IEICE

TRANSACTIONS

on Information and Systems

VOL. E101-D NO. 6
JUNE 2018

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.

The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.

Distribution by anyone other than the author(s) is prohibited.

A PUBLICATION OF THE INFORMATION AND SYSTEMS SOCIETY

-. The Institute of Electronics, Information and Communication Engineers
l Kikai-Shinko-Kaikan Bldg., 5-8, Shibakoen 3 chome, Minato-ku, TOKYO, 105-0011 JAPAN



IEICE TRANS. INF. & SYST., VOL.E101-D, NO.6 JUNE 2018

1541

[PAPER

The Pre-Testing for Virtual Robot Development Environment

Hyun Seung SON'®, Nonmember and R. Young Chul KIM'™, Member

SUMMARY  The traditional tests are planned and designed at the early
stages, but it is possible to execute test cases after implementing source
code. Since there is a time difference between design stage and testing
stage, by the time a software design error is found it will be too late. To
solve this problem, this paper suggests a virtual pre-testing process. While
the virtual pre-testing process can find software and testing errors before
the developing stage, it can automatically generate and execute test cases
with modeling and simulation (M&S) in a virtual environment. The first
part of this method is to create test cases with state transition tree based on
state diagram, which include state, transition, instruction pair, and all path
coverage. The second part is to model and simulate a virtual target, which
then pre-test the target with test cases. In other words, these generated test
cases are automatically transformed into the event list. This simultaneously
executes test cases to the simulated target within a virtual environment. As
a result, it is possible to find the design and test error at the early stages of
the development cycle and in turn can reduce development time and cost as
much as possible.

key words: virtual environment, pre-testing, automatic test cases genera-
tion, simulation

1. Introduction

In the software development life-cycle, the error finding
stage has a significant range of expenses depending on
which stage the error is found. At the implementation stage
it will cost 30~100 times more than the cost for fixing er-
rors in the requirement stage [1]. Software errors may be
found out during testing. If the software test can be exe-
cuted earlier, then it will reduce the time of development
and cost. Yet, still in today’s software industries, the con-
ventional tests are used after development is complete [9].
To test at the earlier stage, several papers mentioned the au-
tomatic generation method of test cases in the virtual simu-
lation environment [2]-[6].

Based on the previous test case generation method, we
suggest a way to automatically generate test cases that pro-
vide four coverages for state, transition, instruction pair, and
all paths [6]. Our proposed method includes ‘pre-modeling
& simulation’ process along with test case generation. Some
papers extended ‘pre-modeling & simulation’ process for
assembling and pre-testing of virtual multi-jointed robot be-

Manuscript received August 3, 2017.
Manuscript revised January 5, 2018.
Manuscript publicized March 1, 2018.
"The author is with Department of Reliability Technology In-
stitute, Moasoft, Seoul, 05770 Korea.
""The author is with Department of Computer and Information
Communications, University of Hongik, Sejong, 30016 Korea.
a) E-mail: hson@moasoftware.co.kr
b) E-mail: bob@hongik.ac.kr (Corresponding author)
DOI: 10.1587/transinf.2017EDP7249

E"a) The model combination tool  (b) The motion generation tool

Fig.1  The virtual protoyping tool named VirRobot.

fore developing controlled joints [2][5].

Our VirRobot[3]-[5] is a virtual-prototyped multi-
jointed robot, which was developed by Hongik University
for KMC Robotics Corp. in Korea. This is utilized as a
robotic training equipment in many domestic schools. The
VirRobot can design a multi-jointed robot consisting up to
10 legs with a camera and multiple sensors to detect ultra-
sonic waves and temperatures. In addition, the VirRobot
provides both model combination and motion generation fa-
cilities. The Fig. 1 (a) illustrates the model combination tool
generated by VirRobot.

It is possible to determine whether the dynamic robot
behavior is correct or not. The test case generation method
is to generate test cases based on the state diagram. The test
cases are identified with test case IDs, which include four
coverages such as the state coverage, transition coverage,
instruction pair coverage, and all path coverage, which are
all based on the state transition tree. To create test cases with
the state transition tree, we adapt MOF (Meta Object Facil-
ity) [7] and XMI (XML Metadata Interchange) [8]. How-
ever, this method does not necessary to wait until the imple-
mentation stage since it can have the executing test cases in
the virtual simulation environment even at the design stage.
Therefore, the design error can be found in early stage.

This paper is organized as follows. Chapter 2 describes
related work. Chapter 3 explains our virtual pre-testing
process. Chapter 4 shows a simple case of our proposed
method. Finally, Chapter 5 describes the conclusion.

2. Related Work

In model based testing, Andras Toth et al. [10] had proposed
the framework for the model level testing of UML model.
As of the result of this UML, the design can be tested. The
design flow can be found in the modeling stage of develop-
ment process. This is so that the realization activity to save

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers



1542

significant effort and expenses.

The extraction of model based test case in the formal
conformance testing for UMLSC (UML State-Chart) had
been suggested by Stefania Gresi et al. [11].

Bertolino A. et al.[12] have integrated the sequence
diagram with the state of extracting reference model, per-
fectly. This is automatically used to extract the test case
based on the UML specification. The objective of the paper
is processing a perfect model from the state and sequence di-
agrams for UIT (User Interaction Test). This method guar-
antees the inclusion of all the allowable sequences. How-
ever, it cannot provide any coverage to measure the system.
The advantage of this method is to create the accurate test
case.

3. Ouwur Virtual Pre-Testing Process

This approach consists of a total of seven stages of the devel-
opment cycle: requirements, pre-modeling, pre-simulation,
design, implementation, model based testing, and code
based testing as shown in Fig. 2.

