2016 International Conference on
Platform Technology and
Service (PlatCon)

Proceedings

15-17 February 2016
Jeju, Korea

@ I E E E IEEE Catalog Number: CFP16F03-ART (Xplore)
g ISBN:

978-1-4673-8685-2 (Xplore)

IEEE Catalog Number: CFP16F03-CDR (CD)
ISBN: 978-1-4673-8684-5 (CD)

Twister Platform for MapReduce Applications
on a Docker Container

Yunhee Kang

Division of Information and Communication
Baekseok University
115 Anseo Dong, Cheonan, 31065, Korea
yunh.kang@gmail.com

Abstract—Docker is one of ways to provide more light-weight
for agile computing resource based on container technique to
handle this problem. For this work we have chosen this specific
tool due to the increasing popularity of MapReduce and cloud
container technologies such as Docker. This paper aims at
automatically configuring Twister workloads for container-
driven clouds. Basically this is the first attempt towards
automatic configuration of Twister jobs on container-based cloud
platform for many workloads.

Keywords—Docker; agile computing; MapReduce; Twister

[. INTRODUCTION

When prototyping a distributed application like
MapReduce, a developer needs both to ensure the application
execution corresponds to the specification and that its
performance is not impacted by the number of nodes or by
some failure scenarios [1-3]. Indeed, MapReduce relies on
successive computing-commination steps that, if not
coordinated with care, lead to performance bottlenecks and a
poor scalability. However, this technology is both grounded on
extremely complex platforms that are often difficult to
understand, configure and optimize details.

As in rare situations both objectives can be reached at once,
it is usual to start prototyping in a small set of nodes and then,
when the execution was proved, perform additional scalability
and fault tolerance tests.

Because all these steps require the execution of well-
defined scenarios, we decided to rely on container-based
virtualization, which allow the researchers to control both
system images and network interconnections. The
configuration can have a profound impact on application
performance, security as well as availability, and the values
they provide to end-users. Clearly, making these configurations
manually is cumbersome or even impractical.

For this work we have chosen this specific tool due to the
increasing popularity of MapReduce and cloud container
technologies such as Docker. Basically this is the first attempt
towards automatic configuration of Twister jobs on container-
based cloud platform VM for many workloads. This paper
aims at automatically configuring Twister workloads for
container-driven clouds. Basically this is the first attempt

R. Young Chul Kim

SELab., Dept. of Computer Information Communications
Hongik University
2639, Sejong Campus, 30016, Korea
bob@hongik.ac.kr

towards automatic configuration of Twister jobs on container-
based cloud platform VM for many workloads.

[I. RELATED WORKS

A. Twister

Twister is one of MapReduce implementations, which is an
enhanced MapReduce runtime with an extended programming
model that supports an iterative MapReduce computing
efficiently [4-5]. In addition it provides programming
extensions to MapReduce with broadcast and scatter type for
transferring data. These improvements allow Twister to
support iterative MapReduce computations highly efficiently
compared to other MapReduce runtimes. The demanding
requirements have led to the development of a new
programming model like Twister based MapReduce. It reads
data from local disks of the worker nodes and handles the
intermediate data in distributed memory of the worker nodes.

Pub/Sub Broker Network

S e GRSl e RN,

Worker Nodes

1 Master Node t
¥ h 4

MR | User
Driver | Program
PESACNNIIT

A

File System

| pata spiit

(M) Map Worker Bl MRDeamon
@® Reduce Worker ‘t Communication

Fig. 1. Overall architecture of Twister

As shown in Figure 1, all communication and data transfers
are performed via a pub/sub broker network via
NaradaBrokering that is an open-source, distributed messaging
infrastructure [9]. Twister uses a pub/sub messaging
infrastructure to handle four types of communication needs; (i)
sending/receiving control events, (ii) sending data from the
client side driver to the Twister daemons, (iii) transferring
intermediate data between map and reduce tasks, and (iv)

978-1-4673-8685-2/16/$31.00 ©2016 IEEE

sending the outputs of the reduce tasks back to the client side
driver to invoke the combine operation.

B. Docker

Virtualization provides a way to abstract the hardware and
system resources from an operation system, which is used to
reduce the actual number of physical servers and to improve
scalability and workloads in the cloud environment. In cloud
computing environment, a VM is a computing platform that
creates a virtualized layer between the computing hardware
and the application.

Docker is an open platform released as a container project,
originated by dotCloud, for developers and system
administrators to build, ship and run distributed applications. It
automates the deployment of applications inside software
containers, by providing an additional layer of abstraction and
automation of operating-system-level virtualization on Linux
and enables applications to be quickly assembled from
components and eliminated the friction. Especially
virtualization technology is the key technology, though it,
deployment of cloud computing system can be implemented.

[II. EXPERIMENTAL RESULTS

A. K-means clustering

K-means clustering is a method of cluster analysis, which
aims to partition n observations into k clusters in which each
observation belongs to the cluster with the nearest mean. Given
a data set, D, of n objects, and k, the number of clusters to
form, a partitioning algorithm organizes the objects into k
partitions (k <= n), where each partition represents a cluster.
The error function used is the sum of the distance that each
point is from its cluster’s centroid. In the k-means MapReduce
application we built, it is used to determine the number of
iterations in the data set. We describe an overall framework of
a MapReduce based k-means with an initial starting
configuration of this k-means clustering as input parameters.
Figure 2 shows the designed framework.

