2016 International Conference on
Platform Technology and
Service (PlatCon)

Proceedings

15-17 February 2016
Jeju, Korea

@ lE E E IEEE Catalog Number: CFP16F03-ART (Xplore)
. ISBN: 978-1-4673-8685-2 (Xplore)

IEEE Catalog Number: CFP16F03-CDR (CD)
ISBN: 978-1-4673-8684-5 (CD)

SW Visualization Framework for Safe Software

So Young Moon

SELab., Dept. of Computer and
Information Communication
Hongik University
2639, Sejong-ro, Jochiwon-eup,
Sejong, 30016, Korea
msy@selab.hongik.ac.kr

Abstract— Today, it has been increasing software in most
applications of most industry fields. Likewise, diverse industries
(such as cars, aviation, and medical equipment) not only have
adopted software, SW-related safety issues but also have
emerged. Despite the concerns over SW quality, the
competitiveness of local SW quality has diminished. With Safe
SW technology, we need to reduce the socio-economic damages
resulting from SW defects, and to enhance the competitiveness in
global market. This paper proposes a SW visualization
framework to develop error-free and safe software.

Keywords—Function Point; Software Visualization; Reverse
Engineering

[. INTRODUCTION

Software plays pivotal roles in society to the extent that
most national infrastructure and large-scale industries rely on
SW-based operation control. According to the data published
by the National IT Industry Promotion Agency (NIPA) in 2006,
the importance of SW per each product is growing by
approximately 14.25% over 2002 in each industry field.
Moreover, global manufacturing companies are trying to
transform into software players. State-of-the-art aircrafts, ships
and cars are equipped with sophisticated software. According
to the data from the Science and Technology Policy Institute in
2015[1], the importance of SW started to outweigh that of HW
as of 2002. In 2008, more than half (52.4%) of the
development cost in the automobile industry was used for
software-related electronic control features in cars. Similarly,
software expenses took up 53.7% of electronic appliance
development, 51.5% of industrial automation, and 52.7% of
communication industry. As the scale and complexity of SW
increases, issues of reducing development cost as well as
securing safety and quality control have been raised. Yet, the
quality of local SW has been decreasing. For a sustainable
growth of ICT industry, it is necessary to secure the global
competitiveness of local SW industry. Likewise, for local SW
industry to secure global competitiveness, it is urgent to ensure
the competitiveness of SW quality. To minimize the socio-
economic damages attributable to SW defects, it is necessary to
increase the global competitiveness of ICT convergence
products with safe software. Specifically, it is desperately
needed to develop technology viable for safe SW development
so that local software SMEs having difficulties in competing

Bo Kyung Park

SELab., Dept. of Computer and
Information Communication
Hongik University
2639, Sejong-ro, Jochiwon-eup,
Sejong, 30016, Korea
park@selab.hongik.ac.kr

R. Young Chul Kim

Dept. of Computer and Information
Communication
Hongik University
2639, Sejong-ro, Jochiwon-eup,
Sejong, 30016, Korea
bob@hongik.ac.kr

with foreign companies in global and local markets can
overcome their limits. Currently, tools that are widely used to
support the development and management of safe SW are
mostly dominated by overseas large enterprises including IBM.
Despite their functional superiority, such tools are so expensive
that most local companies excluding larger enterprises cannot
afford those foreign tools. Given the small-to-medium structure
of local SW industry, it is necessary to support the
development and management of safe SW by securing and
applying the technology of open-source-based tools in lieu of
the expensive foreign tools. Existing tools are far from
integrated structures but adopt separate functions which make
it difficult to apply and use all open source tools without much
analysis. To implement safe SW, to create value in this smart
era, and to shorten the time to market, a method of verifying
the existing safe SW and analysing risks as well as
visualization technology are necessary. As SW products reflect
accumulated knowledge and experience, they are characterized
by unique concepts of ownership and transaction, increasing
social value via reuse and share, and development by man. Due
to such attributes inherent in SW, advanced developers’
competency is 28 times higher than that of low-level ones [2].
To minimize the difference in quality attributed to the
experience and capacity varying with individual SW
developers, the technology to automate and visualize
design/implementation is needed. Also, despite the importance
of techniques to improve the quality of new SW development,
it is a more feasible approach to build and reuse safe SW based
on the existing software owned by companies.

