2016 International Conference on
Platform Technology and
Service (PlatCon)

Proceedings

15-17 February 2016
Jeju, Korea

@ I E E E IEEE Catalog Number: CFP16F03-ART (Xplore)
. ISBN: 978-1-4673-8685-2 (Xplore)

IEEE Catalog Number: CFP16F03-CDR (CD)
ISBN: 978-1-4673-8684-5 (CD)

Improving Use Case Point(UCP) based on Function
Point(FP) Mechanism

Bo Kyung Park

SELab., Dept. of Computer and
Information Communications,
Hongik University
2639, Sejong Campus, 30016, Korea
park@selab.hongik.ac.kr

So Young Moon
SELab., Dept. of Computer and
Information Communications,
Hongik University
2639, Sejong Campus, 30016, Korea
msy(@selab.hongik.ac.kr

R. Young Chul Kim

Dept. of Computer and Information
Communications, Hongik University
2639, Sejong Campus, 30016, Korea

bob@hongik.ac.kr

Abstract—The cost of error correction has been
increasing exponentially with the advancement of
software industry. To minimize software errors, it is
necessary to extract accurate requirements in the early
stage of software development. In the previous study, we
extracted the priorities of requirements based on the
Use Case Point (UCP), which however revealed the issues
inherent to the existing UCP as follows. (i) The UCP
failed to specify the structure of use cases or the
method of write the use cases, and (ii) the number of
transactions determined the use case weight in the UCP.
Yet, efforts taken for implementation depend on the
types and number of operations performed in each
transaction. To address these issues, the present paper
proposes an improved UCP and applies it to the

prioritization. The proposed method enables more
accurate measurement than the existing UCP-based
prioritization.

Keywords—Function Point; Improved UCP; Use Case Point;
Use Case Priority;

L. INTRODUCTION
The damage associated with software defects has increased

with the advancement of software industry. Figure 1 shows the
cost of error correction in each step of software development.

$16,000

$14,102
$14,000
$12,000

$10,000

Requirements Design Coding Test Maintenance

Fig. 1. Cost of error correction for each stage of software development[1]

The cost of error correction exponentially increases in line
with the detection stages. Specifically, the cost of error
correction in the maintenance stage is 100-fold higher than that
in the requirement stage. To minimize software errors, accurate
requirements should be extracted in the early stage of software
development. Figure | shows the cost of error correction in
each stage of software development.

In the requirement stage, the prioritization of requirements
is important in that high quality products should be developed
within tight resource and time constraints [2]. Prioritization of
requirements facilitates the development of high-quality
software whilst minimizing the cost. Previous studies extracted
and verified the priorities of requirements based on the Use
Case Point (UCP) [2, 3]. That is, a UCP was extracted for each
use case. Then, the extracted UCP was used to prioritize the
use case. Yet, the foregoing method has the issues inherent to
the existing UCP as follows. First, the UCP failed to specify
the structure of the use case or the method of writing the case.
Thus, the use case models and specifications could vary.
Second, the use case weight was determined based on the
number of transactions in the UCP. However, the efforts taken
for implementation in each transaction were dependent on the
types and number of operations performed [4]. In effort
estimation, the use case is reflected in a same size in line with
the scopes, and thus measured inaccurately.

To address the aforementioned issues, the present study
proposes an improved UCP and applies it to the prioritization.
This paper comprises of the following chapters. Chapter 2
covers related works on UCP-based prioritization method.
Chapter 3 describes the method of calculating priorities based
on the improved UCP. Chapter 4 compares the existing method
with the proposed one. Finally, chapter 5 presents the
conclusion and suggestion for a further study.

II. RELATED WORKS

For the prioritization of use cases, Karner's use case point
estimation is used [2, 3]. The size of software is measured
quantitatively using the actors and use cases in the use case
diagram. Unlike the existing UCP, the point of each use case is
estimated. That is, the sum of actor and use case weights is not
calculated. Figure 2 shows the UCP-based prioritization.

978-1-4673-8685-2/16/$31.00 ©2016 IEEE

Step 1 Actor Weight
Step 2 | Use Case Weight
s [P
o Com;elgtirt‘;lc,aFLctor
wos [t

Fig. 2. Priority based on Use Case Points

The first step in the prioritization of use cases is to estimate
the actor weight. Based on the use case points, the actor
weights are estimated to be Simple(l), Average(2), and
Complex(3). The actor weight is calculated in each use case for
the prioritization of requirements. The second step is to
estimate the use case weight. The use case weight is calculated
based on the number of transactions of the use case. When the
number of transactions is no more than 3, the use case weight
is Simple. 4 ~ 7 transactions become the Average use case
weight. 8 or more transactions correspond to the Complex use
case weight. All use case weights add up to the final use case
weight. By contrast, in the prioritization based on use case
points, each use case weight is used to extract the priorities. In
the third step, the actor weight and the use case weight add up
to the unadjusted use case points. In the fourth step, the
technology complexity factor determines a weight somewhere
between O(no effects) and 5(large effects) from the aspect of
the entire system. In the fifth step, the environment factor
applies a weight somewhere between 0 and 5 based on the
UCP classification. Upon completion of calculation up to the
fifth step, the extracted use case points are compared for the
UCP-based prioritization.

