
Automatic transformation tools of UML design models
from virtual prototypes of multi-jointed robots

Hyun Seung Son1 & R. Young Chul Kim1

Received: 3 June 2016 /Revised: 14 September 2017 /Accepted: 26 December 2017 /
Published online: 11 January 2018
# Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Most of robotic companies develop a control programming of multi-jointed robots,
which spend too much time to manually adjust the moving functions of the robots. To solve
this problem, we adapt the virtual prototyping (VP) to develop the control program of the
robotic behaviors. For software engineers, in order for them to easily program this robot, we
also apply metamodel mechanism to convert UML models with virtual prototyping model. We
propose the automatic model transformation from the virtual prototyping model to UML
models, which will then develop coding based on UML models. To prove our mechanism’s
efficiency, we implement Robot to UML Translator (RUT) as our transformation rules with
ATLAS transformational language. Lastly, we show experimental validation about the consis-
tency of our proposed technique with an example of multi-joined robot prototype models.

Keywords Model transformation . UML . Virtual prototyping . Software controller . Multi-
jointed robot . Virtual Robert (VirRobot)

1 Introduction

As an example of six-legged and 18 jointed robot [1], the software controller must coordinate
18 separate motors in a precise and timely manner. But it is difficult to manually program the
behavior of the multi-jointed robot. For this reason, we suggest that virtual prototyping models
[2, 3] are used to simulate the robotic behavior to operate more precise controls. Our idea
develops a virtual model before constructing the robot. In the virtual prototype model, we must
consider whether a given robot design will work effectively or not. This information makes it
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possible to obtain invaluable data about the robotic behavior prior to its actual construction.
The actual development of a robot’s control software generally requires a redesigning of the
software itself with UML. However, if UML design models can be generated automatically
from virtual prototype models, the production costs will vastly reduce.

This paper introduces an innovative technique to automatically generate an UML-based
model from a virtual prototype-based model. At first, for the model transformation, a common
meta-model for both the virtual prototype and the UML models must be defined. In this study,
a Meta-Object Facility (MOF) [4] of Model Driven Architecture (MDA) [5] is used to define
two common meta-models. Since the Object Management Group (OMG) defined the meta-
model of the UML sample using an MOF, we also define the meta-model of the virtual
prototyping model, VirRobot [6], with an MOF as well. Secondly, in order to successfully
transform one model to the another, most effective model transformation language is required.
A number of studies have been recently worked on model transformation languages, such as
UMLModel Transformation (UMT) [7], Model Transformation Language (MTL) [8], Query /
View / Transformation (QVT) [9] and ATLAS Transformation Language (ATL) [10, 11]. For
the purpose of this research, ATL has been selected as the most viable option for the model
transformation languages on the basis of transformation engine of the MDA framework. This
is easy to use and define complicated transformation rules. In addition, it is well embedded in
the JAVA development environment, Eclipse, by using this option. Thus, we can create eight
ATL rules to transform a VirRobot virtual prototype model into UML-based class diagram
while simulateously developing an automatic transformation method in JAVA.

It is worth mentioning that UML 2.2 is composed of 14 language units and 39 packages.
For the purpose of this study, our technique only utilizes a class diagram. To clarify the
process, we extract a subset from the UML meta-model, which is pertinent to the automatic
transformation. Since the VirRobot prototyping model contains information, the class diagram
is sufficient as a design model on the robot’s static structure and basic operations. In the future,
we plan to extend the VirRobot to provide a virtual simulation function. This will require a
class diagram, state diagram, and a sequence diagram.

The paper is organized as follows: Section 2 describes the virtual prototyping process, the
VirRobot prototyping model, and the ATL transformation sequence. Section 3 briefly de-
scribes the overall transformation process from a virtual-based to a UML-based model. In
Sections 4 and 5 we will provide detailed explanations about the transformation steps. In
Section 6 we will review our experiment for results of the three multi-jointed prototype robot
models, and compare the simulated UML models with the actual models which are manually
generated by experts. In Section 7, we will review related studies from the field. Lastly, we will
provide the concluding comments and suggestions for further research.

2 Related works

Virtual prototyping [12] is used to validate a design before committing precise time and
resources to its actual physical construction. It includes creating on computer generated 3D
shapes and combining them with each other. Then, different mechanical motions are tested.
We either individually or collectively observe the various stresses of the product that may
encounter in the real world.

In virtual prototyping, a product data model is employed to build a computational proto-
type. Model operations and analysis are performed to reflect physical representations of real
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world situations. The virtual prototyping-aided design is based on the integration of computer
supported modeling and virtual reality interfacing as shown in Fig. 1. Product realization
activities are first performed with respect to the virtual world, where all the necessary product
data and manufacturing processes are modeled.

It is important to note that virtual prototype models are only used to validate a design before
creating an actual software artifact. Also the development of real artifacts requires an overall
redesign of the models themselves. For example, Microsoft Robotics Studio (MSRS) [13] can
develop a robot model in a virtual environment, but the results are limited to simulation
purposes only.

Numerous studies have been conducted in the designing of different types of multi-jointed
robots. One such design is LAURON [14], an insect-like walking robot used for transporting
heavy loads on a sandy terrain. Its controlled movement allows an autonomic walking behavior
even in rough terrain. Another design is theAirBug [15], which has a insect-like six-legged with
pneumatic muscles. It focuses on the control concept of the antagonistic actuators. Other
designs include Climber [16], a six-legged climbing robot used for high payloads, and Dante
II [17], an eight pantographic-legged robot used to explore inside volcanic craters.

