
1

A Method of Handling Metamodel based on
XML Database for SW Visualization

Tuesday, February 16, 2016

Hyun Seung Son

Software Engineering Lab.

Hongik University

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

2

Contents

1. Motivation

2. Related Works (ASTM, XML databases)

3. Our metamodel method

4. Case Study

5. Conclusions

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

3

1. Motivation

 The property of software

 Has Invisibility, Complexity, and Changeability

 Also, depends on each individual maturity level of developer

 Therefore, software is difficult to develop high quality
software product

 Which spends much more cost and time consuming with
huge scale project

COCOMO Model

Effort Vs. Product size

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

4

1. Motivation cont.

 About Changeability of software :
Due to being continuously modified and changed

 We spend more than 60 percent of the whole development costs
for just maintenance

 Increase the error according to changing code on the
maintenance : Bathtub Curve

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

5

1. Motivation cont.

 Now, the software needs to manage the quality
because of

 increasing the software complexity,

 frequently changing the user requirements

 How to guarantee high quality of software

 Assess with Certification Models such as GS, CMMI, SPICE, TMMi,

 Software Methodology, Process, Tools

 Test Process such as TPI

 White/Black Box Testing: impossible to do complete testing

 Therefore, How could you develop quality of software?

 Our Issue: each SW developer has a Bad Habit to write
programming !!!

 We try to show the internal structure of the code for the SW
visualization

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

6

Our previous research

 The existing SW Visualization methods have problems :

 For the SW visualization, it need many tools such as Source
Navigator, Graphviz, and a parser, so on.

 Generally, the parser generates Abstract Syntax Tree (AST)
during compiling the program code

 The existing ASTs are not compatible with other ASTs due on the
specific parser (redundancy)

c/c++
input Visualizer

for C/C++
graph

output

java
Java

Parser

input

C/C++

Parser

Visualizer

for Java
graph

output

other
other

Parser

input Visualizer

for other
graph

output

ASTs redundancy

generate

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

7

Why do we need an ASTM Standard?

 The existing parser need many AST generators to possibly
visualize the ASTs

 Do not interoperability between one AST and other ASTs

c/c++
input

java
Java

Parser

input

C/C++

Parser

Visualizer graph
output

other
other

Parser

input

ASTM

To solve redundancy

xCodeParser

Our previous research cont.

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

8

Our previous research cont.

 For SW visualization, it is required that

1. The parser generates the abstract syntax tree

The parser generates ASTM from a program code such as C, C++, or
Java.

2. The XML database need to save ASTM data

The XML databases save the ASTM data

3. The visualizer needs to generate a graph

The visualizer generates the graph from the ASTM

 Through this process, we can reverse the architecture
from the program code

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

9

 The previous approach: used the open source tool chains on Code
Static analysis

 This is current approach: used the ASTM

A whole structure for SW visualization

ASTM

Metamodel
use

consist of

outputc/c++
input

3. Visualizer

input

graph
output

java
input

1. xCode

Parser 2. XML Databases

We focus on XML database

Java Parser(SN)
View Composers

(Graphviz)

Database(SQLite)

graph
step 1

Source analysis step 2

Store in DB

step 3

Structure analysis

step 4

Visualization

changing

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

10

What is Abstract Syntax Tree Metamodel (ASTM) ?

 Abstract Syntax Tree Metamodel (ASTM) - OMG’s standard

 which is metamodel of abstract syntax tree with the existing
compilers

 represent the structure of source code with Abstract Syntax Trees

 The main purpose of the ASTM

 Easily interoperate the metadata repository between program
codes such as software modernization, platforms, and heterogeneous

environment

 The ASTM has

 193 elements to represent the full AST from the existing
programming languages such as C, C++, C#, Java, Ada, VB/.Net,
COBOL, FORTRAN, Jovial, and so on

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

11

Abstract Syntax Tree Metamodel (ASTM)

 GASTMObject (that is, a Root: the general ASTM)

 Consists of SourceObject, SementicOjbect, and SyntaxObject.

 ASTM consists of total 193 of metaclasses from three objects.

This is a simple ASTM Structure:

Include

 Definition & Declaration

of variable or function

 Type

 Expression for AND, OR…

 Statements for IF, FOR

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

12

A whole Abstract Syntax Tree Metamodel :
implement 193 metaclasses based on OMG standard

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

13

Abstract Syntax Tree Metamodel (ASTM) cont.

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

14

Class definition & function call statement

class Figure {

public :

int x;

Figure();

virtual ~Figure();

virtual int getArea();

};

int main() {

int n = 7;

doOddEvenCheck(n);

return 0;

}

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

15

What is XML database ?

 XML database ?

 A database system for storing the data in XML format directly

 Two ways to save XML data :

1. RDBMS to store the XML

 RDBMS has various product such as IBM DB2, Microsoft SQL Server,
Oracle and PostgreSQL

 It has advantageous to store the data of XML with the existing database

 But needs to use the existing SQL statements and XQuery to query XML
data at the same time, which will not be saved in a specific format

2. Native XML databases

 The native XML databases extract the data through XQuery or XPath using
only data of XML

 Which have various types such as BaseX, Qizx, eXist or MarkLogic Server

 In this paper, we choose the native XML databases to save XML data

 Problem : we must write twice a query on RDBMS

 But native XML databases is available with a single query

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

16

The survey of native XML databases

 The specific features of native XML database is shown in table

Name
Property

BaseX Qizx eXist
MarkLogic

Server

Native Language JAVA JAVA JAVA C++

XQuery 3.0 Supported Supported Partial Partial

XQuery Update Available Available Commercial Commercial

XQuery Full Text Supported Supported Commercial Commercial

EXpath Extension Available No No No

EXqueryExtension Available No Available No

XSLT 2.0 Available Available Available Available

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

17

3. Our metamodel method

 To implement the software visualization,
the developer is necessary to process three steps:

