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Abstract: In the Fourth Industrial Revolution environment, plenty of automatic and smart software
in diverse fields will come out, such as virtual reality/augmented reality (VR/AR), autonomous robots
and vehicles, smart factoring, and so on. In Korea, especially, one important issue is the cyber–physical
system (CPS), used for monitoring and controlling the smart and automatic system in a smart city.
This kind of system, therefore, needs to have good performance; otherwise, it may not respond in
time. To solve this, we propose a code visualization approach to reduce code complexity based on
a static analysis, which identifies bad codes against performance. To ensure better performance,
we make our queries identify performance degradation factors, store statically analyzed data into
database (DB) tables, and visualize bad operation patterns. For performance improvement, we can
refactor with them. As a result, we reduce the code complexity of CPS-based software to obtain
good performance. With this approach, we expect to have better performance and a reduction in the
complexity of CPS software without even power consumption.

Keywords: cyber–physical system (CPS); performance measurement; code visualization; refactoring;
SW quality improvement

1. Introduction

A cyber–physical system (CPS) handles a huge amount of data from both cyber and physical
environments. It is a dependable system that controls real-world systems and processes [1,2]. In other
words, a CPS involves interaction with both computers and the real world. A CPS may include a
network environment with optimal performance in a given system. A CPS monitors the state of a
physical system with various embedded devices, and further performs certain desired operations
based on the monitoring information. The CPS’s operations affect the physical system, which is
complicated by the limitations of computing technology [3]. That is, current embedded systems have
been made considerably more complicated, and interoperable through the network. CPS technology
may combine information technology (IT) with traditional industries, such as defense, transportation,
energy, and automobiles.

A CPS deals with an abstract model, which can easily handle complex systems. However,
the model’s performance must be validated [4,5]. To date, most testers just verify them with software
testing. The CPS model needs to verify software with simulation technology.

The problem with this kind of system is that it should deal with the complexity of various complex
systems. Consequently, it cannot help but increase the code size and complexity of CPS-based software.
Furthermore, there is no guarantee that the CPS software will have good performance or quality.
To solve this problem, we propose to visualize performance degradation factors of the CPS-based
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C/C++ code with our visualization mechanism. For performance and quality improvement, we apply
our proposed method to the CPS software with the most complex modules, and guild, to refactor them
and improve CPS-based C/C++ code.

In this paper, Section 2 discusses related works. Section 3 describes how bad performance factors
within CPS-based C/C++ core code are visualized with our visualization approach. Section 4 presents
the results before and after refactoring. Finally, Section 5 presents our conclusions and describes
further research.

2. Related Works

2.1. Modeling and Software Verification Technology

Techniques such as Modeling and Simulation (M&S) and software (SW) validation are used to
measure CPS–SW performance for simplification and to ensure that the system is reliable. In particular,
we consider the modeling, that is, a computational model to represent the system before developing it.
This is divided into a discrete and a continuous model. The discrete model models a digitized software
system, whereas the continuous model models an analog system. In the recently emerged information
technology (IT) convergence industry, the use of a hybrid model has been proposed to fuse the discrete
and continuous models [2].

Unlike the hybrid model, the domain-specific modeling method reflects the characteristics of the
domain. This method performs modeling based on a platform/architecture according to domain-specific
characteristics. Particularly, instead of detailed models, some scientists use abstraction techniques to
reduce system complexity.

Software validation techniques must validate the source code based on requirement specification.
In our cases, we considered checking the performance and quality of the source code with static and
dynamic analyses.

2.2. Software Performance

Software performance may mean the measurement of the central processing unit (CPU)’s
performance and memory usage. Hardware performance includes parameters such as processing speed,
channel capacity, latency, bandwidth, throughput, and power consumption. Software performance
includes parameters such as availability, code size, hardware weight, and response time [6,7].
Availability is the probability of the software functions working according to the requirements
at the given time. Availability is calculated as follows: the mean time to repair (MTTR) is subtracted
from the mean time between failures (MTBF). The obtained value is divided by the average recovery
time (MTBF) and is further multiplied by 100.

Most embedded systems have code size and hardware weight limitations. The code size with
complexity can have a significant impact on performance. Response time is the total amount of time it
takes to respond to a request for service execution. The longer the response time is, the slower the
system is [7–10].

In this study, we measure response time for software performance. We extract code degradation
factors through our code visualization. Finally, we compare the results before and after refactoring on
a procedural language, C/C++ code.

3. Performance Measurement Mechanism for CPS-Based C/C++ Codes

Through our previous code visualization, we identify the code operations of the CPS-based C/C++

code. Then, we measure the performance of core operations, which guide the improvement of the
performance for refactoring.