III. PRIORITIZATION BASED ON IMPROVED UCP

The present study improves the existing UCP to prioritize
the requirements. This chapter defines the improved UCP
method, and describes the method of prioritization. This paper
applies the prioritization method based on the improved UCP
to a vehicle supplies management system. Figure 3 shows a use
case diagram of the vehicle supplies management system.

S (g)
Customer Updale Inventory Retrieve
,/77'7 //_‘t-7
L) > S = A
Vi 7 e ,..»—«1 L/
Eu?oﬁ?ﬁ&ﬂever Vs \} £ "
/ / # P ustomer Délete . &

“ //ﬂ' i«
7 ,///’ _—Stock Retneve <inciude
<< =

, ——==q(lude>>,
3. ()

/ { Sl S
- Dy _dacdme Retrieve
y {?Sa!e Register P dand

e

s >
o o (
" E!;Q!\se Regster Inchade=>ocoe- cemer=d
R it S 5 Pmt

'-V.l"l_fjlkﬁ A

Pl s
S%’Uﬁﬁﬂ_\rmﬁ_\ﬁ_/“
. Mcse? Expense Update

TN = N
()

)

K o \"__’""
Product Delete Expense Delete

Fig. 3. Use Case Diagram for the Vehicle Supplies Management System
The use case point (UCP) was suggested by Karner [5].
The UCP is derived from the use case modeling. Here, the
extent to which the derived UCP reflects the accurate scale of
software is crucial. Yet, all the existing UCPs have the
following issues. (i) The UCP does not specify the method of
writing the use case. Therefore, the use case model and
specification may vary with analysts, leading to different sizes
derived from a use case. (ii) The UCP determines the use case
weight based on the number of transactions. Still, in each
transaction, the types and number of operations performed
determine the efforts taken for implementation [4]. However,
these use cases are reflected in a same size in line with the
scopes, and thus inaccurately measured. (iii) The UCP failed to
consider the Include and Extends relations of use cases. To
address these issues, the types and weight of actors and use
cases are classified in this paper. Also, a weight of 0.25 is
added to a use case which involves any Include or Extend
relation. This method was suggested by Periyasamy et al. [6].

Step 1: Actor Weight

Based on the UCP, actor weights are classified into three
types: Simple (1), Average (2) and Complex (3). Yet,
Periyasamy's method classified the actors [6]. Periyasamy's
actor weight is improved in this paper. In [6], the weight was
allocated based on the types of actors and the number of
transactions performed by the actors. Still, there are 7 types of
actors (i.e. Very simple, Simple, Less average, Average,
Complex, Very complex and Most complex). Moreover, it is
necessary to analyze primary and secondary actors. This
method is time consuming and complex because of the
extraction of use case narrative factors. Hence, this paper
adopts 5 types of improved actors. Table | shows the actor
weight classification.

TABLE L. ACTOR WEIGHT CLASSIFICATION

detoramel; Classification of Actors Veight
Very Simple Specialized Actor 0.5
Simple Actor with I<number of associations<=3 1
Average Actor with 3<number of associations<=5 1.5
Complex Actor with 5<number of associations<=8 2
Very Complext Actor with number of associations>8 25
Step 2: Use Case Weight
Table 2 shows the classification of use case weight.
TABLE IL USE CASE WEIGHT CLASSIFICATION

Use C‘ase m;e : : i‘laqsif}citiab ,.‘bt_j Acf‘;:rs' Feight
Simple Number of transactions <=2 0.5
Average 2 <Number of transactions <= 4 1
Complex 4 < Number of transactions <= 6 2
Very Complex Number of transactions > 6 3

As in the actor weight, a different weight is allocated to each
use case. In [6], the use case weight was defined as a number
directly associated between an actor and a use case. This paper
applies the use case type as it is, whereas the criteria for the

classification of use case is refined. Also, a weight of 0.25 is
added to a use case that involves any Include or Extend
relation. Each extracted use case is prioritized based on its
weight.

Step 3: Unadjusted Use Case Point (UUCP)

The unadjusted use case point is the sum of actor and use
case weights. Table 3 shows the values of Unadjusted Actor
Weight(UAW) and Unadjusted Use Case Weight(UUCW).

