
1 23

Cluster Computing
The Journal of Networks, Software Tools
and Applications

ISSN 1386-7857

Cluster Comput
DOI 10.1007/s10586-016-0687-1

MCCFG: an MOF-based multiple
condition control flow graph for automatic
test case generation

Hyun Seung Son, Young B. Park &
R. Young Chul Kim

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Cluster Comput
DOI 10.1007/s10586-016-0687-1

MCCFG: an MOF-based multiple condition control flow graph
for automatic test case generation

Hyun Seung Son1 · Young B. Park2 · R. Young Chul Kim1

Received: 22 March 2016 / Revised: 3 October 2016 / Accepted: 18 November 2016
© Springer Science+Business Media New York 2016

Abstract Requirement-based testing (RBT) is widely
known for the efficient testing in the limited resources. How-
ever RBT is difficult to generate automatic test cases; thus it
needs complex methods. This paper suggests our automatic
test case generation for all coverage (statement, condition,
decision, condition/decision, modified condition/decision,
and multiple condition coverage) based on the model-based
testing. To do this, we extend the original control flow graph
with multiple conditions for all condition related coverage,
which is called multiple conditions control flow graph, and
adapt a model transformation using metamodel mechanism
for test case generation. As a result, our proposed method
successfully applies to the prior test requirement.

Keywords Automatic test case generation · Control flow
graph (CFG) · Coverage-based testing · Multiple condition
control flow graph (MCCFG)

1 Introduction

The recent software industries start to recognize the impor-
tance of the software quality. While considering this fact,
the software quality is also critical in the embedded software

B R. Young Chul Kim
bob@selab.hongik.ac.kr

Hyun Seung Son
son@selab.hongik.ac.kr

Young B. Park
ybpark@dankook.ac.kr

1 Department of Computer and Information Communication,
Hongik University, Sejong 30016, Korea

2 Department of Computer Science and Engineering, Dankook
University, Yongin 16890, Korea

system. Even the small malfunction of software can signifi-
cantly damage the entire system [1]. Therefore, the software
testing can be used to improve the software quality [2]. Espe-
cially, for the large scale and complex software with limited
resources, it is required to have much more efficient testing
method.

However, the complete testing is impossible in any soft-
ware fields due to the necessity of infinite input values, paths,
and timings [3–5]. Hence, in most of software except the
safety critical system, it does not aim at complete testing [6];
instead, most software tries to test as much as possible. In
this issue, automatic tool with diverse testing techniques is
efficient for test case generation [3].

On the other hand, the risk-based testing [7] needs the
one that can identify the possible, potential problems for the
software development. While using the risk-based testing,
we also apply prior requirement with all coverage, imple-
menting the automatic test case generation for all different
test coverages. Therefore, we focus on different levels of
coverage according to the priority of software, which can
be stated as the following order: statement coverage (SC) <
condition coverage (CC)< decision coverage (DC)< condi-
tion/decision coverage (CDC)<modified condition/decision
coverage (MCDC) < multiple condition coverage (MCC)
[8]. To generate the test case based on the various coverage,
we use control flow graph (CFG) which expressed as multi-
ple nodes and paths between an initial node and a final node.
This is a very popular method for the test case generation.
However, by using CFG, the flow paths are clearly repre-
sented during the program execution. Since this original CFG
expresses the control flow, a test case is only generated based
on SC andDC for the coverage. In other words, the CFG can-
not generate test case in multiple conditions related coverage
such as CDC and MCDC. Hence, in order to solve this prob-

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-016-0687-1&domain=pdf

Cluster Comput

lem, we propose the multiple conditions CFG (MCCFG) for
dealing with multiple conditions.

The proposed MCCFG can express either multiple con-
ditions for a simple unit or combined unit with notation of
“AND” or “OR”. For automation issue, we use metamodel
mechanism in order to design metamodel of MCCFG based
on Meta object facility (MOF) [9], and develop graphical
notation of MCCFG.