For error-free software and reliable codes, it is necessary to
develop transparent and safe software through software
visualization. This paper describes a safe software framework
designed to visualize the software development, test and
operation for safety. Chapter 2 covers related works on safe
software and software visualization. Chapter 3 elucidates a
visualization framework for safe software. Chapter 4 presents
the conclusion and suggestion for further studies.

II. RELATED WORK

A. Safe Software

According to the National Safety Management Master Plan
of the Ministry of National Security and Public Administration

978-1-4673-8685-2/16/$31.00 ©2016 IEEE

(2010-2014) [3], safety refers to “a state free of natural, human
or artificial threats, or a state of full readiness for such risk
factors”. Based on the definition, software for safety may be
defined as the software used to prevent natural, human or
artificial risk factors, or to keep the full readiness. IEEE Std.
(1228-1994) [4] defines software safety as preventing any
incidents on system attributable to SW errors by eliminating
SW risk factors. That is, software safety means a state free of
SW risk factors.

Table. 1. Definition of Safe SW and SW Safety

Definition I

- SW for safety
- SW conducive to safety

Definition II

- SW safety

- Safe SW

- Meaning SW itself is safe

- SW should be free of errors or
defects

- Existing safe SW mostly focuses
on nuclear power and cars

-SW capable of safely protecting
and monitoring people or system
to sustain safe society

- SW conducive to safety in
connection with ICT

- SW conducive to addressing
traffic, crime and environment
issues

In this software-centered society where most of national
infrastructure and large-scale industries are controlled by
software, dependency on software increases in finance, auto,
train, aviation, power, defense, healthcare and education.

Consequently, the scopes and scales of damages resulting
from incidents and accidents associated with software have
increased. Also, due to the paradigm shift in disaster and safety
policies and the increasing disasters related to climate change,
the importance of safe SW continues to grow. Fig. 1 shows
local and overseas cases of accidents resulting from SW issues.
As a case of SW errors leading to loss of life, the temporary

_ Example of accident

suspension of flights from landings and takeoffs in the
southwestern part of the US in 2015 was attributed to the air
traffic control system overloaded and halted in the process of
calculating the altitude and velocity of U2 reconnaissance
aircrafts in the LA Air Route Traffic Control Center.

B. SW Visualization

Hongik University SW Engineering Lab’s software
visualization[5][8][9] may be fit for high-quality software
development at IT venture startups, SMEs and even established
entities that are typically constrained by a lack of personnel and
financial resources [5]. Software visualization is a technique
intended for the betterment of software quality control and
maintenance by visualizing and documenting source codes and
development processes. Visualization helps manage the quality
of SW development by overcoming the invisibility of software,
which is the most difficult aspect in SW development, and by
putting the overall process of SW development into perspective.
This paper concerns using the SW visualization to minimize
work burdens and applicability by proposing a method of
documenting diverse outputs loaded up inside the system in the
process of development.

III. SW VISUALIZATION FRAMEWORK FOR SAFE SOFTWARE

Conventional software engineering techniques used to
systematically develop SW in accordance with a process
ensure a certain level of SW safety, and involve such models
as CMMI, TMMi and SW process certification for assessing
the maturity of corporate SW development. Yet, certification-
based safe and quality SW development is not feasible for
SMEs because of cost and time. The proposed safe SW
engineering is a method of developing safe SW that can
perform prevention, protection and prediction by considering

- 9 people death

+ 70 people
serious and
slight injuries
6 cars derailed

« System error

« 212 flights

delayed « System stops due to
« 21 flights overload

cancled

‘09
Washington
Metro
collision
Damage of accident
human life
caused by
SW errors ‘14
American
southwest
takeoff and
landing
suspended
‘10 BP
Ignore a
warning of Kaaldel gl
gafe SW ship fire
Safety 15
Control SW Yeongjong
incomplete Bridge
and person’s collision
carelessness accident

Fig. 1. Examples of accident

« The world 6
ranking oil
company British
Petroleum (BP) oil
leak and fire on
the petroleum
ship

106 collision
accidents

2 people dead
73 people
serious and
slight injuries

Advanced Cement
Modeling SW (Safe SW)
is automatically alarms
needs of add the space
between oil pipe.