Step 4: Technical Complexity Factor (TCF)

TCF comprises 13 items in total. In TCF, each factor is
given a weight somewhere between 0 and 5. 0 indicates no
effects, whereas 5 represents large effects. In this paper, the
weight is given by the 0.5 for the accurate prioritization of
requirements.

Step 5: Environmental Factor (EF)

The environment factor comprises 8 items, with the weight
(0 ~ 5) applied based on the classification. This paper does
not consider the environment factor weight as all the use cases
are given a same value (3).

Step 6: Use Case Priority

Following the completion of all estimation, each use case
point is calculated. UCP is the product of UUCP, TCF and EF.
The use cases are prioritized by comparing the extracted UCP
values. Table 4 shows the final priorities.

TABLE IIL UNADJUSTED USE CASE POINT
Unadjusted Actor Weight(UAW) Unadjusted UseCase Weight{(UUCW)
N Usn Canne (Manager) Actor Basic Alternative |Exceptional | Include/ Total Use Case |UUCP
Actor Weight Weight Flow Flow Flow Extends | Transaction | Weight
uc Login 1 1 1 1 1 (8] 3 1 2
ucz Customer Register 1 1 1 1 o (8] 2 0.5 1.5
ucs Customer Update 1 1 1 (o] o o 1 0.5 1.5
uc4 Customer Retrieve 1 1 1 1 o 0.25 2.25 1 2
ucs Customer Delete 1 1 1 8] e} [} 1 0.5 1.5
uce Stock Register 3 1 1 Q 1 () 2 .5 1.5
ucz7 Stock Retrieve 3 1 1 1 0 0.25 2.25 1 2
ucse Stock Delete 3 1 1 0 (o} 0 1 0.5 15
ucC9 Sale Register 3 1 1 (o] (0] o} 1 0.5 1.5
ucC10| Sale Retrieve 3 1 1 1 8] 0.25 2.25 1 2
uc1h Sale Update 3 1 1 1 0 o] 2 0.5 1.5
uCi12| Sale Delete 0.5 0.5 1 1 o 0 2 0.5 1
ucC 3 Product Register 3 1 1 (o] 0 (o] 1 0.5 %5
uci14 Product Retrieve 3 1 1 1 0 0.25 2.25 1 2
UCT5 Product Delete 3 1 1 0 0 0 1 0.5 1.5
uUC 16| Inventory Retrieve 1“_;‘77 3.5 — 1 i % - 7776‘ | __Ojg— . 2.25 il i 1 2.5
uc17 Income Retrieve 1.5 1.5 1 3 0 0.25 4.25 2 3.5
uch Expense Register 1 1 1 6] 1 (] 2 0.5 1.5
ucC19) Expense Update 1 1 1 o) (o] 1 0.5 1.5
UC20| Expense Retrieve 1 1 1 3 0 0.25 4.25 4 3
uca1 Rexpense Delete 0.5 0.5 1 0 Q o 1 0.5 1
ucz2| Print 0 0 1 1 (Y] 1.5 3.5 2 2

TABLE IV.

THE FINAL RESULT

Tch | tcr2 | TcP3 | Ttcra | ters | TR | Tere [tckn | Ter3
0~5 TCF Value| UCP Priority