In this paper, we propose the automatic test case gener-
ation method to generate an automatic test case based on
the coverage from MCCFG. The method consists of branch
extraction and condition extraction.While the branch extrac-
tion is to generate the test case with branch based on SC or
DC, the condition extraction is to generate test case by con-
dition based on CDC and MCDC. In order to generate the
test case automatically, we design metamodel of MCCFG
and implement the automatic tool based on EclipseModeling
Framework (EMF) [10]. This paper shows the graphical nota-
tion of MCCFG and generates test case from MCCFG. With
a case study, we demonstrate how to generate the test cases
by four test coverage cases of SC, DC, CDC, and MCDC.

The paper mentions in following order: Sect. 2 describes
related works. Section 3 shows metamodel and graphical
notations of MCCFG. Section 4 mentions our test case gen-
eration fromMCCFG based on the coverage criteria. Section
5 shows case studies. Section 6 gives a conclusion and future
works.

2 Related works

Control Flow Graph (CFG) is used to express all the differ-
ent control flows in a computer program. CFG uses a data
structure for code optimization in compiler. After this, CFG
applies to extend in software engineering and software test-
ing [11]. CFG is also a model expressed as multiple nodes
and paths. It shows other paths between initial node and final
node, that is, called control flow paths. CFG shows other
paths during program execution.

CFG consists of code-based CFG (CBCFG) and model-
based CFG (MBCFG), which separates based on the selec-
tion from source code information. CBCFG is a white box
testing technique based on a source code, but widely used in
software testing area. MBCFG is a black box testing tech-
nique based on a model with information of control flow.
CFG is useful tool to generate test case on coverage [12].

CFG has the coverage as follows [13]:

– Statement Coverage (SC): All nodes in the CFG must
visit at least once.

– Decision Coverage (DC): Decision points that perform
the true/false in all edges of the CFG are visited at least
once.

– Path Coverage (PC): All paths in the CFG must be cov-
ered.
CFG which cannot generate test case about conditions is
as follows [12]:

– Condition Coverage (CC): the condition at least once in
either true or false must be coverage.

– Condition/Decision coverage (CDC): each condition and
decision point with either true or false must be coverage
at least once.

– Modified Condition/Decision coverage (MCDC): the
result of each condition and the entire condition must
be coverage.

– Multiple Condition Coverage (MCC): all possible com-
binations on each condition must be coverage.

In the model-based CFG (MBCFG) techniques, we select
a few existing research [14–16] and compare this work
according to six criteria as shown Table 1. All of existing
techniques are based onUMLSequenceDiagram (SD). Only
one of this work propose both UML and code. Some of the
existing CFGs are Inter-procedural Restricted Control Flow
Graph (IRCFG), Petri-Net, and Concurrent Control Flow
Graph (CFG). But, all of existing CFGs does not allow the
multi coverage.

3 Our proposed multiple condition control flow
graph (MCCFG)

The proposed method generates test case from MCCFG
based on each coverage in Fig. 1. This method suggests
adopting amodel transformation for test case generation. The
model transformation technique is to automatically trans-
form model to model based on metamodel. Therefore, we
define graphical notation ofMCCFG, andmake ametamodel
related to MCCFG. Also define rules of the test case gener-
ation through EMF. Finally we can generate test cases with
metamodel of MCCFG based on coverage criteria. Figure 1
shows the whole structure for multiple test case generation.

3.1 The Metamodel of MCCFG

In order to define the metamodel of MCCFG, we refer the
metamodel of UML activity diagram. “These (UML Activ-
ities) are commonly called control flow and object flow
models”, which is written in UML 2.4 specification [17]. In
short, UML activity diagrammay be used to CFG. Therefore,
we refer themetamodel ofUMLactivity diagram because the
metamodel in UML 2.4 specification is complicated. Last
but not least we redesign the metamodel of MCCFG in order
to add elements of multiple condition like Fig. 2. The root
element named MCCFGModel consists of Group that has
multiple choices. This group consists of NodeElement and