Figure 1 shows how to apply the performance improvement mechanism to procedural language
by adapting our existing code visualization [11,12]. We describe the performance measurement and
improvement processes as follows: (1) Input the target source code into the performance measurement
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system, and extract the necessary results through code visualization. This code visualization approach
possibly represents the complexity of the code’s inner structure. We can identify high-complexity
modules of the analyzed results. By adapting this method, we can identify bad performance factors
to improve the code’s performance, by inputting the entire procedural code. However, for efficient
performance, we can guide the refactoring of high-complexity modules for better performance. The
selected modules are corrected for refactoring. In the refactoring process, (2) we automatically extract
a pattern of performance degradation factors through RuleChecker. The extracted data is stored in
SQLite as an extensible markup language (XML) file. Then, (3) we use Visual Studio Performance
Testing (VsPerf) for the dynamic analysis of C/C++ code. The data extracted from VsPerf is refined
into XML data using VsPerf Data Extractor, and then the extracted data are stored in SQLite. Finally,
we (4) extract performance visualization graphs that visualize information, such as C/C++ code data in
violation of performance requirements within the existing CPS–SW structural information (coupling)
and memory usage information in the module.
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(1) Code Visualization

The phrase ‘code visualization’ means the visualization of internal code information extracted
using a source navigator (SN). In the create database (CreateDB) command, we make storage space,
SNDB.db, which stores the Source Navigator Database (SNDB) data in SQLite. This mechanism works
as follows: (1) SN analyzes source code data; (2) SQLite stores them in database tables; and (3) a dot
script generates an internal code structure graph. That is, the code visualization process is a serial
order, such as input source code -> extract SNDB files -> extract C/C++ code data -> save DB Data ->
apply code quality indicators -> code visualization.

We can extract the SNDB file with SN from the source code. SNDB includes the source code data
that were analyzed by SN. The SNDB file is a binary file that should be converted to text using the
database dump (DBdump) command. CreateDB extracts information from the code within DBdump.
The data are stored in each database (DB) table. After this, we should create queries based on the code
quality indicators for extracting the coupling, cohesion, and complexity and, especially, rule-checking
against performance. Then, we measure our defined quantitative scores. Our visualization approach
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generates a code complexity graph from the data extracted with one of the queries, which identify
high-complexity modules in the visualization graph. We also extract performance factors with
RuleChecker and the VsPerf profiler [13].

(2) Extracting Performance Degraded Factors with Rule-Checking

We define the code performance’s degraded patterns and rules with Cppcheck for visualization of
CPS software performance [14,15]. In this paper, we just consider the following performance degraded
element patterns: loop unrolling and loop down count, unnecessary control statements for inner loops,
and multiple if-then-else statements. We also define these rules with the regular expressions through
Cppcheck. Table 1 lists the code patterns and rules.

Table 1. Patterns and rules for performance degraded factors.

Pattern Name Code Pattern Regular Expression Rule

Loop unrolling and loop down
count

int sum = 0;
for (int i = 0; i < 1000; i++) {
sum += array[i];
}

[a–z, A–Z, _] ([a–z, A–Z, _,0–9])
* \&lt; ([0–9]) +;
[a–z, A–Z, _] ([a–z, A–Z, _,0–9])
* \+\+

Unnecessary control statements
for inner loops

for(i = 0; i < 1000; i++){
if(i & 0 × 01) {
do_odd(i);
}else{
do_even(i);
}
}

[a–z, A–Z, _] ([a–z, A–Z, _,0–9])
* \&lt; ([0–9]) +;
[a–z, A–Z, _] ([a–z, A–Z, _,0–9])
* \+\+\)
\{
if\(

Multiple if-then-else statements

if (a == 1){
}else if (a == 2){
}else if (a == 3){
}else if (a == 4){
}

if\(
([a–z, A–Z, _,0–9, \b, \s, \+, V,
\ *, \%%, -\&gt;, \&gt;, \&lt;,
\[, \]]) * ==
([0–9]) +\)

(3) Refining and Saving the VsPerf Profiler Data

Profiling of performance analysis is a dynamic form of program analysis. It analyzes parameters
such as the time and space (memory) complexity of a program, the use of specific commands, and the
frequency of function calls. Profiling data are further used to optimize the program code. Profiling can
measure and analyze both source code and binary executable files.

VsPerf is a profiling tool provided by Microsoft Visual Studio, which runs directly from the Visual
Studio integrated development environment (IDE), and measures the performance of an application.
The performance analysis method of this tool has two elements: sampling and instrumentation [13].

Sampling interrupts the processor at desired intervals and collects the function call stack.
It conducts a performance analysis without changing the executable files. However, if the call
time for a particular function is less than the sampling interval, there may not be a single sample
with that function. As a result, the sampling may contain a considerable data collection error.
Instrumentation sets up a probe at the beginning and end of the function to be analyzed. It then obtains
the function call stack and checks for events of all target functions. Although instrumentation can
check the exact number of calls, it changes the executable file and introduces additional overhead
owing to the probe. It must also analyze the relative time within the analysis information.