The requirement stage (Step 1) extracts and analyzes
requirements for the virtual robot. The pre-modeling stage
(Step 2) assembles the parts (motor, sensor, and MCU) of
the virtual target object (that is, a robot), and extracts the
motion of it. The selected part in this stage is linked with
the hardware profile. When assembling the target object,
a robot is assembled in the desired form with the parts of
hardware components built in M&S. For example, the robot
consists of the head, the body, and the legs according to its
characteristic and parts. The suitable position has its roles,
which connects all joints to give complete movement to the
robot. The dynamic robot behavior can be created easily
with the ‘motion capture method’ through extracting serial
motions of virtual object. By using motion capture, it can
see and save the degree of each angle depending on all dy-

[
h
'

E Pre-Modeling,

|

| Pre-Siniulation : step. 5
S SRR )11 L LD G| S Model Based Tes|
| Sefli’.e“‘te ‘ State Ly ;l‘est Case !
Diagram Diagram Generation| |
f :

|

: Code Based Test:
: step. 6 i }
i . Test Case |
1 Implementation : 3 =l ;
' ' €ner: '

1 T
1 Test Execution

Fig.2  Model based testing in M&S.

IEICE TRANS. INE. & SYST., VOL.E101-D, NO.6 JUNE 2018

namic behaviors. The robot can be moved by restoring the
sequentially captured & saved data. It may be similar to play
the animation.

At the pre-simulation stage (Step 3) analyses the
robot’s environment, and simulates the dynamic robot
movements to occur. This is to find the potential problem
to move it. In the virtual environment the robot can execute
its mission just as the same as it works on in the real envi-
ronment. Exterior elements in the virtual environment are
weather, topography, and objects. That is, it simulates all
movements of object in virtual physics engine like comple-
tion of robot model and motions. It is also possible to check
the dynamic robot behavior in this stage, such as determin-
ing whether it may move in incompatible directions.

At the design stage (Step 4), the robot model is con-
structed with UML. In this stage, the robot is designed using
class, sequence, and state diagram. The parts of the robot
can be represented with the class of each part. At this time,
it can set each part of the robot with its role, attribute, and
behavior. At model based testing (Step 5), it can create the
test case based on the model generated in the design stage.
The target object in the M&S environment is also tested.
Based on the state diagram, the state transition tree is gen-
erated to create test cases. We can asynchronously test the
simulated model in the virtual environment along with test
cases generated at the design stage. To execute the pre-test
without code in the simulation environment, the simulated
robot can be activated with the action language, that is, the
intermediate language. Therefore, the robot can move with
the action language in the virtual environment without com-
plete production. In other words, it can be tested through
black box testing without code in M&S simulation tool.

At the implementation stage (Step 6), it can be possi-
ble to generate the code based on the design model. The
target code is created with the diagram metamodel and code
template. At code based testing (Step 7), the white box test
based on the code generated in implementation stage it car-
ried out. The quality can be improved even further by exe-
cuting both model based testing and code based testing even
after complete development.

This paper just focuses on Step 3, Step 4, and Step 5
within the proposed test process.

4. Test Case Generation and Execution

Our approach is focused on model based test case genera-
tion & execution, especially the state diagram, which ver-
ifies the relationships among the event, behavior, action,
state, and state transition. With this technique, it can de-
termine whether the dynamic behavior of the robot (that is,
the changing of the state of the robot) can satisfy the system
specifications or not.

There are three causes of the fault mechanism of the
state based system as follows: the first is that state chang-
ing of state diagram cannot transit according to the system
function specification accurately. The second is that the syn-
tax of state diagram is wrong or inconsistent. The third is



SON and KIM: THE PRE-TESTING FOR VIRTUAL ROBOT DEVELOPMENT ENVIRONMENT

Test case execution

Test case generation

transform trigge

State diagram (-Mé

with action language

executes virtual pbject with action language

State transition tree ‘ l'

T T _choose State Coverage
“Coverage-driven — Transition Coverage
strategy — Instruction Pair Coverage

All path Coverage

Virtual Simulator

enerates
Test case
X

manually select any test cases, and automatically create event list based on test scenarios

Fig.3  Testing procedure of the test case generation and execution.

the conversion from state diagram to the test code. In this
case, it may cause troubles if converted manually. There-
fore, it does not matter if automatically converted with the
automatic tool.

For example, Fig. 3 shows the whole testing procedure
for test case generation and execution. First in test case
generation, the state table is transformed with the state dia-
gram, which is converted into the state transition tree. Then
we can generate test case with this transition tree based on
coverage-driven strategy. In test case execution, we manu-
ally select test cases from the generated test cases with any
coverage driven strategy. Then we automatically generate
the event list based on test scenarios which consist of Test
Case ID, Type, State/Event, and Pass/Fail (P/F). Finally, we
execute each event of the whole event list sequentially.

Each event triggers the transition from one state to
other state of the state diagram and executes the virtual robot
with action language in a virtual simulator. The action lan-
guage is used to work a virtual object in a virtual simulator
without even complete development. As a result, the exe-
cution of test cases triggers the state diagram which reflects
the virtual simulator to execute the virtual robot. This then
confirms the testing result of the simulator. From this we
can recognize and decide if it is a pass/fail.

4.1 Conversion of State Diagram to State Transition Tree

Initially, the state diagram is converted into the state table.
The state table has been separated with state and event. This
can represent states of all situations. From this, we create the
state transition tree based on the state table. State transition
tree has all the possible movable states repeatedly. The test
case level is varied according to the frequently respective
execution.

To convert the state table into the transition tree,
we suggest a different algorithm based on Binder’s algo-
rithm [16]. Thus, we can easily convert the state table to
the transition tree. One of the reasons why we use the state
table is because we can correctly identify the missing state,
the incorrect transition, or the missing event. Figure 4 shows
our algorithm to analyze from a starting state to all states in
a stable table, which marks the state as visited.

This generates the transition tree like the breadth first
search (BFS), as seen in the generated transition tree with

1543

1. Create the root node of the transition tree from the
‘start’ state in the state diagram.

2. Identify the ‘start’ state as the root node in the state
table.

3. From the state in step 2, create the child nodes and link
edges on state transition tree in the column order like
out-branches of the state. With the created states, then
mark “V’ in “visited” column of the state table.