123

Author's personal copy

Cluster Comput

Table 1 Comparison of existing
MBCFG techniques

[14] [15] [16] This work

1. Source information SD SD SD UML and Code

2. UML version UML 1.x UML 1.x UML 2.0 UML 2.4

3. Produced CFG IRCFG Petri-Net CCFG MCCFG

4. Loop No No Yes Yes

5. Condition Yes No Yes Yes

6. Multi coverage No No No Yes

Fig. 1 The whole structure for
multiple test case generation

Fig. 2 The metamodel of MCCFG

123

Author's personal copy

Cluster Comput

Table 2 Graphical notations of MCCFG

Type Notation Comment

Initial Node Initial node of all nodes

Final node Final node of all nodes

Node

name
One node

Fork node Concurrent node

Decision node Decision according to condition

Multi condition node Represents multiple conditions

OR decision node AND conditional expression is described

AND decision node OR conditional expression is described

Group To tie nodes and edges is described

Edge Connection of node and node

Multi condition edge (blank or in or out) Connection between multiple conditions is described

Edge. NodeElement is an abstract node that includes Ini-
tialNode, FinalNode, Node, ForkNode, DecisionNode, and
MultiConditionNode. Edge is a bridge to connect node and
node. Figure 2 shows the metamodel of MCCFG.

The big difference between the original CFG and the
MCCFG isMultiConditionElement that consists ofORDeci-
sionNode expressed “OR” notation and ANDDecisionNode
expressed “AND” notation. In order to separate the paths and
conditions, we design including MultiCondtionNode inside
the condition that relates the node and edge.

3.2 Graphical notation of MCCFG

The graphical notation of MCCFG consists of Initial Node,
Final Node, Node, Fork Node, Decision Node, Multi Condi-
tion Node, OR Decision Node, And Decision Node, Group,
Edge, and Multi Condition Edge in table 2.

Figure 3 shows one example of metamodel in MCCFG.
The conditional expression of ‘Multi Condition Element In’
is one case of “A and (B or C)”. It is described this condition
according to priority. “OR” conditional expression is located

Fig. 3 Example of modeling
using MCCFG

123

Author's personal copy

Cluster Comput

Fig. 4 XML of modeling using
MCCFG

<?xml version="1.0" encoding="UTF-8"?>
<MCCFGModel:MCCFGModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:MCCFGModel="http://selab.hongik.ac.kr/MCCFGModel">
 <group>
 <decision xsi:type="MCCFGModel:MultiConditionNode">
 <mcEdge xsi:type="MCCFGModel:MultiConditionEdgeIn" name="A"
target="//@group.0/@decision.0/@mcDecision.0"/>
 <mcEdge xsi:type="MCCFGModel:MultiConditionEdgeIn" name="B"
target="//@group.0/@decision.0/@mcDecision.1"/>
 <mcEdge xsi:type="MCCFGModel:MultiConditionEdgeIn" name="C"
target="//@group.0/@decision.0/@mcDecision.1"/>
 <mcEdge xsi:type="MCCFGModel:MultiConditionEdge"
source="//@group.0/@decision.0/@mcDecision.1" target="//@group.0/@decision.0/@mcDecision.0"/>
 <mcEdge xsi:type="MCCFGModel:MultiConditionEdgeOut" type="TRUE"
source="//@group.0/@decision.0/@mcDecision.0"/>
 <mcEdge xsi:type="MCCFGModel:MultiConditionEdgeOut" type="FALSE"
source="//@group.0/@decision.0/@mcDecision.0"/>
 <mcDecision xsi:type="MCCFGModel:ANDDecisionNode" name=""/>
 <mcDecision xsi:type="MCCFGModel:ORDecisionNode"/>
 </decision>
 <decision xsi:type="MCCFGModel:DecisionNode"/>
 <node xsi:type="MCCFGModel:Node" name="1"/>
 <node xsi:type="MCCFGModel:ForkNode"/>
 <node xsi:type="MCCFGModel:Node" name="2"/>
 <node xsi:type="MCCFGModel:Node" name="3"/>
 <node xsi:type="MCCFGModel:Node" name="4"/>
 <termination xsi:type="MCCFGModel:InitialNode"/>
 <termination xsi:type="MCCFGModel:FinalNode"/>
 <edge source="//@group.0/@termination.0" target="//@group.0/@node.0"/>
 <edge source="//@group.0/@node.0" target="//@group.0/@node.1"/>
 <edge source="//@group.0/@node.1" target="//@group.0/@decision.0"/>
 <edge source="//@group.0/@node.1" target="//@group.0/@decision.1"/>
 <edge type="TRUE" source="//@group.0/@decision.0" target="//@group.0/@node.2"/>
 <edge type="FALSE" source="//@group.0/@decision.0" target="//@group.0/@node.3"/>
 <edge type="TRUE" source="//@group.0/@decision.1" target="//@group.0/@node.4"/>
 <edge source="//@group.0/@node.2" target="//@group.0/@termination.1"/>
 <edge source="//@group.0/@node.3" target="//@group.0/@termination.1"/>
 </group>
</MCCFGModel:MCCFGModel>

