2016 International Conference on
Platform Technology and
Service (PlatCon)

Proceedings

15-17 February 2016
Jeju, Korea

@ I E E E IEEE Catalog Number: CFP16F03-ART (Xplore)
: ISBN: 978-1-4673-8685-2 (Xplore)

IEEE Catalog Number: CFP16F03-CDR (CD)
ISBN: 978-1-4673-8684-5 (CD)

Code Complexity on Before & After applying Design
Pattern through SW Visualization

So Young Moon

SELab., Dept. of Computer and
Information Communication
Hongik University
Sejong Campus, 30016, Korea
msy@selab.hongik.ac.kr

Abstract— Software is actually depended on his/her coding
maturity of each developer. Software is inevitably used in all
fields due to ICT convergence, which is increasing on the issue of
code quality. His/her developer avoids to show source codes to
other persons, and also repeats to modify them, which finally
makes spaghetti codes. Therefore, it will be possible to increase
bug occurrence, and also fall below legibility and understanding
of the code. Its code quality is depended on the maturity of a
developer. To protect this problem, we apply SW visualization
with GOF design pattern to make good design structure. Design
pattern is a verified solution to provide with object oriented
design. Code complexity is essentially referred to software
quality, which has low complexity to easily understand, and has
low possible to occur errors. In this paper, the SW Visualization
method is applied to compare the relationship between each code
complexity Before & After applying design pattern to enhance
the quality of codes.

Keywords—Design Pattern; Code Complexity; SW
Visualization; Static Analysis; SW Quality, Code Quality

[. INTRODUCTION

The demand of software quality is gradually increasing as
software used in most industrial fields. One error can cause
more errors due to the enlargement and complication of
software. Therefore, code complexity must lower to secure
legibility and maintenance. High level developers work on 28
times better than low level developers[l]. Also, when a
developer moves out, it takes much time for new developer to
analyze and understand the source code or project for a system
maintenance or improvement. That is one reason why it takes
long time due to code complexity, and has low legibility and
understanding. To solve these issues, we use design pattern
mechanism based on reverse engineering. We reduce code
complexity through refactoring operation is performed to lower
complexity by measuring the code complexity through static
analysis. If a cyclomatic complexity number is between 1~10,
the probability of other error occurs 5 percent. A cyclomatic
complexity number of over 50 means to occur 40 percent of
the probability of another error [2]. Therefore, this paper
purposes to make lower code complexity to improve software
quality. For a case study, it is performed to analyze complexity
on source codes applied with & without design pattern, and to
measure cyclomatic complexity and module coupling. SW

Bo Kyung Park

SELab., Dept. of Computer and
Information Communication
Hongik University
Sejong Campus, 30016, Korea
park@selab.hongik.ac.kr

R. Young Chul Kim

Dept. of Computer and Information
Communication
Hongik University
Sejong Campus, 30016, Korea
bob@hongik.ac.kr

visualization method based on reverse engineering is used for
measuring with visualizing code complexity[3].

This paper is as follows. Chapter 2 mentions related works
such as cyclomatic complexity, module coupling, and cohesion
are explained. In Chapter 3, comparison between each code
complexity before and after application of design pattern are
visualized. In Chapter 4, the conclusions and future research
are mentioned.

[I. RELATED WORK

A. Design Pattern

The purpose of design pattern[3] is to solve problems in
particular design and making flexible and reusable object
oriented software. We use design patterns as a verified
technology for reusing design, and improve system
maintenance or documentation. Design pattern is classified into
creational pattern, structural pattern, and behavioral pattern.
There are five patterns in the creational patterns, seven patterns
in the structural patterns, and eleven patterns in behavioral
pattern. Table. 1 shows the design pattern field classified by
the purpose and range of design pattern. In this paper, as the
command of behavioral pattern is applied in source code, we
compare each code complexity between before and after
applying design pattern on refactoring.

e Creational Patterns: These patterns Deal with the best
way to create instances of objects. They create objects
at run-time not at compile-time. This makes program
more flexibility to be created for a given use case.

e Structural Patterns: These patterns describe how classes
and objects can be combined to form larger structures.

e Behavioral Patterns: These design patterns are
specifically concerned with communication between
objects. They are concerned with Allocates
responsibility of a process to an object and defines
which algorithm is proper for an object.

Table. 1. Design Pattern Area

Goal | Creational
Patterns

Behavioral
Patterns

Structural

Scope Patterns

978-1-4673-8685-2/16/$31.00 ©2016 IEEE

13. Interpreter

1. Factory
Class Method 6. Adapter 14, Template
Method
15. Chain of
Responsibility
7. Bridge 16. Command
S ite | 17. Iterator
Factory 8. Composite
: 9. Decorator | 18- Mediator
Object 3. Builder :

2 19. Memento
4. Prototype 10. Facade
11. Flyweight 20. Observer

5. Singleton
21. State

12. Proxy
22. Strategy

23. Visitor

B. Code Complexity

Cyclomatic Complexity is the most commonly used
method to measure code complexity, and software metric is the
coupling and cohesion.

e Cyclomatic ~ Complexity[4]: measuring code
complexity within functions, modules, methods or
classes of software which was proposed by McCabe in
1976. The number of control paths within the software
are used for calculation.

v(G)=e-n+p (n

v(G): cyclomatic number

e = the number of edges of the graph

n = the number of nodes of the graph

p = the number of connected components

Fig. 1 shows the results of calculating cyclomatic
complexity of the graph with (1). The number of edges
is 7, the number of nodes is 7, the number of connected
components is | in which v(G)=7-7+1 = 1.