4. Visit each node of the child states repeatedly in the
column of the top row in identified child nodes of the
state until visiting all states.

5. Repeatedly execute step 3 and step 4 until marking “\’
in ‘visited’ column on visiting states in each column of
all rows of the table, except the already ‘visited’ state.

Fig.4  Our suggested algorithm.

Vd - 7
> State A

(a) State diagram

"

State (I)Slale A State B State C
Even state visited state visited state visited
T1 (2DState B v N/A x N/A x
T2 (3State C v N/A X N/A X
T3 N/A x (@)State C N N/A x
T4 N/A x (5)State A v N/A x
TS N/A x N/A x (@)State A v
T6 N/A x N/A x (Pstate B N

(b) State table

T3 T4 T5 To

@ State B |

@| State C ‘ @ State A ‘ @ State A ‘

(c) State transition tree

Fig.5 The conversion process of State Transition Tree from State Dia-
gram.

the numbering order in Fig. 5 (b). We add a ‘visited’ column
in the state table to check whether the state is visited or not.

Figure 5 (a) shows a simple state diagram. Figure 5 (b)
shows how to make the state table based on the state dia-
gram. The available state transits toward another state meet-
ing at the event. Then each state can be indicated on the
top of table and the event on the left side of the table. For
example, the out-branches on State A are T1 and T2. The



1544

~ - g
. r /
N T3 - /

\ s < 16
NT@®
y

Test case 2

alenien
4

Test case |

State Transition Tree State Diagram

Fig.6  State coverage of state diagram.

out-branches on State B are T3 and T4. The out-branches of
State C are TS5 and T6. It also marks the numbering on each
state like Fig. 5 (b).

Figure 5 (c) shows how to create the transition tree. It
lists all the states on the top of table in the sequence. Then,
it indicates all the available states for access in the next
step. We can possibly generate different test cases from the
state transition tree according to the choice of any coverage
driven strategy. All these possible paths in the sequence are
the test cases.

4.2 Coverage-Driven Strategy

The coverage means a complete set of tests which can be
measured. It is possible to apply one design model [13].
Therefore, this paper applies coverage from the state tran-
sition tree based on the state diagram. This generates test
cases with the tree. These coverages have four types, which
are state coverage, transition coverage, instruction pair cov-
erage, and all path coverage.

State coverage has a rule that requires a state at least
one time to cover all states to execute. We can extract two
types of test cases to satisfy 100% of coverage after trans-
forming the state transition tree from the state diagram like
Fig. 6. In this case of coverage, two test cases must be sat-
isfied such as test case 1(A-B-C) and test case 2(A-C-B).
This coverage is similar to transition coverage. However is
should begin from the starting state to the end state over all
paths. In this state coverage, to generate test cases to satisfy
100% of this coverage, it becomes to find all paths of states
and transitions.

Transition coverage has a rule that requires a transition
at least one time to cover all transitions of the applied model
to execute. After transforming state transition tree we can
extract four types of test cases to satisfy 100% of coverage
from state diagram like Fig. 7. In these cases of coverage, it
must satisfy four test cases such as test case 1(A-B-C), test
case 2(B-A), test case 3(C-A), and test case 4(A-C-B). This
coverage is just to visit a transition one time, not necessarily
going back the starting state again. To generate test cases
to satisfy 100% of the transition coverage, it should find all
of the state coverage. Then is should add partial paths of no
executed transitions.

Instruction pair coverage has a rule that requires a pair
of state and transition at least one time to cover instruction
pair coverage in order to execute. After transforming state

IEICE TRANS. INE. & SYST., VOL.E101-D, NO.6 JUNE 2018

= State A \.'L State B
5

\ T2 T6
e [sua\ | [sfen] (s Csmec )

Test case 1 Tegt case 2 Test case 3 Test case 4

State Transition Tree State Diagram

Fig.7  Transition coverage of state diagram.

N\ T6

te C Statc% Sl?tc A Slats B

Test case 3 Test case 4 Test case 5 Test case 6

State Transition Tree State Diagram

Fig.8 Instruction pair coverage of state diagram.

Wta 15/ N Te

|s%c \SnaﬁA||Sta$A| s B
"4 ¥ v N

Test case 1 Test case 2 Test case 3 Test case #

T3,

State Transition Tree State Diagram

Fig.9  All path coverage of state diagram.

transition tree from state diagram, we can extract six types
of test cases to satisfy 100% of coverage like Fig. 8. In these
cases of the coverage, it must satisfy test case 1(A-B), test
case 2(A-C), test case 3(B-C), test case 4(B-A), test case
5(C-A), and test case 6(C-B). This coverage consists of a
pair of a state and a transition. It should find no overlapped
paths with a state and a transition in order to generate test
cases to satisfy 100% of coverage.

All path coverage has a rule that travels all possible
paths of state transition tree. After transforming state tran-
sition tree from state diagram, we can extract four types of
test cases to satisfy 100% of coverage like Fig. 9. In these
cases of coverage, it must satisfy test case 1(A-B-C), test
case 2(A-B-A), test case 3(A-C-A), and test case 4(A-C-B).
This coverage is similar to transition coverage, but should
begin from the starting state over all paths. It should find all
possible paths via all states and transitions to generate test
cases to satisfy 100% of coverage.

4.3 Test Case Generation with Metamodel Mechanism

To automatically generate test case description from the



SON and KIM: THE PRE-TESTING FOR VIRTUAL ROBOT DEVELOPMENT ENVIRONMENT

E Element
= name : EString

B state L H Transition

parent
1

child

(a) Metamodel of state transition tree

E Element
= name : EString

H rowElement o testcas H colElement 0.*
1 nextState
H state

= event | EStNNG |g
= action : EString

(b) Metamodel of test case description

Fig.10  Metamodel for test case generation.