VirRobot [18] is a virtual prototyping tool-set for multi-jointed robots, developed by
Hongik University and KMC Robotics Corp. in Korea. It is currently used as a form of
robotic training equipment in many domestic schools. The VirRobot can design a multi-jointed
robot consisting of several legs (up to 10) with a camera and multiple sensors to detect
ultrasonic waves and temperatures. Furthermore, the VirRobot provides both model combina-
tion and motion generation facilities. Figure 2(a) describes the model combination tool of the
VirRobot. This tool combines parts such as the legs and the joints into a specific multi-jointed
robot of virtual medium. Each part has its own operational limitations. Moreover, the model
combination tool stores the virtual robot model in an XML format in order to communicate
with the motion generation tool.

The motion generation tool produces motions for the virtual prototyping model. As described
in Fig. 2(b), it performs when simulated in a virtual environment. This process is visible on
screen, which allows the developer to view and select varying operational angles on all joints. For
each operation, the ‘moving forward’ or ‘moving backward’, we can assign and simulate a series
of motions for all multi-jointed legs involved. This tool stores an XML file containing informa-
tion about the robot’s parts, joints, and library APIs. Along with all possible motions and another
view of the virtual prototype model itself. Furthermore, the XML output makes it possible to
generate a UML-based class diagram along with source code programs at a later stage.

ATLAS Transformation Language (ATL) [19] is a model transformation language (MTL).
MTL is capable of translating an original model into several other models. It provides declarative
and imperative transformations. Mostly, the preferred transformation writing style is declarative.
However, the imperative transformation constructs with Object Constraint Language (OCL) [20].
This is used to specify the mappings that are too complex to be handled declaratively. An ATL
transformation program is composed of rules that define how source model elements are matched

Fig. 1 The principle of virtual prototyping-aided design
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and navigated in order to create and initialize the elements of the target models. There is an
associated ATL development toolkit plug-in available on an open source from the Eclipse
Modeling Framework (EMF) that implements the ATL transformation language.

3 Our robot software development process

This section describes a virtual prototyping oriented software development for multi-jointed
robots, which is adapted to an UML model translator proposed in RUT. This follows the
waterfall model of software development processes. It is composed of four phases: require-
ments analysis, prototyping, design, and implementation. A testing phase is not included
beyond the scope of this paper.

During the requirement analysis phase, the robot software requirement specifications are
first defined. For this study, the use case method is applied to write these requirements. During
the prototyping phase, a virtual robot model and all of its possible motions are developed. For
this experiment, the virtual prototyping and the VirRobot [18] are used. The virtual robot
model is then automatically translated into UML models during the design phase. For this, we
develop transformation rules with ATL in an Eclipse environment, which allows the automatic
transformation process to produce UML class diagrams from the virtual prototype model. It is
worthwhile expanding this procedure to include sequence diagrams and state diagrams in the
future. During the implementing phase, the executable machine code is automatically gener-
ated from the UML diagrams with our ‘Hongik MDD based Embedded S/W Component
Development Methodology’ (HIMEM) tool. Figure 3 describes the entire development process
and supporting tools, that is, our HIMEM tool.

Our automatic model transformation method receives input in XML from the robot
prototyping model before translating it into class diagrams in XMI [21] using an ATL
translator. The ATL translator requires a meta-model for each diagram in order to translate
one into another. While the class diagram in UML has a standard meta-model which is defined
in the OMG’s Meta Object Facility (MOF), the robot’s prototyping model needs to be defined
from the bottom up. Although the UML-based meta-model covers all UML 2.2 constructs
comprehensively, only some portions of these constructs are needed for the automatic ATL-
based transformation. Further details will be provided later in this paper.

(a) The model combination tool (b) The motion generation tool

Fig. 2 The virtual protoyping tool named VirRobot
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A VirRobot prototyping tool is used to develop a virtual prototype model during the
prototyping phase. It is performed an automatic transformation of a VirRobot model into
an UML-based design model with the ATL within an Eclipse environment. During the
design and implementation phases, it applied with a development method and tool-set that
we previously developed, that is, Hongik MDD based Embedded S/W Component Devel-
opment Methodology (HiHEM) [22, 23]. The HiHEM mechanically generates the execut-
able machine code from the UML-based design model. In the following sections, we
provide further clarification of this proposed transformation technique and the correspond-
ing developmental process.

4 Prototyping the robot model

In this approach, we first adapt the virtual prototyping and the meta-model mechanism to the
robot software development for KMC robotic company in Korea. This section explains the
virtual prototype model developed using the VirRobot prototyping tools. The virtual model of
a multi-jointed robot and all its possible motions are created in the prototyping phase. The
robot model consists of a robot structure, hardware components, joints, motion data, and robot
APIs for operations. The VirRobot generates a robot model though these steps which allow the
robot model to be constructed with hardware parts, thereby connecting each component parts,
and generating possible robotic motions. The VirRobot model and its operational data are then
stored in XML.

It is important to note that the meta-model and the VirRobot prototyping model must be
defined in order to automatically transform the robot model into a UML-based design model.
This is because the ATL translator needs a meta-model from both the source and the
transformed models based on the OMG group.