No Use Case 2 1 1 1 1 0.5 1 1 1

ucH Login 0 2 1.5 0 0 15 0 2 1 8 16 12

UC2 | Customer Register 0 2 15 1 2 2 0 0 o] 85 12.75 14

UC3 | Customer Update 0 1 2 1 2 2 3 0 0 1 16.5 1

UC4 | Customer Retrieve Q 1 2 0 0 2 1 0 0 6 12 15

UCS | Customer Delete 0 1 18 0 0 0 0 0 0 2.8 4.2 22

uce Stock Register 0 1 1 0 0 1 0 0 0 3 4.5 21

ucy Stock Retrieve 0 3 3 4 1 4 1 2 0 18 36 1

UC8 | Stock Delete 0 2 3 2.5 1 3 1 0 0 125 18.75 8

UC9 | Sale Register 0 1 2 0 0 1 0 0 0 4 6 20

uci1o Sale Retrieve 0 1 1 0 1 2 0.5 0 0 BS 1 16

UC11| Sale Update 0 3 3 4 1 4 1 2 1 19 285 4

uc12| Sale Delete 0 3 3 1 1 4 3 1.5 1 17.5 17.5 10

UC13| Product Register 0 2 3 0 1 2 1 2 1 12 18

UC14| Product Retrieve 0 2 3 1 0 3 1 2 1 13 26 5

ucis Product Delete 0 2.5 3 2.5 1 3 1 0 0 13 19.5

UC16 | Inventory Retrieve 0 2 3 2 1 3 1 0 0 12 30

UC17 | Income Retrieve 0 1 2 0 0 0 0 0 0 3 10.5 18

UC18 | Expense Register 0 1 2.3 0 0 1 2 0 0 6.3 9.45 19

UC19| Expense Update 0 2 3 3 1 4 1 0 0 14 21 6

UC20| Expense Retrieve 0 i 3 1 1 3 2 0 0 1" 33 2

UC21| Rexpense Delete 0 2 3 0 1 2 3 0 0 1 1 16

uca2 Print 0 1 2 0 1 1.5 1 0 0 6.5 13 13

IV. PRIORITIZATION BASED OD EXISTING UCP VS. IMPROVED TABLE V. RESULTS OF COMPARISON

ucp
. il The Priority | The Priority based
This chapter compares the priorities based on the UCP No Use Case T
extracted in [2] with those based on the improved UCP. Table -
5 shows the results of this comparative analysis. The analysis st Login i 12
of priorities highlights the following: (i) A difference by 10 or UC02 | Customer Register 16 14
more between the two methods is found in 6 items, i.e. Stock UCO03 | Customer Update 8 1
Delete, Sale Retrieve, Product Register, Product Delete, UCO04 | Customer Retrieve 13 15
Income Retrieve and Expense Register. The improved UCP ucos | Customer Delete 19 22
weights are dqﬁqed to be 0.5~'2.5 for actors and 0.5~3 for use UCD6| Stack Register 15 21
cases. The existing UCP weights are defined to be 1~3 for Ut | Stock Retreve = 1
actors and 5, 10 and 15 for use cases. As different weights are = =
applied, the UCP values extracted are different between the WChE] istod Delee L g
two methods. (i) The actor weights based on the improved UCO9| Sale Register 15 20
UCP are measured using the number of direct associations UC10| Sale Retrieve 4 16
between actors and use cases. The use case weight varies with uc1 Sale Update 9 4
Fhe number of transactions. Thus, the priority based on the uc12 Sale Delete 12 10
!mproved UCP dlffers‘ from that of the existing UCP. (}u) Tl}e WCI3| Product Register 16 9
improved UCP considers Include and Extend relations in Uord] Tl Batie 6 5
extracting the UCP. The improved UCP is a revised version of
the existing UCP method. Also, the actor and use case weights YCI5] _Predugt Ddsis LLi Li
are classified further in comparison to the existing UCP. UC16 | Inventory Retrieve 4 3
Hence, the improved UCP is likely to extract more accurate UC17| Income Retrieve 2 18
UC points than the existing UCP. Further studies need to verify UC18| Expense Register 10 19
which one is accurately measured based on a real UC19| Expense Update 5 6
implementation. UC20 | Expense Retrieve 1 2
UC21| Rexpense Delete 11 16
uca2 Print 20 13

V. CONCLUSION

This paper improves the existing UCP-based
prioritization. The improved use case points are used here to
prioritize the use cases. The improved UCP method measures
the actor weights based on the number of direct associations
between actors and use cases. The use case weights are
measured based on the number of transactions. Notably, the
number of transactions is adjusted, or lowered for the use case
weight compared to the existing UCP. As a result, 6 items
show a significant difference. A further study needs to
implement a vehicle supplies management system and thus to
verify the accuracy of measurement.

ACKNOWLEDGMENT (Heading 5)

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education (NRF-
2013R1A1A2011601) and the Human Resource Training
Program for Regional Innovation and Creativity through the
Ministry of Education and National Research Foundation of
Korea (NRF-2015HIC1A1035548).

REFERENCES

[1] Boehm, Barry, and Victor R. Basili. "Software defect reduction top 10
list." Foundations of empirical software engineering: the legacy of
Victor R. Basili 426 (2005).

[2] So Young Moon, Bo Kyung Park, and R. Young Chul Kim,
“Verification of Requirements Extraction and Prioritization using Use
Case Points”, ITCS(Information Technology and Computer Science),
ASTLI13, pp. 100-104, July 2012.

[3] Bokyung Park, Soyoung Moon, Dongho Kim, Chaeyeon Seo, R.
Youngchul Kim, “A Study on Extraction of Goal Oriented Use Case
Based Requirements”, Proceedings of 2012 Korea Conference on
Software Engineering(2012).

[4] SunKyung Lee, DongWon Kang, Doo-Hwan Bae, “Software Effort
Estimation based on Use Case Transaction”, Journal of KIISE, Vol. 41,
No. 11, November 2014.

[5] Karner, G, “Resource Estimation for Objectory Projects”, Objective
System SF AB(Copyright owned by Rational Software), 1993.

[6] Periyasamy, Kasi, and Aditi Ghode. "Cost estimation using extended use
case point (e-UCP) model." Computational Intelligence and Software
Engineering, 2009. CiSE 2009. International Conference on. IEEE,
2009.