first because of the priority. “AND” conditional expression
is located later. Especially, “OR” and “AND” decision nodes
is only available to the two inputs.

Figure 4 shows a XML code of metamodel in MCCFG.
The notations of MCCFG is expressed to metamodel’s each
elements from a source model. The XML code is generated
by automatic tools.

On the CFG, it expresses only a decision node without
giving a reference to the number of conditions and existing
problems. Therefore, our idea can describe conditions in both
models for CDC or MCDC. The proposed MCCFG can be
solved in this problem, which can possibly generate the test
case based on MCDC.

This paper just emphasizes on Step 3, Step 4, and Step 5
within the proposed test process. Figure 5 shows the possi-
ble combination of conditional expression in MCCFG. We
specially limit to two input values for unification on all con-
ditions. The unification of conditions expresses as follows:
(1) is “AND” and (2) is “OR”. The multiple conditions are
expressed as follows: (3), (4), (5), and (6). In these expres-
sion, MCCFG generates the test case between low-level and
high-level with the branch as well as the condition.

4 Test case generation and execution

MCCFG is designed onMOF.We can develop the automatic
transformation tool for test case generation using EMF. Fig-
ure 6 shows several steps for the test case generation. This
method separates two steps such as branch extraction and
condition extraction fromMCCFG. The branch extraction is
used to generate test case for SC and DC based on paths.
This method executes the process as follows: (1) to generate
all paths from MCCFG, (2) to merge decision and condi-
tion nodes, (3) to extract nodes. The condition extraction is
used to generate the test case for CDC and MCDC based on
conditions. This method executes the process as follows: (1)
to translate condition node, (2) to generate combination of
condition data.

4.1 Branch extraction

Figure 7 shows the definition of MCCFG model. The rela-
tionship of MCCFG between the nodes and the edges is
defined. The notation defines four tuple {N, E, T, n0} where
N is a set of nodes, E is a set of edges, T is transition, n0 is ini-

123

Author's personal copy

Cluster Comput

Fig. 5 Possible conditional expression in MCCFG

Fig. 6 Test case generation method from MCCFG

tial node. This definition of notation is used when generating
all paths.

Figure 8 shows the algorithm of all path generations from
MCCFG. This algorithm, which is similar to depth first
search (DFS), finds all paths from MCCFG (that is, on all
paths with decision node and multiple condition node). In
addition, the algorithmextracts a node from themergedpaths.
From the founded nodes, it can easily generate test case. 1)
SC executes all nodes at least once. So, if we can print out
with excluding the marked nodes, then they can generate test

cases. 2) DC is decision points to perform the true/false at
least once; all branch nodes are generated as all test cases.

4.2 Condition extraction

In order to process condition extraction, we preferentially
collect MultiConditionNode from MCCFG. Because Multi-
ConditionNode is separated into metamodel level, we easily
collect information.

123

Author's personal copy

Cluster Comput

Figure 9 shows multiple condition data generation. We
can extract the combination data fromMultiConditionNode.
MultiConditionNode is difficult to express the relationship
between input value and branch. To effectively handle the
relationship, we propose a model named condition node
in Fig. 9. The condition node serializes inside nodes of
MultiCondtionNode. This condition node describes a logic

MCCFG = <N, E, T, n0>

– N : a finite set of nodes

– E : the finite set of transition labels

– T N x E N : the set of transitions

– n0 : the initial node of the MCCFG

Fig. 7 The definition of MCCFG model

expression. We can make the result of output condition value
after entering the input condition value of all possible com-
bination through calculation. This output condition values
are used when generating the test case based on CDC and
MCDC.