G.QD
)
O

Fig. 1. Program path

)
(=]
iy
=
(@]
(@)
o

X=)
=
(@)
(@

o
—
——
O & O

-

@)
EEEEEEEE
B O EeE O #eam O H
& O B u
S O BEE O BS n
& O FE&E O u

[
[
OO—‘OOOOE

e Coupling and Cohesion[5]: It is a concept that has high
legibility and maintenance which was proposed by
Larry Constantine, the developer of structured design
and is an outstanding design when low coupling and
high cohesion is accompanied. As shown in Fig. 2,
coupling is composed of data, stamp, control, external,
common, and content and coupling closer to data
coupling shows higher design quality. Cohesion is
composed of coincidental, logical, temporal, procedural,
communication, sequential, and functional cohesion and
cohesion closer to functional cohesion shows high
design quality. Coupling between modules must be
weak and cohesion must be strong to create a well-
designed independent module.

Data Stamp Control External Common Content
Coupling Coupling Coupling Coupling Coupling Coupling

R

Coupling

Good €———— Qualty ——> Bad

Caincidental Logical Temporal Procedural Communlcation Sequentlal Functional
Cohesion

LN .’

Coheslon Cohesion Cohaeslon Coheslon Coheslon Coheslon

Cohesion

Bad

€ Quality =———» Good

Fig. 2. Quality Indicators of Coupling and Cohesion

[1I. RELATION WITH DESIGN PATTERN AND CODE COMPLEXITY

In this chapter, the code complexities before and after
applying design pattern are compared. The example program is
a simple document editor implemented by Java. Through
reverse engineering based SW visualization method by using
the module coupling and code complexity method by
MaCABE, 1) analysis on complexity of the source code
without applying design pattern and 2) analysis on complexity
of the source code applying design pattern are conducted. Fig.
3 shows the results extracted by using the SW visualization
method on 1) and 2).

A. Code Complexity of before applying Design Pattern

Fig. 3 shows module coupling extracted by the SW
visualization method on the Java based document editor
without design pattern application. The module was defined as
class and the left result in Fig. 3 shows the number of reference
of linked relation between JavaEditor module, FileProcessor
module, and Editor Ul module. JavaEditor(24) means that 24
numbers of reference were internally used and the (16) in the
arrow indication from JavaEditor to EditorUl means that the
Editor Ul module was referred to the JavaEditor module 16
times. The right result in Fig. 3 means that the stamp coupling
from the JavaEditor module to the FileProcess module is 6.
Also, the stamp coupling from the FileProcess module to the
FileProcess module is 2. 3 in the result 3*2=6 is the number of
stamp coupling between the modules and 2 is the weight of
stamp coupling.

Relation of - Coupling Table. 3. Code Complexity with Cyclomatic Complexity - :
n . omplie
between modules File Path Function Name xit;')
conLhonglk java.JavaEditor .com.hongik java JavaEditor .
i AbstractCommand.java execute 1
TavaFditor(24)
- ‘ TJavaEditor EditorUI
ExitCommand.java ExitCommand.ExitCommand 1
ExitCommand.java ExitCommand.execute \
32=6) ExitCommandActionListene ExitCommandActionListener |
r.java .actionPerformed
(16) | FileProcess(l)
- : NewCommand.NewComman
NewCommand.java d 1
FileProcess (112=2) .

NewCommand.java NewCommand.execute 1
NewCommandActionListen NewCommandActionListene |
er.java r.actionPerformed

EditorUI(3) " .) ileCommand.OpenFile

OpenFileCommand.java pnRilel omuandOp 1

Command
Fig. 3. Coupling with SW Visualization

OpenFileCommand.java OpenFileCommand.execute 1

Table. 2 shows code complexity extracted by the SW
visualization method on the Java based document editor

withontpatten application: OpenFileCommandActionLi OpenFileCommandActionLis 1

P .) stener.java tener.actionPerformed
Table. 2. Code Complexity with Cyclomatic Complexity
File Path Function Name Complexity) SaveAsCommand.SaveAsCo
SaveAsCommand.java 1
mmand
EditorUl java EditorUIEditorUl 1
SaveAsCommand.java SaveAsCommand.execute 1
FileProcess.java FileProcess.fileOpen 4
SaveAsCommandActionList SaveAsCommandActionListe |
FileProcess.java FileProcess.fileSaveAs 3 ener.java ner.actionPerformed
FileProcess.java FileProcess.fileSave 3 . SaveCommand SaveComma
SaveCommand.java nd 1
JavaEditorjava JavaEditor.JavaEditor 1
e YavaEditor actionBerform SaveCommand.java SaveCommand.execute 1
JavaEditor.java ed 6
SaveCommandActionListen SaveCommandActionListene 1
JavaEditorjava JavaEditor.main 1 er.java r.actionPerformed
e X . EditorUl.java EditorULEditorUI 1
Code complexity is highest in the actionPerformed method a
of the JavaEditor module »\fith a value of 6. This value is FileProcess.java FileProcess.fileOpen 4
considered as a low complexity when comparing general code
complexity values, but the core of this paper is that FileProcess.java FileProcess.fileSaveAs 3
application of design pattern can reduce code complexity.
FileProcess.java FilcProcess.fileSave 3

