracted from the code. This information is already calculated 
in the process of extracting the class diagram of the previous 
studies. Therefore, the relationship between method calls is 
created as an adjacency list by referring to the class data in 
Figure 2. The adjacency list is shown in figure 3. It represents 
the list of ChildMethods called from inside of the method with 
the method as a main unit. For example, three methods of 
setNum, setBcode and deleteArticle are called from the 
onBoardDelete method. When the methods are called, it should 
include the information on which lines of the actual code are. 
This distinguishes with the order in which the methods are 
called. That is, setNum, setBcode and deleteArticle methods 
are called from the 140th, 141st and 143rd line of the code. 
Figure 3 shows method call list for generating the sequence 
diagram. 

Next, we use the depth-first search to traverse the 
calculated adjacency list. It notes the line numbers of methods 
that are called when traversing is in order. For example, 
setBcode method called from the 141st line should not traverse 
prior to the setNum method called from the 140th line. 

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.90 (2015) 
                      © Research India Publications; http/www.ripublication.com/ijaer.htm

504



   

 

 

Figure 3.  Method-call list for generating the sequence diagram. 

 The traversal results are stored in a tree structure in figure 
4. But it omits „Actor node‟, which is a root node. Figure 4 
shows method call tree for generating the sequence diagram. 

 

Figure 4.  Method-call tree for generating sequence diagram. 

The sequence diagram is made through the coupling data 
used to extract the existing coupling graphs. The existing 
coupling graphs show only the information of the coupling 
relationship between classes. On the other hand, the sequence 
diagram represents the information decomposed by a unit of 
the methods. For example, if there is the coupling of 4 between 
class A and class B, it should be represented as the stamp 
coupling value 1 due to invocation of method and the control 
coupling value 3 due to invocation of method b. This is 
achieved through mapping between the coupling data and the 
traversal tree in Figure 4. 

Finally, the sequence data is translated in script, which is 
entered in the View Composer to obtain a sequence diagram in 
figure 5. The sequence diagram is made by extending a series 
of traversal processes from onBoardDelete method to 
deleteArticle method of BoardMapper class. Thus, it visualizes 
the traversal tree of figure 4. In addition, Figure 6 shows an 
extended representation of the coupling-applied sequence 
diagram. It is distinguished with the „_‟ on both the method 
name called between classes and the corresponding coupling 
type. For example, setNum method and setBcode method are 
called from BoardController class to ArticleDto class.  Both 
methods correspond to a data coupling. On the other hand, 
deleteArticle method called from BoardController class to 
BoardService class is a stamp coupling. 

V. CONCLUSIONS 

This paper aims to extend a previous tool-chain mechanism, 
which extracts automatically use case designs via code 
visualization based on reverse engineering technique. This is, 
we extract possible designs such as object diagram, and 
sequence diagram via programming on code analysis. 

 

Figure 5.  A coupling-oriented squence diagram. 

 

Figure 6.  An expansion of sequence diagram. 

Therefore, it is possible to perform a comparative analysis 
between design documents and codes in the software 
development process. In near future, we will trace possible 
designs via programming based on requirements.  

Acknowledgment 
This work was supported by the Human Resource Training Program for 

Regional Innovation and Creativity through the Ministry of Education and 
National Research Foundation of Korea (NRF-2015H1C1A1035548) and Basic 
Science Research Program through the National Research Foundation of Korea 
(NRF) funded by the Ministry of Education (NRF-2013R1A1A2011601). 

REFERENCES 
 [1]    NIPA Software Engineering Center, 2013, “2013 Software Engineering 

White Paper”,  Korea.  
[2]    Haeun Kwon, Bokyung Park, Keunsang Yi, Young B. Park, Youngsoo 

Kim, R. Youngchul Kim, 2014, “Applying Reverse Engineering through 
extracting Models from Code Visualization,” KIPS, vol. 21, no. 2, pp. 
650-653.  

[3]   Haeun Kwon, Hyun Seung Son, Chae Yun Seo, Youngsoo Kim, Byung 
Ho Park, R. Younchul Kim, 2014, “A study on Comparing Object 
Oriented Paradigm with the Cohesion and Coupling mechanism between 
Traditional modules,” KCC 2014, pp. 556-558.  

[4]    Bokyung Park, Haeun Kwon, Hyeoseok Yang, Soyoung Moon, Youngsoo 
Kim, R. Youngchul Kim, 2014, “A study  on Tool-Chain for statically 
analyzing Object Oriented Code,” KCC 2014, pp.463-465.  

[5]    Thomas Ball, Stephen G. Erik, Bell Laboratories, April 1996, “Software 
Visualization in the Large,” IEEE Computer Society, Vol. 29, Issue 4.  

[6]    Arun Rai, Haidong Song, Marvin Troutt, Jaunary 1998, “Software Quality 
Assurance: An Analytical Survey and Research Prioritization,” Journal 
of Systems and Software, Volume 40, Issue 1.  

[7]    Ince, D., May 1990, “Software Metrics: Introduction”, Information and 
Software Technology, Volume 32, Issue 4. 

 

International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 10 No.90 (2015) 
                      © Research India Publications; http/www.ripublication.com/ijaer.htm

505