4.1 Meta-modeling for the robot model

The Meta-model of a virtual robot model should represent the actual robot model’s structure
and operations. Figure 4 shows the meta-model of the VirRobot model developed in this study.
The component of Robot Model corresponds to each robot model. It is also composed of 3
components: HardwareComponent, Joint, and Action. For this experiment, different types of
components and joints are used and defined as well.

Fig. 3 The robot software development process using virtual prototyping
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First, the HardwareComponent is defined with the robot’s hardware parts, which can be
classified into 4 types: Frame, Actuator, Body, and Sensor. The Frame is a hardware
component with no action. It is defined using only 3D graphic data. The Sensor is used to
produce or accept Active and Passive events. The former makes actively it interrupt, but the
latter is accepted by the sensor only when receiving a request from others. For the Actuator,
such as the DC Motor or Servo Motor, various levels of operation and speed can be assigned.
The Body is a Micro Control Unit (MCU) controlling the robot. The Body is part of the robot’s
hardware frame and has a MCU inside the robot, that is, being controlled by the body.
Furthermore, each hardware component has a refActionID that can be associated with an
API, necessary for robotic operations.

Secondly, the Joint is defined as a connection of the hardware components. In this study,
the meta-model has 4 types of Joint: Fixed, Ball, Hinge, and Slider. The Fixed joint type
connects hardware components firmly together with no rotation or movement. The Ball joint
provides a 360-degree rotation of the attached components. The Hinge joint type allows for a
limited 180-degree horizontal movement only. The Slider can move vertically in both direc-
tions. Each joint consists of a connectionStart, a connectionEnd, and a connection. This means
that the hardware components are connected with each other at their respective joint. Addi-
tionally, the hardware components are referred to their respective refComponentID.

The third element composing the RobotModel is the Action component. The Action is
composed of RefAction, Mapping, and Motion. RefAction is a set of APIs for operating the
robot. It is composed of several attributes Attr and functions Method. The Mapping function
maps the RefAction APIs in relation to each other, while the Motion function stores informa-
tion about the joints including their angle and direction of movement.

It is important to note that the meta-model of the VirRobot prototyping model defined
above can also be sufficiently applied to other models when mapping and designing other
multi-jointed robots. Examples of this method’s applicability are provided in the next section.

4.2 Constructing the virtual robot model

The virtual robot model, that is, the VirRobot model, is produced using the VirRobot
prototyping tool which is based on the meta-model defined in the previous subsection.
Furthermore the detailed definitions of the VirRobot model from its hardware structure to its
software APIs, are provided below.

Fig. 4 The meta-model of the robot model
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4.2.1 The structure of the robot model

As the example provided in Fig. 5, the VirRobot enables us to virtually simulate a real
multi-jointed robot. The robot below has six legs and 18 joints. Each equipped with a
motor allows it move and rotate up to 180-degrees. Although the six legs helps the robot
maintain its balance better, it allows movement to be more flexible. On fluidly performed
when compared to the 2 legged versions, it creates certain problems in term of leg control
and coordination.

Figure 6 shows the hardware structure of the multi-jointed robot model depicted in Fig. 5.
The Head describes the half-rounded top in the middle of the robot. The Body refers to the
trunk to which the head and legs are connected. Each part is connected with a Joint. For the
robot model featured in Fig. 6, only Fixed andHinge joints are present. To apply this sample to
our virtual representation, the Frame is used to model the legs. Each frame has its own labeling
number. For example, the six-legged model has 24 Frames. The Frames numbered 4, 8, 12,
16, 20, and 24 at the bottom of the chart denote the end of each leg in Fig. 6, which are shown
as red cylinders in Fig. 5.

From the robot model structure given in Fig. 6, we can validate the robot meta-model
defined in section 4.1. In fact, the entire model corresponds to the RobotModel of the meta-
model described in Fig. 4. First, the Component (the top left side of Fig. 4) composes the
HardwareComponent which maps the Frame (in Fig. 6). Next, the meta-model defines that
each Joint has a ConnectionStart, a Connection, and a ConnectionEnd. For each Joint, on
either Fixed or Hinge, we can see that two components are connected to each side. Figure 7
provides specific mapping of each element of the robot meta-model along with corresponding
elements in the actual robot model.

4.2.2 Hardware component

The robot model is comprised of several hardware components connected to each other. The
VirRobot has four types of parts: Frame, Actuator, Body, and Sensor. The Component in the
robot meta-model defines each part.

Figure 8 represents the hardware components using 3D graphics along with their corre-
sponding XML definitions. Each XML definition is composed of four elements: type, id, name
and graphic. The type indicates the component’s type as defined by the ComponentType, and
the id is a unique identifier of the component itself. The name refers to the name of the

Fig. 5 The six legged robot (made by KMC) and its VirRobot prototyping model
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component, and the graphic describes the file which stores the 3D graphic data. For example,
in the robot model featured in Fig. 8, “Leg4” consists of two components: a “Frame” and an
“Actuator” type. The Actuator component has no graphic element, but it does have a
refActionID. For this reason, it is not displayed on the screen. This refActionID is connected
to an API, and effectively defines the actions of the robot model.