BP ignored warnings,
oil spill tracking
technology absence

Failure visibility due to
heavy fog

Safety frigidity up to
100km per hour

No safety systems

not only SW development process but also SW products and
their operation. Moreover, this paper employs the
visualization to realize safety unlike previous studies on SW
engineering. Fig.2 shows the SW engineering applying the
safe SW visualization technique, where the visualization is
applied to SW product development, operation and process to
realize 3P, or prevention, prediction/warning and protection.

~

L Prevention

Visualization Visualization

{ safety SW
) g\ B, %

Protection

Prediction
[vssatin |\ y

NV

Fig. 2. Safety SW Visualization Approach

The present paper proposes a visualization framework
enabling the implementation of safe software. Fig. 3 shows the
safe SW visualization framework where SW visualization is
used to develop reliable codes, error-free SW and transparent
and safe SW.

QAT oo

Visualization of SW Process, Development, and Operation

[SW invisibility overcome J

TR

SW Risk elimination

Fig. 3. Safety SW Visualization Framework

Safety SW
Development

A. Hazard Analysis

A hazard refers to a state of potential risks (damage and
failure) that may lead to an incident or accident [5]. Hazard
analysis involves analyzing and assessing any hazards that
might arise from unpredictable operation of devices or systems
[6]. Hazard analysis is mentioned in ISO 26262[7] as one of
the most important functional safety analysis activities.

B. Risk Assessment

A risk refers to a combination of the likelihood of risky
events or exposure and the severity of injuries or health
hazards that might be caused by such events or exposure. Risk
assessment is a process of assessing risks resulting from

hazards, and determining the tolerance against such risks by
considering the fitness of existing management approaches.

C. Software invisibrlity overcome

This paper applies the visualization to SW process,
development and operation to overcome the SW invisibility.
The visibility established by the SW Engineering Lab at
Hongik University rids software of invisibility for the benefit
of maintenance and SW quality enhancement [8]. Also, the
Tool-Chain Method [9] is an open-source static analysis tool
for SW visibility.

e - (Source Navlgator)

Software

SNDB Files
Product
T - Step 2
e e SW Quality Improvement
< 1, Module Definition
= 2, Qualty Indicator Definkion it i
3, Code Pattern Analysis ’
Step 6 4, Refactoring , Step33
ifacts of 4
é;tdf: ws: allzatlon Extract Data for sup 4
e Architecture

(5QLite)

{Graphviz)

Tool-Chain

Fig. 4. Tool-Chain Method Process [9]

The Too-Chain method comprises 6 steps: (1) Source
Code Analysis, (2) SNDB Files Analysis, (3) Create DB from
SNDB Processor, (4) Extract Data for Architecture, (5)
Visualization, and (6) SW Quality Improvement. The SW
modularization in (4) and (5) steps enables developers to
visualize and reduce the complexity of codes for modification
and rectification. Also, this method benefits SMEs or start-ups,
which cannot afford costly CMMI, TMMi, and SW process
certification for high quality SW products, by rectifying the
quality and safety of software they develop. A company can
use the process in Fig. 4 to improve the quality and safety of
codes it develops. Fig. 5 shows the visualization of an Android
app with the Tool-Chain Method Process. It shows 7
references to the SlidingTabStrip class in the
SlidingTabLayout class, and 39 internal accesses of
SlidingTabStrip. The SW visualization enables developers to
visualize SW under development, to check the complexity of
codes, and to review the relationship between classes
regarding the use of methods and object generation. That is,
visualization allows developers to proactively improve the
quality of codes and thus to manage the quality constantly in
the course of development. Also, in case a developer quits
without leaving any development documentation, the
visualization ensures the SW maintenance by generating
outputs, e.g. the documentation on software design.

D. Safety SW Visualization Method

Efficient development and management of safe SW
requires the visualization of safe SW development process. It
is necessary to specify safety/quality goals, to engage in
efficient safety/quality development activities, and to
constantly monitor and control safety so as to overcome the
SW invisibility. Also, companies should secure human
resources capable of visualizing the SW safety development
process and implementing the safety and quality of software
for the benefit of corporate quality competitiveness. We
suggest a tool supporting the SW safety visualization. Here,
Subversion is used for the source code configuration
management followed by Eclipse for development IDE,
ASTM-based Parser for syntactic analysis, NSIQ Collector for
measuring the complexity of codes, PMD and CPPCheck for
static testing, Junit, CPPUnit and Unit for dynamic testing,
TestLink for test case management, Redmine for request
management, and Jenkins for integrated process management
with a view to SW quality visualization. Furthermore, to
secure safe SW, CAST, STPA, SpecTRM, OCRA, ILI and
STPA-Sec are used for safety and risk analyses.