<State name="State A" />
<State name~"State B” />
<State name~"State C” />

StaEc A

<Tran name="T1"
v N paren @State.0” child="//@State.1” />

T.]' h TZ <Transition name="T2"
- [ | parent="//@State.0” child="//@State.2” />

State B | State C <Transition name="T3"
2y 7= | paren @State.1” child="//@State.2” />

7 AN <Transition name="T4"
T}, \ T4 TS,-" .Tﬁ paren @State.1” child="//@State.0” />

. A\ <Transition name="

State C ‘ \ State A State A | | State B || parent="//@State.2” child="//@State.0” />

<Transition name="T¢"
parent="//@State.2” child="//@State.1” />

XML Metadata Interchange (XMI)

State Transition Tree

Fig.11  XMI representation of state transition tree based on metamodel.

state transition tree, we propose this generation with meta-
model mechanism. Metamodel is used with MOF (Meta
Object Facility) as a language to define a model. It also uses
XMI to represent MOF data. Figure 10 shows each meta-
model of the state transition tree and test case description.

This state transition tree is represented with corre-
sponding states and transitions. We separate the state ele-
ment and the transition element. Only the state element is
used, and the transition element is linked with the state and
the referenced tree. Figure 11 shows the XMI representa-
tion of state transition tree based on this metamodel. The
states are A, B, C and the transitions are T1~T6. These link
states with transitions based on attributes of parent and child
states.

Test case description consists of two parts, RowEle-
ment and ColElement. The RowElement identifies the serial
order of test cases. The ColElement represents the process
of the transition between states.

In the ColElement, we are able to represent the path
of state and transition in order to link states continuously

1545
TCID Initial State Event Action Net State Event Action End
TC1 5A El Do §B E2 Do §A
C2 5B E2 Do S A El Do 5B

<RowElement name="TC1"> N

<testcase name="TC1"»
<State name="5_A" event="E1" Action="Da" >
<nextState name="5_B" event="E2" Action="Do" >
<nextState name="S_A" />
</nextState >
</State>
< /testcase>
</RowElement>
<RowElement name="TC2">
<testcase name="TC2">
<State name="5_B" event="E2" Action="Do">
<nextState name="5_A" event="E1" Action="Do" >
<nextState name="S_B" />
</nextState>
< /[State=
< /testcase>
</RowElement>

Fig.12 XMl representation of test case description based on metamodel.

for(int i=1; STT.Testcases; it++) {

RowElement rowE = Create(RowElement);

rowE.name = “TC”+i;

STT.Transition transitions = STT.Testcases[i-1];

State firstState = null;

for(int ti=0; transitions; ti++) {

if(ti == 0) { //first

firstState = Create(State);
firstState.name = transitions[ti].parent.name;
firstState.event = transitions[ti].name;
firstState.action = transitions[ti].parent.acttion;
rowE.testcase = firstState;

else if(ti == transitions.length-1) { /last
State endState = Create(State);
endState.name = transitions[ti].parent.name;
firstState.nextState.add(endState);

else {
State state = Create(State);
state.name = transitions[ti].parent.name;
state.event = transitions[ti].name;
state.action = transitions[ti].parent.acttion;
firstState.nextState.add(state);

Fig.13 A transformation algorithm for test case.

longer. Figure 12 represents the XMI test case description.
Each test case ID is represented on RowElment. With the
information of RowElment, each test case ID represents a
links state and transition.

We can transform two different types of data with this
metamodel from the State Transition Tree. Figure 13 shows
the transformation algorithm for test case creation from the
state transition tree with the metamodel. This algorithm is
described as follows. First, all possible test cases are ex-
tracted. Then, the test case ID is produced and information
within RowElements is filled. Secondly, a data is developed
sequentially (initial state, event, action) with the test case. It
repeatedly executes all states and transitions within the test
case.

Finally, the test cases with the state transition tree is
generated. Generated test cases are shown in the Table 1.
Generated test cases describe the scenario executed by states
within the paths of the state transition tree.



1546
Table 1  Generated test case.
Initial . Next .
ID State Action Event State Action Event End
TC1 S A Do El S B Do E2 S A
TC2 S B Do E2 S A Do El S B

4.4 Test Case Execution in a Virtual Environment

It is possible to model the change of the state with only a
state diagram. However, it is impossible to control the robot
in a virtual environment because of describing the behav-
ioral movements like black-box style. To solve this prob-
lem, we suggest using a state diagram with action language.
Action language is a set of demanded commands to control
the robot in a virtual environment. Writing the commands
with the action language, described in the state or transition
of the state diagram, is advised. After one state is transited,
the described commands are sent with the action language in
the state and into the simulator. This is to control the robot
in a virtual environment.

These commands have two types: state control and mo-
tion control. In the motion control commands, there are
five commands to execute ‘forward’, ‘backward’, ‘leftturn’,
‘rightturn’, and ‘stop’ such as moveForward(), moveBack-
ward(), moveLeftTurn(), moveRightTurn(), moveStop() like
Fig. 14.

Figure 15 shows the state diagram with Action lan-
guage. It represents the forward movement until the condi-
tion ‘time’ <= 10 in ‘Forward’ state, and to go to the ‘Stop’
state if ‘time’ > 10.

In the state control commands, there are six com-
mands to control the robot with the data from the front
sensor, the rear sensor, the left sensor, and the right
sensor. These include getFrontSensor(), getRearSensor(),
getLeftSensor(), getRightSensor(), getLocationX(), getLo-
cationY () like Fig. 16.

Figure 17 shows the state diagram with Action lan-
guage. For example, it represents the forward movement
until the front sensing value ‘fs’ >= 10 in ‘Forward’ state,
and go to the ‘Backward’ state if ‘fs’ < 10.