Fig. 7 Robot model mapped with the robot meta-model

Fig. 6 The structure of the robot model
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4.2.3 Joint

A Joint connects two hardware components together, but is not displayed in 3D display. The
refComponentID in the robot meta-model indicates components connected to one another. In
accordance with the meta-model defined in Fig. 4, there are 4 types of Joints: Fixed, Hinge,
Ball, and Slider because of using Open Dynamics Engine (ODE) [24].

The Fixed Joint connects two components firmly together. The Ball Joint provides 360-degree
component rotation using two different motors. The Hinge Joint allows 0~180-degree horizontal
movement and commonly uses Servbo motors. The Slider Joint can allow for vertical movement as
similar to a slider. Figure 9 describes these four types of Joints and their correspondingXMLdefinitions.

4.2.4 MotionData

Motion data refers to an ordered sequence of the motor’s value as a determinant of the robot’s
actual movement. Each XML definition is composed of two elements, id and value, and every
robot action requires a sequence of motions. For example, the “forwarding action” requires
four sequential motions as described in Fig. 10.

4.2.5 Robot API for controlling motors

Hardware components such as motors have APIs to control them. Similarly, a VirRobot model
allows both existing and newly created APIs to be used. The Robot API refAction is defined as
a set consisting of an attribute attr and a method method in Fig. 11. The attr is composed of a
name and an API type. The method consists of a name and returnType for the method as well
as a name and type for its parameter. At next transformation phase, the API “Motor” will be
transformed to a ‘motor’ class at the next transformation phase in Fig. 21.

Fig. 8 Hardware components and XML definitions

Fig. 9 Joints and their XML definitions
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4.3 Meta-modeling for the UML class model

The meta-model of UML 2.2 [25] has different compliance levels ranging in value from 1 to 3.
A full scale meta-model represents a compliance level 3. It contains 14 language units and 39
packages as presented in Table 1. Among them, the language unit is the class diagram. Also,
the package relevant to the case study are the “Classes”, “Classes::Kernel”, “Classes::Dependencies”,
“Classes::Interfaces”, “Classes::AssociationClasses”, and “Classes::PowerTypes”. There are includ-
ed 61 classes in these five packages.

Our proposed automatic transformation technique does not require the use of all 61 classes
defined in the UML 2.2 meta-model, but rather need only 29 classes. Figure 12 depicts the class
diagram reorganized with the appropriate classes. Although the structure of the UML 2.2 meta-
mode remains the same abstract classes, irrelevant classes are removed. Therefore, in the transfor-
mation phase a class diagram can be produced according to the reorganized UML meta-model.

5 Transformation from robot model into design model

In the transformation phase, a VirRobot model is transformed into a UML class diagram using
the automatic transformation technique developed with ATL. The ATL transformation is
composed of three sets or categories of rules: Creation, Modification andMove. The Creation
rule creates the software architecture and structure of the multi-jointed robots. The VirRobot
prototyping model then adopts a specific predefined software architecture, after which the rule
requires no further input model or data. TheModification rule modifies the data values used in
appropriate forms. The Move rule moves the modified data into the UML design model based
on the robot model. Table 2 provides a summary of these categorized transformation rules. If
need the whole rules written in ATRAS Transformation Language (ATL), you may visit our
website [26].

Fig. 10 A sequence of robot motions for a forwarding action

Fig. 11 An XML definition of the Robot API “Motor”

5092 Multimed Tools Appl (2018) 77:5083–5106



5.1 (ATL_TR1) creating a DataType

The first step in creating a class diagram is to generate a list of data type. Examples of
DataType include String, Integer, and Boolean. These types are generated by the current
version of the translator developed by our research team. Since this transformation rule does
not need robot model as input, this step can be performed at once. Figure 13 describes the
transformation process of ATL_TR1 in detail.

Table 1 The Language units and packages for UML 2.2 meta-model

Language Unit Meta-Model Packages

Actions Actions::BasicActions
Actions::StructuredActions

Actions::IntermediateActions
Actions::CompleteActions

Activities Activities::FundamentalActivities
Activities::BasicActivities
Activities::IntermediateActivities
Activities::StructuredActivities

Activities::CompleteActivities
Activities::CompleteStructuredActivities
Activities::ExtraStructuredActivities

Classes Classes::Kernel
Classes::Dependencies
Classes::Interfaces

Classes::AssociationClasses
Classes::PowerTypes

Components Components::BasicComponents Components::PackagingComponents
Deployments Deployments::Artifacts

Deployments::Nodes
Deployments::ComponentDeployments

General Behavior CommonBehaviors::BasicBehaviors
CommonBehaviors::Communications

CommonBehaviors::SimpleTime

Structures CompositeStructure::InternalStructures
CompositeStructures::InvocationActions
CompositeStructures::Ports

CompositeStructures::StructuredClasses
CompositeStructures::Collaborations
CompositeStructures::StructuredActivities

Interactions Interactions::Fragments Interactions::BasicInteractions
State Machines StateMachines::BehaviorStateMachines StateMachines::ProtocolStateMachines
UseCases UseCases
Information Flows AuxilliaryConstructs::InformationFlows
Models AuxilliaryConstructs::Models
Templates AuxilliaryConstructs::Templates
Profiles AuxilliaryConstructs::Profiles

Fig. 12 A meta-model of the UML 2.2 class diagram
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5.2 (ATL_TR2) creating a data class

It contains motion data composed of an identifier and motion values. The ATL_TR2 creates a
Data class and two member variables, id and value. It needs no input data, and only to be
performed at one time. Figure 14 describes the transformation process of ATL_TR2 in detail.