VsPerf provides a report on the code analysis results. The report types are process, function, call
tree, and caller/callee. Reports include elapsed time, elapsed exclusive time, application-included time,
application exclusive time, and call tree depth data.
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(4) Performance Visualization

This is an important idea that we propose, to visualize the data stored in SQLite for the internal
structure of the CPS C/C++ code, for easily identifying refactoring elements. The code performance
information is included within the module box, with the module’s name, the execution time, and the
number of calls. This information compares the difference in performance between, before, and after
refactoring. Figure 2 shows the methods view with each piece of execution information within a
class name. The left box in Figure 2 displays method names and performance information (execution
time and number of executions) of the particular class before refactoring. The right box displays
performance information about a method of the same class after refactoring. The arrow indicates the
current status of performance improvement as the time difference between, before, and after refactoring
of the method. Through this process, we can clearly recognize whether it may have better performance
or not. We show a performance improvement in our robot’s simulator after refactoring at Section 4.
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4. An Exploratory Study

4.1. The Case of Original Source Code

In present day Korea, many researchers are focusing on autonomous robot simulators and vehicles
for the fourth industrial revolution period. They are developing the hardware for their robots very well
without software of high quality. Therefore, we consider how to enhance their software (simulators).
Figure 3 shows a multiple-joint robot simulator. We apply this mechanism to a six-legged robot
simulator. This simulator easily controls the motion of the multiple-joint robot with the controller
within the tool. Even if a robot does not exist, its actions can be performed through tool simulations, i.e.,
the user creates an environment in which the simulated robot operates. The user enters the motion of
the multiple-joint robot. The multiple-joint robot then operates in its environment [4,16]. We develop
this multiple-joint robot simulator in C/C++.

Figure 4 illustrates the code architecture of the multiple-joint robot simulator. This architecture is
the result of code visualization. In Figure 4, 1O indicates that the module is unclear. The 2O indicates
a large class. The large classes are marked with the red color in the box. The 3O indicates strong
coupling between modules and 4O indicates strong coupling with external modules. Finally, 5O shows
the most strongly coupled modules among the visualization results. In the CSimulationView class of
the red-colored box in 5O (72, 2418), 72 is the execution time, and 2418 is the number of executions.
The class also has a red-colored incoming arrow, with [S * 7][CT * 2] = 34.8, where S means seven times
the stamp coupling, CT means two times the content coupling, and the sum of them is 34.8.
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To optimize the modules, we set the extraction criteria based on the bad smell (a long method and
a large class) for refactoring. For the extraction criteria, the number of methods was 20, and the sum of
the number of method lines was 1000 or more. Here, the extracted module is displayed in the red color.

With this visualization of bad code patterns based on our defined quality indicators, we can easily
guide the rewrite of the original code for better quality, which is refactoring.
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4.2. The Case of Refactored Source Code

Our research focuses on reverse engineering, and we first statically analyze source code. We make
queries with quality factors (such as coupling), and also store the analyzed results in DB tables.
For example, coupling is composed of data, stamp, control, external, common, and content coupling.
Here, the data coupling score is the lowest, and the content coupling score is the highest. In software
engineering, the code’s complexity is worse than the code size, that is, the internal structure of the
software. The complexity of the code size is measured by its coupling, such as the calling and called
modules. In this paper, we measure the coupling to assign adequate scores for each coupling. Table 2
shows the scores for each coupling.

Table 2. The scores for each coupling.

Coupling Data Stamp Control External Common Content

Score 1 2.4 3.9 5.6 7.5 10.2

The coupling formula is as follows:

Total Coupling of Each Module =
6∑

i=1

(Each Coupling Scorei × The Number o f Calls)

where, i = 1: Data, i = 2: Stamp, i = 3: Control, i = 4: External, i = 5: Common, and i = 6: Content.
Figure 5 presents the result of refactoring. The refactoring results are as follows. We modularize

each part of the results, and improve the CSimulationView class that represents the highest level of
complexity. We can also reduce the complexity. The two numbers in 1O indicate the number of lines
in the module and the number of module functions. The 2O indicates the coupling value between
modules. The code architecture represents the coupling between the modules as follows: D: Data, S:
Stamp, CL: Control, E: External, CN: Common, and CT: Content. For example, the 2O of Figure 5 shows
the couplings between CSimulationView and the CServer module. Further, [CT * 21] = 10.2 * 21 =