Figure 10 shows virtual table for test case generation based
on CDC.With the result in the step of multiple conditions for
all combination of conditions, we must choice the condition

 T F
1 TT FF

 T F
1 TT FF

 T F
1 TTT FFF

(1) A and B (2) A or B (3) A and (B and C)

 T F
1 TTT FFF

 T F
1 TTT FFF

 T F
1 TTT FFF

(4) A or (B or C) (5) A and (B or C) (6) A or (B and C)

Fig. 10 Virtual table for test case generation based on CDC

Fig. 8 The algorithm of all paths generation from MCCFG

Fig. 9 Multiple condition data
generation

123

Author's personal copy

Cluster Comput

 T F
1 TT FT
2 TT TF

 T F
1 TF FF
2 FT FF

 T F
1 TTT FTF
2 TTT TFT
3 TTT TTF

(1) A and B (2) A or B (3) A and (B and C)
 T F
1 TTF FFF
2 FTF FFF
3 FFT FFF

 T F
1 TTF FFF
2 TTF TFF
3 TFT TFF

 T F
1 TTT FTF
2 FTT FFT
3 FTT FTF

(4) A or (B or C) (5) A and (B or C) (6) A or (B and C)

Fig. 11 Virtual table for test case generation based on MCDC

value based on coverage. CDC finds the condition value on
each condition and the decision point at least oncewith either
true or false. We pre-compose the virtual table to find the

condition value quickly in multiple condition data in Fig. 10.
This virtual table uses to generate test case based on CDC.

Figure 11 also shows virtual table for test case generation
based on MCDC. MCDC deals with each condition and the
entire conditions. Therefore, we make the virtual table like
CDC in Fig. 11. The strike-out in the virtual table is duplicate
condition. This virtual table uses to generate test case based
on MCDC.

5 A case study

This section just shows the first and the last step of the pro-
posed method from MCCFG to generate test cases. It shows

Fig. 12 Example of MCCFG

(a) (b)