5.3 (ATL_TR3) creating a motion class

ATL_TR3 creates a Motion class, storing one motion by combining several Data classes. It
may have subclasses corresponding to each motion. It is also executed only once. Figure 15
describes the transformation process of ATL_TR3 in detail.

5.4 (ATL_TR4) creating a dependency between a given data and motion

The Motion class and Data class are dependent on each other since the former contains the
latter as a method. The ATL_TR4 creates a dependency between them. This rule is executed
only once regardless of the input from the robot model. Figure 16 describes the transformation
process of ATL_TR4 in detail.

5.5 (ATL_TR5) creating a subclass of a motion class

ATL_TR5 reads the robot’s motion data and creates subclasses for the robot’s motions. The
name of a given robot motion corresponds to the name of the subclass translated for it. In the

Table 2 Categorized Transformation Rules

Category Transformation Rule

Creation ATL_TR1 Creating DataType
ATL_TR2 Creating Data Class
ATL_TR3 Creating Motion Class
ATL_TR4 Creating Dependency between Data and Motion

Modification ATL_TR5 Creating Subclass of Motion Class
Move ATL_TR6 Creating Class using RefAction

ATL_TR7 Creating Association using Mapping
ATL_TR8 Creating Association using Joint

Fig. 13 Transformation Rule 1 (ATL_TR1)
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example shown in Fig. 18, the motion “Forward” is also the name of the transformed subclass.
All data elements of the robot model are then transformed into Data objects. Each Data object
is created using the “new” command. The created “Forward” class has a generalization
relationship with its parent class Motion. Details of the transformation process for ATL-TR5
are described in Fig. 17.

5.6 (ATL_TR6) creating a class using RefAction

RefAction in the robot model describes action APIs which the robot can perform. In the meta-
model, each RefAction is transformed into a class with the same name. Thus, the attr, method,
and parameter elements in the RefAction are transformed into member variable, member
function, and member function parameters respectively. Figure 18 describes this transforma-
tion in detail.

5.7 (ATL_TR7) creating an association using mapping

Transformation rule 7, ATL_TR7 associates the System class with theMotion classes by using
theMapping function of the robot model. Mapping of the input model essentially connects the
system with its motions. This means that motion data can be imported by the system, thereby
enabling the multi-jointed robot to move. This connection generates a correlation between the

Fig. 14 Transformation Rule 2 (ATL_TR2)

Fig. 15 Transformation Rule 3 (ATL_TR3)
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system class and the motion class based on the model conversion process. Figure 19 described
the details of this transformation step.

5.8 (ATL_TR8) creating an association using mapping

ATL_TR8 represents a more complicated transformation procedure since it incorporates in
data from joints. This in turn contains several Connections that refer to various hardware
components.

Joints consist of multiple connections, and each connection links different hardware
components together. It is worth mentioning that occasionally there are fixed components
and hardware components that do not function properly in a joint (i.e., components
expressing graphics only). Subsequently, they must be separated from the rest. Therefore,
prior to any model conversion, special conditions must be checked and adjustments must
be made such as the simplification of complex areas using an ATL helper. Joints are
structures connected in pairs containing Connection - ConnectionStart - ConnectionEnd.
This is similar to the structure of Hardware Component - Hardware Component -
Hardware Component. As this form generates similar correlations between classes, a
one-to-one conversion of the joints becomes possible in a class diagram. The conditions
to satisfy this include the satisfaction of Condition 1 or Condition 2, which is presented in
Table 3. This means that the connection’s refComponetID must not equal −1 while

Fig. 16 Transformation Rule 4 (ATL_TR4)

Fig. 17 Transformation Rule 5 (ATL_TR5)
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ConnectionStart or ConnectionEnd has RefAction. Table 3 shoes conditions for the Class
conversion of a Joint.

A refComponentID value of −1 is used when simply connecting hardware components
together as a fixed form in the model. For the creation of a class diagram, this is unnecessary.
Also, the absence of refActionID in ConnectionStart and ConnectionEnd is not related to the
class diagram itself, since it is a graphic-type hardware component. When one or more of the
two aforementioned conditions are met, a correlation is generated in the class diagram
pertaining to both conditions. Figure 20 provides a description of this conversion method in
more detail.

Fig. 18 Transformation Rule 6 (ATL_TR6)

Fig. 19 Transformation Rule 7 (ATL_TR7)
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5.9 Transforming design model with the ATL rules

The ATL transformation rules (ATL_TR1 ~ ATL_TR8) transform the VirRobot model
depicted in Section 4.2 into a UML class diagram described in Fig. 21. For these conditions,
the robot model previously mentios has six legs, one head, and one body. The transformed
class diagram consists of six classes and ten associations. The System is the class which
controls the robot. The Motor class controls the motors used in the multi-jointed robot. The
Motion class defines the action data which consists of Forward and Backward subclasses.
These subclasses in turn define motions of going forward and backward, respectively.