Although we use action language on state to execute,
it cannot transit other states without the happening of an
event. To solve this problem, we make the event list to au-
tomatically occur from one event to another. This event list
causes it to occur sequentially after each event in state di-
agram is transiting from a state to the other state. This can
possibly help to execute test scenarios linked with test cases.
In other words, the generated test case cannot be processed
right away in the simulator. Thus to execute, it must convert
the test case to the event list as shown in Table 2

Table 2 is the conversion result of the test cases gener-
ated in the Table 1 to the event list. TCID is the ID of test
case. In the Type column, S represents a state, and E rep-
resents an event. State/Event is assigned in plural so both
state and event can come in. Test data means input value
to execute test, and also voluntarily input the value of guard

IEICE TRANS. INE. & SYST., VOL.E101-D, NO.6 JUNE 2018

L 1+ | 2 [ 3 [ a |

(a) Action command: moveForward()

‘ 1

2 | 3 | 4 |

alladt ]

(b) Action command: moveBackward()

(c) Action command: moveLeftTurn()

‘I#I;H;ﬂ;ﬂ

(d) Action command: moveRightTurn()

L1 T

(e) action command: moveStop()

Fig.14  Execution result of action command over action language.

-
/

|‘ Forward ) Stop ) 1
time > 10
do/moveForward() do/moveStop()
do/time = time + 1

\
\.

)
/

Fig.15  An example of motion control of action language.
getRearSensor()
getRightSensor() getLeftSensor()
_—
getFrontSensor()

Fig.16  Execution result of status command over action language.

|’ Forward \ Backward I
fs< 10
do/moveForward() do/moveBackward()
do/fs = getFrontSensor()

\

J /

Fig. 17

An example of status control of action language.



SON and KIM: THE PRE-TESTING FOR VIRTUAL ROBOT DEVELOPMENT ENVIRONMENT

Table2  Event list.
Test Case ID  Type State/Event Test data P/F
TCI s S_A
TC1 e El N/A
TCl s S B
TCl e E2 N/A
TC1 s S A
TC2 s S B
TC2 e E2 N/A
TC2 s S A
TC2 e El N/A
TC2 s S B

condition on a transition at changing among states of state
diagram. In Table 2, there does not exist the guard condition
on an event provided it represents ‘N/A’ notation of each test
data. It also finds the examples in Table 4.

P/F means Pass/Fail. The state and event in the event
list are carried out alternatively, and the robot executes the
behavior whenever the event list is processed in the virtual
simulator environment.

5. Case Study

Figure 18 (b) shows a multi-joint robot with six arms. 8 bits-
Atmega 128 and programming C language are installed.
It uses 18 motors to control multi-joints built by KMC
Robotics Inc., Korea[14], [15]. This robot has ultrasonic
wave sensors to sense an obstacle on front/rear/left/right of
it. We simulate this articulated robot in a virtual environ-
ment like Fig. 18 (b).

This robot moves from the starting point to the destina-
tion (the goal point) with route scenarios like Fig. 19. The
sensors aid the robot to move and to avoid an obstacle from
the starting point to the goal point. In order to avoid the
obstacle, we assign the minimum boundary value. If the
sensing value is greater than the minimum, the robot con-
tinuously moves. Otherwise, the robot rotates. It repeatedly
executes this process until arriving the goal point.

-Modeling a state diagram:

The application case shows the articulated robot moving to
the target position with four directions: forward, backward,
left turn, and right turn. Actually, this six arms robot cannot
walk straight on forward or backward movement. There-
fore, we should consider a revision in the forward and back-
ward movement on modeling the state diagram. In this
case, we design to walk this robot not to encounter obsta-
cles against the right wall. In order to model the possible
changing states of the robot, we show the state diagram in
Fig. 20. To find a design error of the state diagram, we insert
DA errors of the wrong transitions into the state diagram.
Figure 20 shows the state diagram with the design errors.
Table 3 shows the constant values for sensor of the state

1547

(a) Virtual robot

(b) Physical robot

Fig.18  Articulated robots in virtual and physical environment.

—> : Moving direction <> : Threshold : minimal distance of adjacent
robot | : Articulated robot in simulation | box__| : Obstacle or wall

®@® : To rotate when meeting obstacle or wall

box
) ‘bE))\(‘\ robot mhnt

™ ~ - (XJ ya) e n:)"m)

robot .

box’

X3:¥3

[‘ ~ box e
Fig.19  The behavior scenario of articulated robot.

Initialize ~ 1J--t2—r=2-==

do/ moveLeftTurn()
do timeDelay(1500)

sensing

Sensing move
dof fs = getFrontSensor()
do/ Is = getLeftSensor()
do/ rs = getRightSensor()

Forward

do/ moveForward()
do/ timeDelay(1500)

hit[fs <= threshold]

Frontwall

sensing
sensing

move move

/

~

move[rs < Is] (&

GoToWall GetOutWall
RightTurn do/ moveRightTurn() | |do/ moveLeftTurn()
do/ moveRightTurn() do/ timeDelay(1500) | |do/ timeDelay(1500)

do/ timeDelay(1500)

sensing[(x < minX || x > maxX) || (y < minY || y > maxY)]
LeftTumn

do/ moveLeftTurn()
do/ timeDelay(1500)

Location

do/ X = getLocationX()
do/ y = getLocationY()

sensing[(x >= minX && X <= maxX) && (y >= minY && y <= maxY)]

Stop

Fig.20 A state diagram with design errors of articulated robot.

diagram.
-State table generation:

When a specific event is generated in the corresponding



1548

state, state table draws the called state. As shown Table 4,
it is easy to check out which state is called when a certain
event is generated in the current state. This information is
used to convert state table to state transition tree when cre-
ating test cases. We will additionally use check modeling
which state or transition is missing in state diagram.

- State transition tree generation:

State transition tree as shown Fig. 21 is generated based on
the current state table. State transition tree draws all the

IEICE TRANS. INE. & SYST., VOL.E101-D, NO.6 JUNE 2018

- Test case generation:

To generate test case from state transition tree, we use the
transition coverage of the coverage-driven strategy. Table 5
shows the generated test cases.