Dota file Data
—“:J block
FoMapTes 1 obCont Now
phaudhan |
| Map Reduce > conkid
of Cenfoid Centroi Sumo
d Cluster Data

Fig. 2. Designed framework of a MapReduce based k-means

B. Experiment Environment

The following shows the two Docker containers generated
from the image ubuntu:twister. Each of these containers has a
network interface with IP addresses 172.17.0.9 and 172.17.0.10
respectively.

[) yunheskang root@f2bf80196a8d: ~/twister-0.8/samples’kmeans/bin — docker
root@f2bf80f96a8d:~/twister-0,8/samples/kneans/bin# ifconfig -a
ethd Link encap:Ethernet HWaddr 02:42:ac:11:60:09
inet addr:172.17.0.9 Bcast:0.0.0.0 Mask:255,255.0.0
inet6 addr: feB@::42:acff:fe11:9/64 Scope:Link
UP BROADCAST RUNNING MTU:1560 Metric:l
RX packets:13728 errors:@ dropped:® overruns:® frame:@
TX packets: 15808 errors:@ dropped:0 overruns:d carrier:@
collisions:@ txqueuelen:d
RX bytes:11160004 (11,1 MB) TX bytes:1416314 (1.4 MB)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:l
RX packets:24868 errors:@ dropped:® overruns:d frame:@
TX packets: 24868 errors:@ dropped:® overruns:@ carrier:d
collisions:0 txqueuelen:d
RX bytes:8853887 (8.8 MB) TX bytes:8853887 (8.8 MB)

The following shows the result of k-means MapReduce
application. To evaluate performance of a k-means MapReduce
application, we define a configuration of this experiment. This
configuration is used to cluster 3,000 data points with 3 mapper
tasks and 1 reducer task. The elapsed time is 15.646 second
with 87 iterations. In the perspective of elapsed time, there is
no difference between physical machine and virtual machine.

sie artwerang — otOTHIBONGASS. ~/wister-0 B3mplasAmeans/bin — G0cKsl — 116:2Y
243,05673758865248 , 475.44917257683215 ,

334,74343434343433 , 365,72525252525253 ,

99,51178451178451 , 457,34343434343435 ,

30.78688524590164 , 336,92531876138435 ,

205.6497584541063 , 82.58937198067633 ,

22.89196675900277 , 82.68144044321329 ,

315.4846743295019 , 470.3390804597701 ,

32.15145631067961 , 404.2116504854369 ,

306.11208791208793 , 200.72307692307692 ,

406,26501035196685 , 334.0621118012422 ,

410,6326538612245 , 267.37551020408165 ,

28,57112526539278 , 198.76008492569002 ,

108.15873015873017 , 26.346938775510203 ,

146,92351816443503 , 406.80688336520075 ,

34.89914163090129 , 467.08583690987126 ,

37.448356807511736 , 26.507842253521128 ,

190.40222222222224 , 213.4088888888889 ,

247.65330188679246 , 122.33962264150944 ,

364,7219512195122 , 196.89756097560976 ,

408,63035019455253 , 400.0622568093385 ,

463,66087719298247 , 471,7236842105263 ,

468,54825423728814 , 353.8813559322034 ,

350,21004566210047 , 248.25799€8675799 ,

347,72721212727275 , 308.1291866028708 ,

Total Time for kemeans : 15.646

Total loop count : 87

TransmissionManager: There is a pending/ongoing transfer on niotcp:///172.17.8.9:3845 for a total of 16384 bytes
TransmissionManager: ALl transfers have been completed
CommunicationsService: Closing Link => niotep://172.17.0.9:3045

[V. CONCLUSIONS

This paper described the overall process of building the
experimental environment for Twister applications. For this
work we have chosen this specific tool due to the increasing
popularity of MapReduce and cloud container technologies
such as Docker. Basically this is the first attempt towards
automatic configuration of Twister jobs on container-based
cloud platform VM for many workloads. This paper aims at
automatically configuring Twister workloads for container-
driven clouds. Basically this is the first attempt towards
automatic configuration of Twister jobs on container-based
cloud platform VM for many workloads. In the perspective of
elapsed time, there is no difference between physical machine
and virtual machine.

ACKNOWLEDGMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education (NRF-
2013R1A1A2011601) and the Human Resource Training
Program for Regional Innovation and Creativity through the
Ministry of Education and National Research Foundation of
Korea (NRF-2015SH1C1A1035548).

REFERENCES

[1] Dean, J., Ghemawat, S.: MapReduce: A Flexible Data Processing Tool.
CACM 53, 72-77 (2010)

[2] Morton, K., Friesen, A., Balazinska, M., Grossman, D.: Estimating the
Progress of MapReduce Pipelines. IEEE 26th International Conference
on Data Engineering (ICDE), 2010, pp. 681 - 684, Long Beach, CA
(2010)

[3] Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large
clusters. CACM 51, 107-113 (2008)

[4] Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.-H., Qiu, J.,
Fox, G.: Twister: A Runtime for Iterative MapReduce. The First

International Workshop on MapReduce and its Applications
(MAPREDUCE'10) - HPDC2010, (2010)

[5] Geoffrey Fox and Shrideep Pallickara. Deploying the NaradaBrokering
Substrate in Aiding Efficient Web & Grid Service Interactions. Invited
paper for Special Issue of the Proceedings of the IEEE on Grid
Computing. Vol 93, No 3, 564-577(2005).