214.0 on the directed red arrow where the number and the score of content (CT) couplings are 21 and
10.2. So, to reduce the code’s complexity, we define the baseline of the sum of each coupling, that is,
the score 30. On a static analysis of the source code, we automatically display the red colors of the
arrow and module. When the score is greater than 30, we repeat refactoring again until the score is less
than 30.
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Table 3 lists the results of the improvement in complexity of each module, including CExToolBar,
CMainFrame, CGround, CSimulationView, CServer, CSimulation, and commerce eXtensible Markup
Language (cXML), at each checkpoint time. However, it was not necessary to refactor the CMotorObject
and CRobotController modules because of their low complexity values (0, 8). The second row of Table 3
shows the complexity values of the code modules before refactoring at the first baseline time. There are
decreasing complexity values at each checkpoint time after refactoring. Figure 6 presents the results
graph for the refactoring, which shows that low complexity values were achieved for all modules at the
checkpoint three time. Figure 6 shows the decreasing slope of complexity values between checkpoint
one and checkpoint two compared to the baseline.

Table 3. Refactoring results.

Coupling Total CExToolBar CGround CMain
Frame

CMotor
Object

CSimulation
View CServer CSimulation CRobot

Controller CXml

Baseline 5172.3 1133 49 950.4 0 1095.8 769 524.6 8 524.6

Checkpoint1 4226.9 187.6 49 950.4 0 1095.8 769 524.6 8 524.6

Checkpoint2 1258.1 187.6 49 91 0 114 97 69 8 69

Checkpoint3 1220.6 187.6 19 91 0 114 97 69 8 69
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4.3. Performance Results

Figure 7 shows the results of the measurement of the multiple-joint robot simulator’s performance.
The class name (RobotSimulation) is displayed near the bottom of Figure 7. This result is a measure of
performance by performing a refactoring of the CPS C/C++ code based on the baseline. Performance
changes are divided into before and after clusters. In the most complex CSimulationView, each cluster
represents the name, number of operations, and performance time of the methods inside the class.
The arrows link the methods of each cluster. The figure above the arrow is the changed performance
time. The performance measurement between before ( 1O) and after ( 2O) is “−45.21”, i.e., the method
after refactoring is 45.21 ms faster than before refactoring. The performance measurement between
before ( 2O) and after ( 3O) is “−23,269.67”, i.e., the method after refactoring is 23,269.67 ms faster than
before refactoring. In the third refactoring, the performance measurement between before ( 3O) and
after ( 4O) is “−68.66”, i.e., the method after refactoring is 68.66 ms faster than before refactoring.
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Table 4 lists the performance results, whereas Figure 8 shows the analyzed results of performance
on refactoring. In Table 4, the baseline row indicates the performance value of the code before
refactoring, whereas each checkpoint row indicates the performance value after refactoring. At each
checkpoint, we show the improvement in performance with the difference between the performances
of each module compared to the baseline.
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Coupling CExToolBar CGround CMainFrame
CMotor
Object

CSimulation
View CServer CSimulation CRobot

Controller CXml

Baseline(ms) 782.34 1983.18 49,113.31 2321.23 32,145.44 10,021.99 14,893.24 13,002.68 4000.22

Checkpoint1(ms) 244.23 2011.4 49,183.94 2312.55 32,100.23 10,001.33 14,599.87 12,876.55 3839.78

Checkpoint2(ms) 242.41 1992.33 38,145.99 2299.81 8830.56 7789.71 11,002.67 13,004.2 3916

Checkpoint3(ms) 243.18 1102.67 37,899.84 2318.54 8761.9 7765.11 10,989.89 12,961.13 3833.32
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The complex and extensive CPS C/C ++ code can confirm the change in the software’s performance
through the proposed method. Furthermore, our code visualization can improve the performance of
the CPS-based C/C ++ code. Consequently, we can improve the quality of the CPS-based procedural
language, that is, C/C++ code.
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5. Conclusions

A CPS may be a networking system with optimal performance in a system wherein computers and
the real world interact. A CPS monitors the state of a physical system with various embedded devices.
It further performs a desired operation on the data collected by the monitoring, which affects the
computation result of the CPS for the system. Simulation techniques are used to verify CPS software.
However, a CPS works simultaneously for various embedded systems, which considerably increases
the code size and complexity of CPS-based software. Furthermore, CPS software does not guarantee
good performance or quality. We visualized the performance measurement of CPS-based C/C ++ code
to rewrite the C/C ++ code, using the proposed method, and performed a dynamic analysis with
VsPerf, for efficient CPS software improvement. The analysis involved the actual CPU and memory
usage. We extracted the complexity of the CPS software through code visualization, identified a
high-complexity module (a core algorithm), and then finally measured the performance to improve it.
We showed developers how to identify memory performance indicators and inner structures for CPS
software. In the future, we will include the power consumption pattern of software, find patterns of
power-consumption in the source code, and then visualize these patterns.
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