Table 3 The result of test case
generation from Fig. 12

Test scenario ID Testcase ID Inflow Event Condition Outflow

(a) Statement coverage

TS1 TC1 Node1 e2, e3 N/A Node2

TC2 Node2 e13 N/A Node7

TS2 TC3 Node3 e7, e8 N/A Node5

TC4 Node5 e10 N/A Node7

TS3 TC5 Node6 e12 N/A Node7

TS4 TC6 Node4 e11 N/A Node7

(b) Decision coverage

TS1 TC1 Node1 e2, e3 N/A Node2

TC2 Node2 e13 N/A Node7

TS2 TC3 Node1 e2, e4, e5 N/A Node3

TC4 Node3 e7,e8 N/A Node5

TC5 Node5 e10 N/A Node7

TS3 TC6 Node3 e7, e9 N/A Node6

TC7 Node6 e12 N/A Node7

TS4 TC8 Node1 e2, e4, e6 N/A Node4

TC9 Node4 e11 N/A Node7

123

Author's personal copy

Cluster Comput

Table 3 continued
Test scenario ID Testcase ID Inflow Event Condition Outflow

(c) Condition/Decision Coverage

Test Scenario ID Testcase ID Inflow Event Condition Outflow

TS1 TC1 Node1 e2,e3 A == false, B == true, C==false Node2

TC2 Node1 e2,e3 A == false, B == false, C == true Node2

TC3 Node1 e2,e3 A == true, B == true, C == false Node2

TC4 Node1 e2,e3 A == true, B == false, C == false Node2

TS2 TC5 Node1 e2,e4,e5 A == false, B == true, C==false Node3

TC6 Node1 e2,e4,e5 A == false, B == false, C == true Node3

TC7 Node1 e2,e4,e5 A == true, B == true, C == false Node3

TC8 Node1 e2,e4,e5 A == true, B == false, C == false Node3

TC9 Node3 e7,e8 N/A Node5

TC10 Node5 e10 N/A Node7

TS3 TC11 Node3 e7,e9 N/A Node6

TC12 Node6 e12 N/A Node7

TS4 TC13 Node1 e2,e4,e6 A == false, B == true, C==false Node4

TC14 Node1 e2,e4,e6 A == false, B == false, C == true Node4

TC15 Node1 e2,e4,e6 A == true, B == true, C == false Node4

TC16 Node1 e2,e4,e6 A == true, B == false, C == false Node4

TC17 Node4 e11 N/A Node7

(d) Modified Condition/Decision Coverage

Test Scenario ID Testcase ID Inflow Event Condition Outflow

TS1 TC1 Node1 e2,e3 A == true, B == true, C==true Node2

TC2 Node1 e2,e3 A == true, B == true, C == false Node2

TC3 Node1 e2,e3 A == true, B == false, C == true Node2

TC4 Node1 e2,e3 A == true, B == false, C == false Node2

TC5 Node1 e2,e3 A == false Node2

TS2 TC6 Node1 e2,e4,e5 A == true, B == true, C==true Node3

TC7 Node1 e2,e4,e5 A == true, B == true, C == false Node3

TC8 Node1 e2,e4,e5 A == true, B == false, C == true Node3

TC9 Node1 e2,e4,e5 A == true, B == false, C == false Node3

TC10 Node1 e2,e4,e5 A == false Node3

TC11 Node3 e7,e8 N/A Node5

TC12 Node5 e10 N/A Node7

TS3 TC13 Node3 e7,e9 N/A Node6

TC14 Node6 e12 N/A Node7

TS4 TC15 Node1 e2,e4,e6 A == true, B == true, C==true Node4

TC16 Node1 e2,e4,e6 A == true, B == true, C == false Node4

TC17 Node1 e2,e4,e6 A == true, B == false, C == true Node4

TC18 Node1 e2,e4,e6 A == true, B == false, C == false Node4

TC19 Node1 e2,e4,e6 A == false Node4

TC20 Node4 e11 N/A Node7

one example of MCCFG with seven nodes, fourteen edges,
two decision nodes, and multiple conditions in Fig. 12. How-
ever, it can easily understands to use a white box example
even if model based testing. Figure 12 shows an example of
MCCFG.

We make a document template that expresses the test
cases. The document template of test cases consists of Test
Scenario ID, Test case ID, Inflow, Event, Condition, andOut-
flow. Test Scenario ID is a scenario path to connect with each
test case. For example, TS1 is performed such as TC1, TC2.

123

Author's personal copy

Cluster Comput

TS2 is performed such as TC3, TC4 in table 2(a). Test case ID
is an identification of the corresponding test case. The rest of
the document describes as follows: (1) Inflow is a start point
of flow, (2) Event is message(s), (3) Condition that the event
is performed, and (4) Outflow is an end point of flow. Table
3 shows the test cases generated with MCCFG of Fig. 12.

6 Conclusions

The existing CFG cannot express information about mul-
tiple conditions as white box testing technique. Therefore
we propose MCCFG to extend the existing CFG for deal-
ing with multiple conditions on model based testing, which
can describe single condition and multiple condition(s) with
“AND” or “OR” notation. To do this, we define graphical
notation ofMCCFGand adoptmodel transformation for gen-
erating test case fromMCCFG. In addition, we design meta-
model.With the proposedmethod,we can automatically gen-
erate test case from MCCFG for all coverage such as state-
ment, condition, decision, condition/decisionCoveragemod-
ified condition/decision, and multiple condition coverage.

Further research is extending this work with mapping
betweenMCCFG andUML in order to applymodel transfor-
mation, and method to optimize generated test case, which
is not dealt in this study.

Acknowledgements This research was supported by the Human
Resource Training Program for Regional Innovation and Creativity
through the Ministry of Education and National Research Foundation
of Korea (NRF-2015H1C1A1035548).