1) The parser to generate the Abstract Syntax Tree (AST) from program
code

2) The data analyzer to store data using databases, and to extract the
related data of the source code from AST

3) The data visualizer to represent various graphs from the analyzed data

DatabasesProgram Code SW Architecture

Parser

Data

Analyzer

Data

Visualizer

xCodeParser

XML databases

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

18

Proposed structure of our metamodel method

 We propose the metamodel based integratation data repository
to save the ASTM files, and to use the data analyzer in the repository

*.xml *.xml N

BaseX

(XML Database)

1.

xCodeParser

Metamodel based Integrated Data Repository

2
. A

S
T

M
 F

il
e

L
o

a
d

er

*.astm File

Program Code

(C/C++, Java)

4. XQuery Executor

3. XQuery

Translator

XQuery

Meta Code Query Result

ASTM

Metamodel

User

XML DB Process

1. xCodeParser: generate

ASTM file from code

2. ASTM File Loader: save

ASTM in XML database

3. XQuery Translator:

translate XQuery from

proposed query language

4. XQuery Executor: run

translated XQuery using

BaseX API

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

19

Proposed structure of our metamodel method

*.xml *.xml N

BaseX

(XML Database)

xCodeParser

Metamodel based Integrated Data Repository

A
S

T
M

 F
il

e
L

o
a

d
er

*.astm File

Program Code

(C/C++, Java)

XQuery Executor

XQueryTranslator

XQuery

Meta Code Query Result

ASTM

Metamodel

User

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

20

Proposed structure of our XQuery Translator

 The XML database(BaseX) perform a search using XQuery

 It is difficult to find the metamodel because the XQuery searches the only
data of XML.

 Thus, we propose a new query language named Meta Code Query

 That allows the user to easily view the data in the code

 The XQuery Translator converts to XQuery from them

 It does easily view the program code information with a simple command
line to define the pattern of the metamodel of the ASTM

 Finally, the XQuery executor performs the converted query statement to
XML databases, and transfers the results to the user

 Through this process, the user can easily show the required data

Meta

Code

Query

Paser

(JavaCC)

XQuery

Generation
XQuery

MetaCodeQuery AST

metamodel

Meta Code Query

AST

XQuery Translator

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

21

Our Meta Code Query Language

 The proposed Meta Code Query Language

 In the code of visualization, the two nodes is given by a line

 The line indicates the quality metrics between the nodes as shown figure

 In figure, node is a name of package, class or method

 The quality metrics is code pattern

 In this aspect,

 Starting node is the method, class or package, in accordance with the level
of abstraction for searching data

 If the class level, you will see all methods in that class.

 In conclusion, when a pattern matches the start node and code pattern,
it can be obtained for the second node

Node 1 Node 2
Quality metrics Node definition

Method, class, or package

[package]/class/method → code pattern = [package]/class/method

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

22

Our Meta Code Query Language cont.

 The EBNF of Meta Code Query Language
<MetaCodeQuery> ::= [<package>] "/" <class> "/"

<method> "->" <code pattern>

<package> ::= <Identifier>

<class> ::= <Identifier>

<method> ::= <Identifier>

<code pattern> ::= "data" | "stamp" | "control" | "external" |

"common" | "content"

<Identifier> ::= ["a"-"z", "A"-"Z", "_"]

(["a"-"z", "A"-"Z", "_", "0"-"9"])*

The metamodel of Meta Code Query Language

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

23

Our Meta Code Query Language cont.

for $call in //project//fragments

let $caller := $call/identifierName/@nameString

let $called := $call/body//subStatements/condition/@xsi:type

let $called_class := $call/body//subStatements/condition/

calledFunction/qualifiers/identifierName/@nameString

let $called_method := $call/body//subStatements/condition/

calledFunction/member/identifierName/@nameString

where $called = 'gastm:FunctionCallExpression'

and contains(data($caller),'<class>::<method>')

<link codePattern=\"control\">

<caller class = '{tokenize($caller,'::')[1]}'

method = '{tokenize($caller,'::')[2]}'></caller>

<called class = '{$called_class}'

method = '{$called_method}'></called></link>

/ <class> / <mehtod> -> control

Result:

XQuery :

Meta Code Query :

 A example of transformation of Meta Code Query

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

24

4. Case Study

 Target software : Multiple-joint Robot Simulator

 This project was supported by the Human Resource Training Program for
Regional Innovation and Creativity

 A development tools of simulation control program for the multiple-joint
robot (Korea Patent No. 10-0956839)

 Program Language : C++

 External Library : ODE(Open Dynamic Engine), MFC, Direct X

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

25

(common coupling) before/after Refactoring

• Unit of Class:
SW Visualization Before it

SW refactoring

SW Visualization After it

Reduce complexity

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

26

5. Conclusions

 The software visualization is

 A method that extracts an architecture from program codes

 The SWV organized the open source based tool-chain using Source
Navigator, Graphviz, SQLite, Jenkins, etc. but have to need many tools

 The Abstract Syntax Tree Metamodel (ASTM) is

 Useful to convert from the diverse program codes to Abstract Syntax Tree

 Good for interoperability

 This paper

 Develops the xCodeParser of ASTM based on OMG standard

 Suggests the metamodel based on XML databases in a whole procedure
for SW visualization

 For handling metamodel, we proposed Meta Code Query Language and
implement XQuery Translator

 Through visualizing software

 Help to improve quality, and to reduce reuse & maintenance cost

 In further research, we will develop visualizer to represent the various
graph

http://selab.hongik.ac.kr/
http://selab.hongik.ac.kr/