B. Code Complexity of after applying Design Pattern
Table. 3 shows the code complexity deducted by the SW JavaEditor2.java JavaEditor2.JavaEditor2 1
visualization method on the Java based document editor

applying the pattern. JavaEditor2.java JavaEditor2.main 1

com hongik java javaEditor2 command
ExitCommandActionListener NewCommandActionListener OpenFileC'ommandActionListener SaveAsCommandActionListener SaveCommandActionListener
< - 7
n 2 A 2) 2) (2) (1) 1) _~1) 1
‘ &
ExatC* d New(' d AbstractCommand OpenFileCommand(2) SaveAsCommand(2) SaveConunand(2) 1)) (1) 1) 1)
5 7 - I\

Relation of
between modules

FileProcess(l) JavaEditor2(7)

0)

EditorUT(30)

Fig. 4. Relation of between modules

co bough java javaEditor conumand

][]

Sn‘ct“aunumdl ‘Nwr(‘auxunt\ﬂuuiu‘ ‘Nmﬁ'mmmd\ FutConmandAchonlistener

SaveConmandAchoulistener | | OpenFdeConmand | [SaveAsCoumnandAchoulstener OpeaFileConmand AchonListener

SaveAsCouunnd ‘

Stamp Coupling

H

(«

gk java gCaEcitor

jmaEdion? | | Fiehrocess | J12=2) zaumi
J

Fig. 5. Coupling of after applying Design Pattern

Unlike the results in Table. 2, there are more modules in the
results of Table. 3. As a result, only values of 4 or lower are
shown in which this is because command pattern is applied to
encapsulate commands demanded by the user on the object for
processing. Basically, code complexity influences the level of
complexity depending on control. Therefore, it could be found
that code complexity decreased by applying the command
pattern.

Fig. 4, 5 shows the module coupling extracted by the SW
visualization method on the Java based document editor
applying design pattern. Analyzing the results in figure, the
results in Fig. 3 seem to be more complex than Fig. 4, 5, but
the values show that the code complexity of the programs
developed by applying design pattern are independent modules
with low coupling and low code complexity. In Fig. 4,
reference of EditorUI module in the JavaEditor2 is 6 which is
lower than the value in Fig. 3 which is 10. It is because the
command pattern is applied to segment the module by
functions for management. Also, it can be known that the
stamp coupling in Fig. 5 is lower than the stamp coupling in
Fig. 3.

IV. CONCLUSION

There exists many differences depending on the effort and
competence of developers to improve software quality and
code quality. Reusing well-made design saves costs and time to
relieve fatigue of developers. Codes are the latest results in
software and software quality is proportionate to the quality of
codes. To enhance code quality, same codes should not be
repeated, one module must perform only one function,
improper comments should be avoided, and coding standard
should be applied. Also, applying design pattern is a method of
reusing well designed modules. Coding standard takes place
between developers when design pattern is used,
communication is aided, and maintenance is improve to also
enhance code quality. Also, developers can reviewer their own
code anytime through SW visualization to find problems,
modify, and reduce code complexity to lower error occurrence
rate.

In this paper, as result of comparing programs applying
design pattern and not applying design pattern through SW
visualization, it was found that the software developed by
applying design pattern showed low code complexity.

ACKNOWLEDGMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education (NRF-
2013R1A1A2011601) and the Human Resource Training
Program for Regional Innovation and Creativity through the
Ministry of Education and National Research Foundation of
Korea (NRF-2015HIC1A1035548).

REFERENCES

[1] Robert L. Glass, Facts and Fallacies of Software Engineering, Addison-
Wesley, 2002

(2]
3]
[4]
(5]
(6]

http://www.aivosto.com/project/help/pm-complexity.html

So Young Moon, Sang Eun Lee, R. Youngchul Kim, “Inner
Visualization for Analyzing Code Complexity”, The 5" International
Conference on Convergence Technology, vol.5, no.1, pp.346-347, 2015.

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, “Design
Patterns : Elements of Reusable Object-Oriented Software”, 1994.

THOMAS J. McCABE, “A Complexity Measure”, IEEE Transactions
on Software Engineering, vol. SE-2, no.4, December 1976.

W. P. Stevens, G. J. Myers, L. L. Constantine, “Structured design”, IBM
Systems Journal, vol 13. No2, pp.115-139, 1974.