A class diagram can be generated based on the model conversion rules presented. In
Fig. 21, especially, (1) shows the DataType which covers String, Integer, and Boolean.
These are the basic variable types used in the models. (2) indicates the Data class that
enables the recoding of one motion value. (3) denotes the Motion class that manages
motion data necessary to conduct one movement. The Data class is used to insert the
Motion data into appropriate attributes. (4) the Data class uses motion data inside a

Table 3 Conditions for the Class Conversion of a Joint

Joint Condition 1 Condition 2

Connection Not −1 Not −1
ConnectionStart isRefAction –
ConnectionEnd – isRefAction

Fig. 20 Transformation Rule 8 (ATL_TR8)
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given function which results in a dependent relationship being created between the two
classes. (5) is where the class to express the behaviors is generated in the fed model,
thereby sub-classing the motion class. The current class has only Forward and Back-
ward options. (6) involves system and motor class using the Robot API created in the
fed model. Depending on the condition of the Robot API, different classes may be
generated. (7) shows that the system class uses motions to conduct behaviors which
correlate this data between and among each other. (8) further provides the correlation
between the system and motor class generated by the joints themselves.

If we use a robot model which is more complicated than the above, the class diagram
transformed may be more complicated too. We can also associate existing library APIs with
the class diagram and generate source program code.

6 Experimental validation

To demonstrate the effectiveness and validity of the proposed transformation technique by
examining multi-jointed robot models from the VirRobot prototyping, we evaluate about that
two multi-jointed models are six-legged robots either with or without sensors. First, our experts
manually develope class diagrams for each of these models with the UML tool, RUT. Second,
we also automatically transform the robot models into UML models respectively. To valiate
the generated XMI code based on our suggested approach, we compare them with manually
developed XMI codes.

Fig. 21 A class diagram transformed from the robot model
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(a) Robot Model (b) UML class diagram

<?xml version="1.0" encoding="ISO-8859-1"?> 

<uml:Package xmi:version="2.0" 

    xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

    xmlns:uml="http://www.eclipse.org/uml2/3.0.0/UML" xmi:id="a1" name="RobotClassDlg"> 

  <packagedElement xsi:type="uml:DataType" xmi:id="a2" name="String"/> 

… 

  <packagedElement xsi:type="uml:Class" xmi:id="a5" name="Data"> 

    <ownedAttribute xsi:type="uml:Property" xmi:id="a6" name="id" type="a3"/> 

    <ownedAttribute xsi:type="uml:Property" xmi:id="a7" name="value" type="a2"/> 

  </packagedElement> 

  <packagedElement xsi:type="uml:Class" xmi:id="a8" name="Motion" clientDependency="a14"> 

    <ownedAttribute xsi:type="uml:Property" xmi:id="a9" name="data" type="a5" aggregation="composite"> 

<upperValue xsi:type="uml:LiteralUnlimitedNatural" xmi:id="a10" value="*"/>

</ownedAttribute>

    <ownedOperation xsi:type="uml:Operation" xmi:id="a11" name="GetData" visibility="public"> 

      <ownedParameter xsi:type="uml:Parameter" xmi:id="a12" type="a5" direction="return"> 

<upperValue xsi:type="uml:LiteralUnlimitedNatural" xmi:id="a13" value="1"/>

      </ownedParameter> 

    </ownedOperation> 

</packagedElement> 

<packagedElement xsi:type="uml:Dependency" xmi:id="a14" name="data_motion" supplier="a5" client="a8"/> 

      … 

<ownedParameter xsi:type="uml:Parameter" xmi:id="a25" name="degree" type="a3"/> 

       ... 

<packagedElement xsi:type="uml:Class" xmi:id="a60" name="Backward"> 

    <generalization xsi:type="uml:Generalization" xmi:id="a61" general="a8"/> 

       … 

  </packagedElement> 

  <packagedElement xsi:type="uml:Association" xmi:id="a66" name="system_motion" memberEnd="a67 a70"> 

    <ownedEnd xsi:type="uml:Property" xmi:id="a67" name="system" type="a32" association="a66"> 

<upperValue xsi:type="uml:LiteralUnlimitedNatural" xmi:id="a68" value="*"/>

<lowerValue xsi:type="uml:LiteralInteger" xmi:id="a69" value="1"/> 

    </ownedEnd> 

    <ownedEnd xsi:type="uml:Property" xmi:id="a70" name="motion" type="a8" association="a66"> 

<upperValue xsi:type="uml:LiteralUnlimitedNatural" xmi:id="a71" value="1"/>

<lowerValue xsi:type="uml:LiteralInteger" xmi:id="a72" value="1"/> 

    </ownedEnd> 

  </packagedElement> 

</uml:Package>

(c) The XMI’s result of UML class diagram 

Input (Robot Model) Output (Class Diagram)

ATL

Transformation

Fig. 22 An overview of the 6-legged robot’s transformation
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Table 4 Comparison of both automatically transformed XMI code and manually developed one of UML class
diagram for six-legged robot (T: Type, A: Automatic Generation, M: Manual Development)

Components
of meta class

T The XMI code of UML class diagram

DataType A <packagedElement xsi:type = “uml:DataType” xmi:id = “a2” name = “String”/>
M <packagedElement xmi:type = “uml:DataType” xmi:id = “_Iac0WOtfEd6OJ99i0DhBUw”

name = “String” />
Class A <packagedElement xsi:type = “uml:Class” xmi:id = “a5” name = “Data” >