IV. CONCLUSION

Despite the efforts to support the development and
management of safe SW, the inferiority of locally developed

tools and technology has resulted in the extensive dependence
on overseas technology, which is far from a radical solution.
Tools supporting the development and management of safe SW
are so costly that most companies cannot afford such tools
except a few large enterprises. Hence, for realizing safe SW,
creating value in this smart era, and fulfilling the fast Time to
Market, it is necessary to verify the existing safe SW, develop
risk analysis methods, and adopt the visualization technology.
The proposed framework for safe SW visualization is likely to
reduce the scopes and scales of accidents due to SW errors. In
addition, the framework is conducive to boosting the
competitiveness of locally developed SW quality, given the
rising quality control issues including development cost
savings and safety on account of the increasing scale and
complexity of software.

ACKNOWLEDGMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education (NRF-
2013R1A1A2011601) and the Human Resource Training
Program for Regional Innovation and Creativity through the
Ministry of Education and National Research Foundation of
Korea (NRF-2015HIC1A1035548).

S SRS — o
(1) A T
— — =
et LA TN, . —
// \\. ot 1mo0Iys TAHOw kb N
V4 \
r - [

‘ ‘ ViewPager Adapte d) I StvugSanke I I Shdwg TabLavont 30y ExpmbroguSevice o) ‘ [FomlNence [me.shvvuo;mnc] I FildExpim\ViageSenacel)] FleSeice] F-lll“-\uwr
> — ~
| " < — E——— e
w S i -
‘ == i ST P P

/{/ i e i s - /l
iy i e
Ly, (tn//ll'f e m/ \-'b W //(!)/

P e -
e R i -
= . =
‘\\ i
| wJ_/
L%hlmg‘r.b'suq ()
| e
/’/
o //
o = gt = i /////
- e
" /
—(8)) =
_— P R
o — e —
L— e e ——
P
e ——
—e———
e
—
.
SuuplvTabolonzall)

Fig. 5. SW Visualization about Android App [10]

(1

(2]

B3]

[4]

[5]

[6]

(7]
(8]

[

[10]

REFERENCES

Seung Hyun Kim, Man Jin Kim, “Analysis of Innovative Features in
Software Use and Policy Direction”, Science & Technology Policy
Institute, May 2015.

Robert L. Glass, Facts and Fallacies of Software Engineering, Addison-
Wesley, 2002.National Safety Management Master Plan, Minisry of
Security and Public Administration(2010-2014)

[EEE STD 1228-1994. IEEE Standard for Software Safety Plans. 1994.

NASA TECHNICAL STANDRAD, NASA Software Safety Guidebook,
2004.

Geon-Hee Kang, R. Young Chul Kim, Geun Sang Yi, Young Soo Kim,
Yong B. Park, Hyun Seung Son, 2015, “A practical Study on Code Static
Analysis through Open Source based Tool Chains,” KIISE Transactions
on Computing Practices, vol. 21, no. 2, pp. 148-153.

Robyn R. Lutz, “Software Engineering for Safety: A Roadmap”, ICSE
'00 Proceedings of the Conference on The Future of Software
Engineering, p.364-365, 2000.

ISO 26262-3:2011. Road vehicles—Functional safety. 2011

So Young Moon, Sang Eun Lee, R. Youngchul Kim, “Internal Code
Visualization for Analyzing Code Complexity”, The 5th ICCT 2015,
vol. 5, no. 1, pp. 268-269, June 2015.

So Young Moon, R. Youngchul Kim, “Code Structure Visualization
with A Tool-Chain Method”, unpublished.

Min-Gyu Park, Eun-Young Byun, Jeong-Wha Han, Robert Youngchul
Kim, So-Young Moon, “Development of JDT Based Static Analyzer for
Code Analysis”, The 2015 Fall Conference of the KIPS, vol. 2, p.969-
972, 2015.