Test case indicates that event and action can be oc-
curred in the current state (Start state). It can also come
up in a form of a table through the current state, which will

states in the form of tree. This can be called in the cur- Table S A generated test case.
rent state for the visual checking. The tree will gain more Jp | Mnitial State/ Adction Event Next State/
branches as the depth assigned by selecting Switch. Next State i End
TC1| Initialize dofmoveLeftTur() sensin Sensin,
© do/timeDelay(1500) 5 SIng
fs=getFrontSensor() hit
" Sensing Is=getLeftWensor() fe<threshold CheckRight
Table 3  Constant values for simulation. rs=getRightSensor() [fs=threshold]
Name Value Name Value " | CheckRight N/A move Forward
. S do/moveForward() o
threshold 5 minX 12 Forward do/timeDelay(1500) E Location
sidehold 35 minY 3 . do/x=getLocationX() sensing .
Location do/y=getLocationY() [x>=minx Stop
maxRighthold 7 maxX 14 0y~ ge_0callo ) [x>—minx...
o 12| Location do/x=getLocationX() sensing Sensing
minRighthold 5 maxyY 7 do/y=getLocationY() [x<minx | X...
fs=getFrontSensor() hit
TC3| Sensing ls=getLeftWensor() [fs<=threshold] FrontWall
— rs=getRightSensor() "
Inmal}"e " FrontWall N/A move[rs>=]s]  RightTurn
e do/moveRightTurn()
| . Sensing . RightTurn dn/timeDeIéyU 500) sensing Sensing
hit[fs < threshold] hitfrs >= maxRighthold] ) | ) TC4| FrontWall N/A move[rs<ls] LefiTurn
hit[fs <= threshold] hit[rs <= minRighthold]
i o [ | " | " LeftTurn do/moveLeftTurn() sensin Sensin
| ChccklRLght | FrontWall GoTLI)WalI [ GctOLluWall doftimeDelay(1500)  S0Sing sing
move move[rs >=1s] move[rs < Is] move move fs=getFrontSensor() hi'[[r‘? -
) . ¥ TC5| Sensing  ls=getLeftWensor() : -h d GoToWall
[ Forward H RightTurn | | LefiTurn Forward Forward rs=getRightSensor() maxRighthold]
T T T ) R ‘v " B
5 sm\:mg sensing " GoToWall duf}l}OVLnglll T um() move Forward
| e : - do/timeDelay(1500)
Location Sensing | Sensing — =
fs=getFrontSensor() hitrs <=
sensing[(x <minX || x ... S, Jan o =oet] eft Wens S 3 e Je
censing[(x >— minX TC6| Sensing Is g(.TLf..H\\"L]'lbUI“O minRighthold] GetOutWall
v —s rs=getRightSensor()
Sto| Sensin / ;i i
L22P £ “ | GetOutWall do: oy eLeftTurn() move Forward
: . do/timeDelay(1500)
Fig.21 A generated state transition tree from state table.
Table4 A generated state table.
Initialize  Sensing  FrontWall LefiTurn RightTurn CheckRight Forward GoToWall GetOutWall Location Stop
hit[fs < threshold] N/A  CheckRight N/A N/A N/A N/A N/A N/A N/A N/A N/A
E N/A N/A N/A N/A N/A N/A Location N/A N/A N/A N/A
sensing[(x >= minX... N/A N/A N/A N/A N/A N/A N/A N/A N/A Stop N/A
sensing[(x < minX || X... N/A N/A N/A N/A N/A N/A N/A N/A N/A Sensing N/A
sensing Sensing N/A N/A Sensing  Sensing N/A N/A N/A N/A N/A N/A
hit[rs >= maxRighthold] N/A GoToWall N/A N/A N/A N/A N/A N/A N/A N/A N/A
hit[rs <= minRighthold] N/A GetOutWall N/A N/A N/A N/A N/A N/A N/A N/A N/A
move N/A N/A N/A N/A N/A Forward N/A Forward Forward N/A N/A
hit[fs <= threshold] N/A FrontWall N/A N/A N/A N/A N/A N/A N/A N/A N/A
move[rs < Is] N/A N/A LeftTurn N/A N/A N/A N/A N/A N/A N/A N/A
move[rs >= Is] N/A N/A RightTurn ~ N/A N/A N/A N/A N/A N/A N/A N/A




SON and KIM: THE PRE-TESTING FOR VIRTUAL ROBOT DEVELOPMENT ENVIRONMENT

1549
Bl — —— Table 6 A selected event list.
NO TC Type StateEvent [ Test Data | Tme(ns) [ Repeat| pF [« Q Q
3 1 v: Hitlfs < threshold] T =2, threshod = 5 1 D1 Fail ; [% State/Event Test data Q%
5 TC1 s CheckRight 1 1 Pass =
6 TC1 e move 1 1 Pass
s orward ‘355, IR T
: e Fore : 1| poe TCl1 s Initialize P
?o ;g} . sensing[(x >= min¥ 8&x <=ma... x =13, minX = 12, ... i } E::: TC1 e Sensing N/A P
11 TC1 s Stop i 1 Pass
5 i hitlfs iinmishum fs = 3, threshold = 5 ; y TCl1 S Sensing p
14 TC3 s Frontwall 1 1 Pass ! = o
Ls ;s | e mug;g;;—ﬂ &l m=5k=2 L 1 [ Pos ] @ TCl e hit [fs<threshold] fs=2,threshold=5 F
- Sy PR R TCl s CheckRight P
19 TCS s Sensing 1 1 Pass
iUl ;g g : hitlrs >:°$Da\32:2alﬁhﬂm\d] rs = 8, maxRighthal... i : PF;S\\S TC] e MOVe N/A P
2 TCS e move i 1 Pass
23 TC5 s Forward 1 1 Pass TC1 S Forward P
24 TCE s Sensing 1 1 Pass
ig ;Eg : hitrs é:tg‘:rx)gwmu\d] rs = 1, minRighthol. i : PF;SL TC1 e E N/A P
27 TC6 3 move 1 1 Pass
2 [ tce | s [ Fowad [ [ i | 1 | rass [EEY TC1 S Location P
State sopfn | mn | pame | swp | mtpF | miDeer | x=13, y=5,
File File Open [phwioricife. = EALE WL SITIW2014%2014-08 [EICE Wexample2Hhe: File Save TC1 & SeHSing [X>:minx. . minX=1 2,maxX=14, P
minY=3,maxY=7
: Cd TCl s Stop P
20 bt SAEE
s TC3 s Sensing P
. : ‘ @ TC3 e hit [fs<=threshold] fs=3,threshold=5 F
; TC3 s FrontWall P
. TC3 e move[rs>=ls] rs=5, 1s=2 P
TC3 s RightTurn P
u TC3 e sensing N/A P
TC3 s Sensing P
TCS s Sensing P
® TC5 e hit[rs >= maxRighthold] rs=8,maxRighthold=7  F
TC5 s GoToWall P
L TR TCS e move N/A P
) TCS s Forward P
Fig.22  The result of test case execution. .
TC6 s Sensing P
@ TC6 e  hit[rs <= minRighthold] rs=1,minRighthold=5 F
transmit the next state. TC6 s GetOutWall P
TC6 e move N/A P
- Generation of event list: TC6 s Forward P