</packagedElement>
M <packagedElement xmi:type = “uml:Class” xmi:id = “_Iac0SetfEd6OJ99i0DhBUw”

name = “Data” > </packageElement>
Attribute A <ownedAttribute xsi:type = “uml:Property” xmi:id = “a9” name = “data” type = “a5”

aggregation = “composite”>
<upperValue xsi:type = “uml:LiteralUnlimitedNatural” xmi:id = “a10” value = “*”/>
</ownedAttribute>

M <ownedAttribute xmi:id = “_Iac0TetfEd6OJ99i0DhBUw” name = “data”
type = “_Iac0SetfEd6OJ99i0DhBUw” aggregation = “composite”>

<upperValue xmi:type = “uml:LiteralUnlimitedNatural”
xmi:id = “_Iac0TutfEd6OJ99i0DhBUw” value = “*”/> </ownedAttribute>

Operation A <ownedOperation xsi:type = “uml:Operation” xmi:id = “a11” name = “GetData”
visibility = “public”>

<ownedParameter xsi:type = “uml:Parameter” xmi:id = “a12” type = “a5”
direction = “return”>

<upperValue xsi:type = “uml:LiteralUnlimitedNatural” xmi:id = “a13” value = “1”/>
</ownedParameter></ownedOperation>

M <ownedOperation xmi:id = “_Iac0T-tfEd6OJ99i0DhBUw” name = “GetData”>
<ownedParameter xmi:id = “_Iac0UOtfEd6OJ99i0DhBUw”

type = “_Iac0SetfEd6OJ99i0DhBUw” direction = “return”>
<upperValue xmi:type = “uml:LiteralUnlimitedNatural”

xmi:id = “_Iac0UetfEd6OJ99i0DhBUw” value = “1”/>
</ownedParameter></ownedOperation>

Parameter A <ownedParameter xsi:type = “uml:Parameter” xmi:id = “a25” name = “degree”
type = “a3”/>

M <ownedParameter xmi:id = “_Iac0ROtfEd6OJ99i0DhBUw” name = “degree” />
Association A <packagedElement xsi:type = “uml:Association” xmi:id = “a66” name = “system_motion”

memberEnd = “a67 a70”>
<ownedEnd xsi:type = “uml:Property” xmi:id = “a67” name = “system” type = “a32”

association = “a66”>
<upperValue xsi:type = “uml:LiteralUnlimitedNatural” xmi:id = “a68” value = “*”/>
<lowerValue xsi:type = “uml:LiteralInteger” xmi:id = “a69” value = “1”/></ownedEnd>
<ownedEnd xsi:type = “uml:Property” xmi:id = “a70” name = “motion” type = “a8”

association = “a66”>
<upperValue xsi:type = “uml:LiteralUnlimitedNatural” xmi:id = “a71” value = “1”/>
<lowerValue xsi:type = “uml:LiteralInteger” xmi:id = “a72” value = “1”/>
</ownedEnd></packagedElement>

M <packagedElement xmi:type = “uml:Association” xmi:id = “_Iac0Y-tfEd6OJ99i0DhBUw”
name = “system_motion” memberEnd = “_Iac0ZOtfEd6OJ99i0DhBUw
_Iac0Z-tfEd6OJ99i0DhBUw”>

<ownedEnd xmi:id = “_Iac0ZOtfEd6OJ99i0DhBUw” name = “system”
type = “_Iac0MOtfEd6OJ99i0DhBUw” association = “_Iac0Y-tfEd6OJ99i0DhBUw”>

<upperValue xmi:type = “uml:LiteralUnlimitedNatural”
xmi:id = “_Iac0ZetfEd6OJ99i0DhBUw” value = “1”/>

<lowerValue xmi:type = “uml:LiteralInteger” xmi:id = “_Iac0ZutfEd6OJ99i0DhBUw”
value = “1”/>

</ownedEnd>
<ownedEnd xmi:id = “_Iac0Z-tfEd6OJ99i0DhBUw” name = “motion”

type = “_Iac0TOtfEd6OJ99i0DhBUw” association = “_Iac0Y-tfEd6OJ99i0DhBUw”>
<upperValue xmi:type = “uml:LiteralUnlimitedNatural”

xmi:id = “_Iac0aOtfEd6OJ99i0DhBUw” value = “*”/>
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6.1 A first case: The six legged robot

We shows the transformation process for the six-legged multi-jointed robot model in Fig. 22.
With input model(that is, Robet model), we can transform with ATL rules to create the System,
Motor, Motion, Data, Forward, and Backward classes along with associations for each of six
legs. Like sections 4 and 5, the Motion, Data, Forward, and Backward classes were respon-
sible for processing the robot’s motions. Figure 22 shows an overview of the six-legged robot’s
transformation.

In Table 4, we show almost similarity between our automatic code generation (A) and our
manual code development(M) on all elements of meta class. That is, we can recoginize to have
no differences between XMI code of the transformed class diagrams and one developed
manually using a UML tool. It further shows that both XMI codes are the same except
generating the unique ID.

