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Abstract

The global blockchain market is expected to grow more than 10 times over the next five years. The block
chain paradigm will have popularly been adopting various fields such as finance, logistics, and medical care.
However, no one has a technical verification of the reliability, scalability and stability of the blockchain code.
To solve this problem, it will need how to identify the bad quality within blockchain code. In this paper, we
propose a method to visualize vulnerability of blockchain code through static analysis. Through the proposed
method, we solve the vulnerability problem of blockchain oriented software development (BOSD). This method
can also improve the quality of the process.

Keywords: Automatic Visualization, Vulnerability of Blockchain Code, Blockchain Software Quality, Code Quality
Factors, Software Visualization, JavaParser

1. Introduction

The global software market has grown to $ 1148.1 billion. The global software market is expected to further
expand due to the effects of the fourth industrial revolution such as smart factories, Al, block chains,
autonomous vehicles, and smart robot software. The era of the fourth industrial revolution is the intelligent
information society. In this era, data generated through advanced information and communication technologies
are merged with new ideas. In other words, converged data and ideas are expected to create new values. The
software in the era of the fourth industrial revolution can change according to the intelligent, self-reliant
capabilities and circumstances. In the future, software related to the fourth industry will be necessarily
integrated with "blockchain technology."

However, some scholars argue for critical opinions on the scalability and stability of the blockchain system.
In order to apply the blockchain technology universally, it is necessary to verify the technology realistically.
In order to realize high-quality blockchain software and satisfy quality, quality improvement technology of
blockchain software is required.

This paper proposes the visualization mechanism for the blockchain code vulnerability visibility system
through static analysis. The proposed framework is a static analysis of blockchain created with Java code. The
proposed method visualizes the inside of the blockchain code. The advantages of this method are as follows:
1) identify the vulnerabilities inherent in the blockchain system, 2) apply the software engineering method to
reduce time, effort and cost. We explain the visualization system of blockchain based java code. The static
analysis tool is an open source, JavaParser. We also apply SQLite to the database and then automatically
generate dotscript by combining the information stored in the database. Finally we create the visualization
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graph of code vulnerability with Graphviz. Through the proposed method, we solve the vulnerability problem
of blockchain software development. This method will improve the quality of the process.

The composition of this paper is as follows. Chapter 2 introduces related works. Chapter 3 describes
visualization method of the vulnerability of blockchain based code. Chapter 4 describes a case study. Finally,
Chapter 5 mentions the conclusion.

2. Related Works

The previous tool-chain consists of a static analyzer (parser), database, and visualization tools. The static
analyzer interprets the information in the source code. The code information is class, method, variable,
structure, function, etc. The static analyzer generates the data. These data store the information needed for
visualization in the database. To generate dotscript, stored information uses queries. Finally, the visualization
tool generates the graph using the retrieved data. Figure 1 shows a structure of previous visualization
mechanism.

Tool-Chain
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Figure 1. The Structure of Previous Visualization Mechanism

The existing coupling and cohesion is defined for procedural oriented language. According to Daniel
Rodriguez, existing procedural oriented language has no concept of encapsulation, inheritance, polymorphism,
etc. Object-oriented concepts are as follows: Objects, classes, components, packages, encapsulation,
inheritance, polymorphism, etc. Thus, the existing coupling and cohesion should be redefined based on the
characteristics of the object-oriented language.

Figure 2 shows the relationship between coupling and cohesion. Coupling and cohesion are always
mentioned in the reusability of software engineering. Good software should have low cohesion and high
cohesion. The left figure in Figure 2 is High Coupling, Low Cohesion. In this case, the complexity between
the modules becomes extremely high. The right figure shows Low Coupling and High Cohesion. In this case,
the complexity between the modules is lowered.
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Figure 2. The Relationship between Coupling and Cohesion

3. Automatic Visualization between Coupling and Cohesion

The block chain system is implemented in various languages. The block chain system is implemented in
Java. Go-based block-chain systems are often used in web applications. In this paper, we explain the method
of code vulnerability visibility of blockchain system implemented in Java.
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Figure 3. Automatic Visualization Framework of Java-based Blockchain Code

Figure 3 shows the automatic visualization framework of java-based blockchain code. This toolchain
extracts information from Java code and generates a visualization graph. The proposed visualization
framework is as follows: 1) the existing toolchain uses Source Navigator as a static analysis tool. The source
Navigator parses the Java code and extracts the SNDB files. However, SNDB files are unreadable binary code.
To make reuse easier, we improved JavaParser. The existing Source Navigator can analyze both C and Java.
However, there are only six Java code files analyzed. The analyzed files are as follows: cl (Classes), in
(Inheritances), iv (Instance variables), Iv (Local variables), md (Method definitions). Source Navigator lacks
data from static analyzed Java code. To solve this problem, we developed a new static analysis tool using
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JavaParser. JavaParser parses into AST structure and extracts necessary analysis data. At this time, the analysis
data is reconstructed for storage in the database. Figure 4 shows the structure of Java code analyzed by

JavaParser.

TypeDeclaration .

{ ' H
i i
FieldDeclaration MethodDeclaration
: i i : _ H H . ‘ '
odif ! E Modiher ‘ RELT Ty PE E Paramelers
% ' | E

Figure 4. The AST Structure of Java Code

2) The analyzed results are stored into the database tables. We use the SQLite that is relatively light
compared to other databases, extract information stored in the database, and write a DOT script. At this time,
a query for extracting necessary data is prepared for each type. This data is generated by the DOT script. 4)
We run this data in visualization tools. The analyzed code outputs the visualization graph.

4. Case Study

We expect to guild how to guarantee quality of blockchain based on our visualization mechanism. We
analyze blockchain code through static analysis of Java code with our extended JavaParser. In the database,
we extract the following information: 1) inheritance relationships in all statements, 2) Variable declaration, 3)
method declaration, 4) call relation, etc.

Figure 5 compares the information extracted from the source navigator with the information extracted from
the JavaParser. The left picture is the Source Navigator. The right figure is JavaParser. The squares on the left
are extended to the squares on the right. ATTRIBUTES is divided into ACCESSOR, ABSTRACT, FINAL,
STATIC, RETURN_TYPE, and INITIALIZATION. In addition, the inheritance information of the SNDB_IN
table is added as a column in the JPDB_CLASS table. As a result, we reduced the relation of the database
tables. In the figure on the right, the New Quality Indicator Table is the value of the quality index measured
using the extended extracted information. Through the extraction results, we derived the improvement results:
1) the number of columns in the database has increased. 2) Visualization information was extracted specifically.
3) New Quality Indicator Table was created.
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Figure 5. The Comparing Source Navigator and JavaParser Extract Information

5. Conclusion

We apply the software engineering method to the block chain software. This paper propose a method to
improve the complexity of blockchain software code. There is still a lack of research related to static analysis
tools in blockchain codes. Through our visualization mechanism of reverse engineering, we visualized the
complexity of the block-chain source code. This method allows static analysis of Java-based blockchain
software source code. In addition, we developed static analysis tools suitable for object-oriented code analysis
by expanding existing tools. Through a variety of quality indicators, blockchain developers can automatically
visualize vulnerabilities in Java-based block-chain code. The advantages of the proposed method are as follows:
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1) visualize the code inside. 2) Easily reduce the complexity of the code, and 3) prevent the possibility of bugs
in the code. Future studies will analyze other languages used in Smart Contracts (e.g. Lua, Solidity, GO, etc).
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