These test cases are inserted in the event list. Test case (TC)
mentions test case ID. This consists of the basic unit such as
number, TC, type, state/event, repeat, and P/F.

- Running event list:

An event list is produced in the previous step into state dia-
gram engine when loading. The engine executes test cases
and simultaneously sends the commands to the simulator.
From there, we can identify the design error of the state di-
agram. This is because we can see the right/wrong move-
ments of the robot with each test scenarios in the simulator
as shown Fig. 22.

On asynchronously executing the event list of test cases
(in Table 6) with the simulation tool, we can detect four er-
rors shown as Fig.22. According to the test data, our ex-
pected value is true against the guard condition of an event.
However, the actual executed result comes out as a failure.
That is, there is a wrong value of event transited from the
sensing state to other state.

In Table 6, the D case assigns a wrong sign of in-
equality about the ‘hit [fs < threshold]’ guard condition of

state/event. The @ case also assigns a wrong sign of less and
equality about the ‘hit [fs <= threshold]’ guard condition of
the state/event. They make wrong executions because these
cases have assigned with the same ‘less’ signs. Therefore,
to make the right design of a state diagram, the ‘hit [fs <
threshold]’ guard condition must be changed with ‘hit [fs
> threshold]’. In the ‘hit[rs >= maxRighthold]’ and ‘hit[rs
<= minRighthold]” guard conditions in the ‘Sensing’ state
in Fig. 20, the value of ‘rs’ variable determines to transit
some states (‘GoTOWall’ state or ‘GetOutWall’ state). Yet,
the value of the ‘fs’ variable also determines to transit other
states (‘FrontWall’ state or ‘CheckRight’ state). When an
event comes in a sensing state, it causes to transit two differ-
ent states in this state diagram, which are not even concur-
rent model. So, it turns out to be a failure because of impos-
sibly transiting both states. Therefore, these two ‘hit[rs >=
maxRighthold]’ and ‘hit[rs <= minRighthold]’ guard con-
ditions should be changed to other state. Throughout the
process of correcting errors, it is possible to make the right
design of state diagram in Fig. 23.

Concurrently, by running the modified state diagram



1550

CheckRight

hit[fs > threshojd]

Initialize

do/ moveLeftTurn()
do/ timeDelay(1500)

sensing
E[rs >= maxRighthold
Sensing E[rs <= minRighthoid]

do/ fs = getFrontSensor()
do/ Is = getLeftSensor()
do/ rs = getRightSensor()

\

T
hit[fs <= threshoid) \
FrontWall
sensing

move(rs >= Is]
GoToWall GetOutWall
dol moveRightTurm() | [do/ moveLenTurn()
do/ moveRightTurn() do/ timeDelay(1500) do/ timeDelay(1500)
do/ timeDelay(1500)

- sensing[(x < minX || x > maxXx} || (y < minY || y > maxy)]

move

Forward |

o7 moveForward()
do/ timeDelay(1500)

E

move move

move(rs < Is]

Location

do/ x = getLocationX()
do/ y = getLocationY()

do/ moveLefiTurn()
do/ timeDelay(1500)
sensing[(x >= minX && x <= mzx) && (y >= minY && y <= maxY)]
Stop
O do/ moveStop()

Fig.23  The fixed state diagram of articulated robot.

~—Front Left «— Right w— Rear

obstacle -y " g
A »
h
. i
f b I
- L\ obstacle
», - mant Wy s
L L
l\'l B 5
U

obstacle

Fig.24  The results of sensor data of the fixed state diagram performed
in simulator.

(in Fig. 23) with the simulator of the right side (in Fig.22),
the virtual robot can reach from the starting point to the goal
point like the behavior scenarios of the robot in Fig. 19. This
shows the data values such as the front, rear, left, right sen-
sor, and the current position (x,y) of the virtual robot during
simulating in the virtual environment.

Even though the robot sometimes may move around
circle, finally he can reach the destination through avoiding

IEICE TRANS. INE. & SYST., VOL.E101-D, NO.6 JUNE 2018

obstacles.
6. Discussion

In this paper, we propose the test case design method for
virtual pre-testing in a simulation environment. The goal
of our proposed method is focused on verifying the design
whether it is corrected or not. But model checking is an au-
tomated method, which be done only by a developer who
learned this method. In order to apply a model checking to
our robot cases, the scenario specification should be trans-
formed into property descriptions in modal logic formula,
which is a difficult point of model checking.