Table 4 (continued)

Components
of meta class

T The XMI code of UML class diagram

<lowerValue xmi:type = “uml:LiteralInteger” xmi:id = “_Iac0aetfEd6OJ99i0DhBUw”
value = “1”/>

</ownedEnd></packagedElement>
Dependency A <packagedElement xsi:type = “uml:Dependency” xmi:id = “a14” name = “data_motion”

supplier = “a5” client = “a8”/>
M <packagedElement xmi:type = “uml:Dependency “xmi:id = “_Iac0YutfEd6OJ99i0DhBUw”

name = “data_motion” supplier = “_Iac0SetfEd6OJ99i0DhBUw
“client = “_Iac0TOtfEd6OJ99i0DhBUw”/>

Generalization A <generalization xsi:type = “uml:Generalization” xmi:id = “a61” general = “a8”/>
M <generalization xmi:id = “_Iac0U-tfEd6OJ99i0DhBUw”

general = “_Iac0TOtfEd6OJ99i0DhBUw”/>

Input (Robot Model) Output(Class Diagram)

ATL

Transformation

Fig. 23 The six-legged robot’s transformation with two sensors
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6.2 A second case: Six-legged robot with two sensors

For more robot model’s case, we add two sensors to six-legged robot as depicted in Fig. 23.
The whole gerenated classs of the second case are created with the orignial System class in
addition to generating an UltraSonic class and two associations. The added parts of Fig. 23 are
shown within a dotted box. Table 5 shows a comparison between the Ultrasonic class and its
associations. No differences between them are detected except for the mechanism generating
the unique ID.

Therfore, we validate our proposed transformation technique in that we find no differences
between the automatically transformed XMI codes with the manually developed one.

Table 5 Comparison of both automatically transformed XMI code and manually developed one of UML class
diagram for six-legged robot with two sensors (C: Components of meta class, T: Type, A: Automatic Generation,
M: Manual Development)

C T The XMI code of UML class diagram

Class A <packagedElement xsi:type = “uml:Class” xmi:id = “a54” name = “UltraSonic”>
</packagedElement>

M <packagedElement xmi:type = “uml:Class” xmi:id = “_0hfWQQX4Ed-KYvZw-Au8DQ”
name = “UltraSonic”>

</packagedElement>
Association A <packagedElement xsi:type = “uml:Association” xmi:id = “a133” name = “body_u1”

memberEnd = “a134 a137”>
<ownedEnd xsi:type = “uml:Property” xmi:id = “a134” name = “system” type = “a32”

association = “a133”>
<upperValue xsi:type = “uml:LiteralUnlimitedNatural” xmi:id = “a135” value = “1”/>
<lowerValue xsi:type = “uml:LiteralInteger” xmi:id = “a136” value = “1”/>
</ownedEnd>
<ownedEnd xsi:type = “uml:Property” xmi:id = “a137” name = “ultrasonic” type = “a54”

aggregation = “composite” association = “a133”>
<upperValue xsi:type = “uml:LiteralUnlimitedNatural” xmi:id = “a138” value = “1”/>
<lowerValue xsi:type = “uml:LiteralInteger” xmi:id = “a139” value = “1”/>
</ownedEnd>
</packagedElement>

M <packagedElement xmi:type = “uml:Association” xmi:id = “_0hfWfgX4Ed-KYvZw-Au8DQ”
name = “body_u1” memberEnd = “_0hfWfwX4Ed-KYvZw-Au8DQ
_0hfWggX4Ed-KYvZw-Au8DQ”>

<ownedEnd xmi:id = “_0hfWfwX4Ed-KYvZw-Au8DQ” name = “system”
type = “_0hfWEAX4Ed-KYvZw-Au8DQ”
association = “_0hfWfgX4Ed-KYvZw-Au8DQ”>

<upperValue xmi:type = “uml:LiteralUnlimitedNatural”
xmi:id = “_0hfWgAX4Ed-KYvZw-Au8DQ” value = “1”/>

<lowerValue xmi:type = “uml:LiteralInteger” xmi:id = “0hfWgQX4Ed-KYvZw-Au8DQ”
value = “1”/>

</ownedEnd>
<ownedEnd xmi:id = “_0hfWggX4Ed-KYvZw-Au8DQ” name = “ultraSonic”

type = “_0hfWQQX4Ed-KYvZw-Au8DQ” aggregation = “composite”
association = “_0hfWfgX4Ed-KYvZw-Au8DQ”>

<upperValue xmi:type = “uml:LiteralUnlimitedNatural”
xmi:id = “_0hfWgwX4Ed-KYvZw-Au8DQ” value = “1”/>

<lowerValue xmi:type = “uml:LiteralInteger” xmi:id = “_0hfWhAX4Ed-KYvZw-Au8DQ”
value = “1”/>

</ownedEnd>
</packagedElement>
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7 Conclusion

Most of robotic companies develop a control programming of multi-jointed robots, which spend too
much time to manually adjust the moving functions of the robots. To solve this problem, we adapt
the virtual prototyping (VP) to develop the control program of the robotic behaviors. For software
engineers, in order for them to easily program this robot, we also adapt metamodel mechanism to
convert UML models with virtual prototyping model. We developed the automatic model transfor-
mation from the virtual prototyping model to UML models, which then automatically develop
coding with HIMEM. To prove our mechanism’s efficiency, we implemented Robot to UML
Translator (RUT) as our transformation rules with ATLAS transformational language. In the future,
we intend to extend the automatic transformation technique using motion scripts. In order to make
the simulation process more precise, we in turn should include both sequence and state diagrams, as
well as class diagrams. In this regard, we expect to apply orbit tracing techniques that can enable
softer movement. In addition, it will be added various sensors (e.g. temperature, GPS, and
acceleration) and hardware components applicable to themodelwhile the converterwill be extended
to further enable any model conversion.
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