References

1. Kim, H.N., Park, S.M., Kim, D.H.: Current technology trends
in embedded software. Commun. Korean Inst. Inform. Sci. Eng.
24(8), 5–11 (2006)

2. Jung, H.J.: The analysis of data on the basis of software test data.
J. Digit. Converg. 13(10), 1–7 (2015)

3. Kwon, W.I.: The necessity of testing software for software quality
improvement. FKII Digit. 365, 66–69 (2008)

4. Burnstein, I.: Parctical Software Testing. Springer, New York
(2003)

5. Beizer, B.I.: Software Testing Techniques. Dreamtech Press, New
Delhi (2002)

6. Kwon, W.I., Park, C.E.Y., Lee, H.J., Cho, H.I.: Practical Software
Testing Foundation. Software Testing Alliances (2008)

7. Amland, S.: Risk-based testing: risk analysis fundamentals and
metrics for software testing including a financial application case
study. J. Syst. Softw. 53, 287–295 (2000)

8. Pezze, M., Young, M.: Software Testing and Analysis: Process,
Principles, and Techniques. Wiley, New York (2008)

9. OMG, MOF 2.0/XMI Mapping, v2.1.1, OMG Available Specifi-
cation (2007)

10. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF:
eclipse modeling framework. Addison-Wesley, Reading (2008)

11. Muchnick, S.: Advanced Compiler Design and Implementation,
1st edn. Morgan Kaufmann, San Francisco (1997)

12. Chilenski, J.J., Miller, S.P.: Applicability of modified condi-
tion/decision coverage to software testing. Softw. Eng. J. 9,
193–200 (1994)

13. Yang, Q., Li, J.J., Weiss, D.M.: A survey of coverage-based testing
tools. Comput. J. 52(5), 589–597 (2009)

14. Rountev, A., Kagan, S., Sawin, J.: Coverage criteria for testing
of object interactions in sequence diagrams. In: Proceedings of
Conference on Fundamental Approaches to Software Engineering,
pp. 289–304 (2005)

15. Cardoso, J., Sibertin-Blanc, C.: Ordering actions in sequence dia-
grams of UML. In: Proceedings of International Conference on
Information Technology Interfaces, pp. 3–14 (2001)

16. Garousi, V., Briand, L.C., Labiche, Y.: Control flow analysis of
UML2.0 sequence diagrams. ECMDA-FA2005. LNCS, vol. 3748,
pp. 160–174 (2005)

17. OMG, Unified Modeling Language Superstructure Version 2.4,
ptc/2010-11-14

Hyun Seung Son received the
B.S., M.S., and Ph.D degree
in Software Engineering from
Hongik University, Korea in
2015. His research interests are
in the areas of Automation Tool
Development in Embedded Soft-
ware, Real Time Operation Sys-
tem Development, Metamodel
design, and Model Transforma-
tion, Model Verification & Vali-
dation Method.

Young B. Park received the
M.S. and Ph.D. degree from
the department of Computer Sci-
ence, N. Y. Polytechnic (NYU-
Poly) in 1991. He is currently
a professor in Dankook Univer-
sity. His research interests are in
the areas of Intelligent Software
Engineering, Automatic Soft-
ware Testing, Software Develop-
ment Process Enhancement and
Software Refactoring.

R. Young Chul Kim received
the B.S. degree in Computer Sci-
ence from Hongik University,
Korea in 1985, and the Ph.D.
degree in Software Engineering
from the department of Com-
puter Science, Illinois Institute
of Technology (IIT), USA in
2000. He is currently a profes-
sor in Hongik University. His
research interests are in the areas
of Test Process, Model Based
Testing, Metamodel, and Soft-
ware Process (SP).

123

Author's personal copy

	MCCFG: an MOF-based multiple condition control flow graph for automatic test case generation
	Abstract
	1 Introduction
	2 Related works
	3 Our proposed multiple condition control flow graph (MCCFG)
	3.1 The Metamodel of MCCFG
	3.2 Graphical notation of MCCFG

	4 Test case generation and execution
	4.1 Branch extraction
	4.2 Condition extraction

	5 A case study
	6 Conclusions
	Acknowledgements
	References