On the other hand, our visual approach can easily be
found any design problem by every developer. As a result,
it is possible to find the design and test error on modeling
& simulation (M&S) at the early stages of the development
cycle. With our approach, it expects to reduce cost and time
of development.

7. Conclusion

Our suggested method consists of test process and test case
creation method, which executes testing with pre-modeling
and pre-simulation at the design stage. This is different from
the previous methods. We adapt metamodel mechanism
to automatically generate test cases from a design model,
that is, the state diagram. As the result, even in the design
stage we can asynchronously execute test cases with the vir-
tual robot in the simulation environment before complete
development. Therefore our proposed method overcomes
the conventional problem, which can find out design errors
by executing the test without waiting until its implementa-
tion stage. A problem still exists in the proposed method.
That is, the tester should visually check, and confirm the
test case executed in the virtual environment. Thus, in order
to overcome such weakness, we should consider automatic
checkup method in future research.

Acknowledgments

This research was supported by Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education (NRF-
2017R1D1A3B03035421) and the Human Resource Train-
ing Program for Regional Innovation and Creativity through
the Ministry of Education and National Research Founda-
tion of Korea (NRF-2015H1C1A1035548).

References

[1] B.W. Boehm, Software Engineering Economics, Prentice-Hall,
1981.

[2] H.S. Son, W.Y. Kim, and R.Y.C. Kim, “Implementation of Tech-
nique for Movement Control of Multi-Joint Robot,” The 30th KIPS
Fall conference 2008, vol.15, no.2, pp.593-596, 2008.

[3] W.Y. Kim, H.S. Son, R.Y.C. Kim, and C.R. Carlson, “MDD based
CASE Tool for Modeling Heterogeneous Multi-Jointed Robots,”


http://dx.doi.org/10.1109/csie.2009.998

SON and KIM: THE PRE-TESTING FOR VIRTUAL ROBOT DEVELOPMENT ENVIRONMENT

(4]

[3]

(6]

(71

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

CSIE 2009 (IEEE Computer Society), Los Angeles/Anaheim, USA,
vol.7, pp.775-779, 2009.

J.S. Kim, H.S. Son, W.-Y. Kim, and R.Y.C. Kim, “A Study on Edu-
cation Software for Controlling of Multi-Joint Robot,” Journal of the
Korean Association of Information Education, vol.12, no.4, pp.469—
476, 2008.

J.S. Kim, H.S. Son, W.-Y. Kim, and R.Y.C. Kim, “A Study on
M&S Environment for Designing The Autonomous Reconnaissance
Ground Robot,” Journal of the Korea Institute of Military Science
and Technology, vol.11, no.6, pp.127-134, 2008.

W.Y. Kim, H.S. Son, and R.Y.C. Kim, “A Study on Test Case Gen-
eration Based on State Diagram in Modeling and Simulation Envi-
ronment,” Communications in Computer and Information Science,
vol.199, pp.298-305, Springer, 2011.

OMG, “OMG Meta Object Facility (MOF) Core Specification,”
v2.4.2, OMG Available Specification, 2014.

OMG, “MOF 2.0/XMI Mapping, v2.1.1,” OMG Available Specifi-
cation, 2007.

Ilene Burnstein, Practical Software Testing, Springer-Verlag, 2003.

A. Toth, D. Varro, and A. Pataricca, “Model Level Automatic Test
Generation for UML State-Charts,” Sixth IEEE workshop on Design
and Diagnostics of Electronic Circuits and System, DDECS 2003,
2003.

S. Gresi, D. Latella, and M. Massink, “Formal Test-Case Genera-
tion for UML Statecharts,” Ninth IEEE International Conference on
Engineering Complex computer system Navigating complexity in
e-Engineering Age, 2004.

A. Bertolino, E. Marchetti, and H. Muccini, “Introducing a rea-
sonably complete and coherent approach for model-based test-
ing,” Electronic Notes in Theoretical Computer Science, vol.116,
pp-85-97, 2005.

M. Benjamin, D. Geist, A. Hartman, Y. Wolfsthal, G. Mas, and R.
Smeets, “A study in coverage-driven test generation,” Design Au-
tomation Conference, Proceedings 36th, pp.970-975, 1999.

R.B. McGhee and A.A. Frank, “On the Stability Properties of
Quadruped Creeping Gaits,” Mathematical Biosciences, vol.3,
pp-331-351, 1968.

M.H. Raibert, “Legged Robots,” ACM, vol.29, no.6, pp.499-514,
1986.

R. Binder, Testing Object-Oriented Systems. Models, Patterns, and
Tools, Chapter 7 State Machines, pp.175-268, Addison-Wesley,
2000.

Hyun Seung Son received the B.S., M.S.,
and Ph.D. degree in Software Engineering from
Hongik University, Korea in 1999 ~ 2015. He
was researcher in Mechatronics Research Center
of Hongik University, Korea until 2017. He is
currently working on Senior Researcher in Re-
liability Technology Institute of Moasoft. His
research interests are in the areas of Automa-
tion Tool Development in Embedded Software,
Software Visualization, Metamodel design, and
Model Transformation, Model Verification &

Validation Method.

1551

R. Young Chul Kim received the B.S. de-
gree in Computer Science from Hongik Univer-
sity, Korea in 1985, and the Ph.D. degree in
Software Engineering from the department of
Computer Science, Illinois Institute of Technol-
ogy (IIT), USA in 2000. He is currently a pro-
fessor in Hongik University. His research in-
terests are in the areas of Test Maturity Model,
Model Based Testing, Metamodeling, Software
Process Model, Software Visualization.


http://dx.doi.org/10.1109/csie.2009.998
http://dx.doi.org/10.1007/978-3-642-23312-8_38
http://dx.doi.org/10.1109/iceccs.2004.1310906
http://dx.doi.org/10.1016/j.entcs.2004.02.084
http://dx.doi.org/10.1109/dac.1999.782237
http://dx.doi.org/10.1016/0025-5564(68)90090-4
http://dx.doi.org/10.1145/5948.5950

