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Abstract: Sometimes unclearly describing the requirement specifications of satisfied customer’s 

needs, means it may be difficult to develop the production of high-quality software systems. A 

persistent issue of requirement engineering is how to clearly understand the requirements of the 

large and complex software project, and also how to analyze them exactly. To solve this problem, 

we propose a linguistic analysis method based on the semantic analysis of the Fillmore’s textual 

approach. This method extracts use-cases from informal requirement specifications. For applied 

requirement engineering with this method, we suggest extracting a use-case diagram, as well as 

calculating the software effort estimation with the original use-case point (UCP). To simply 

explanations of our use-case extraction method, we use one example of a simple postal information 

system. 

Keywords: linguist Fillmore’s textual analysis; use-case point (UCP), natural language oriented 

informal requirement specification; case grammar 

 

1. Introduction 

At the present time, current software is becoming increasingly more significant and complicated. 

For high-quality software, we must accurately analyze the natural language-oriented requirement 

specifications at the beginning of software development. In requirement engineering, use-case 

approaches are increasingly attracting attention in requirements engineering because the user-

centered concept is valuable in eliciting analyzing requirements [1]. Use cases describe the behavior 

of system as seen from an actor’s point of view [2]. One of the important things is how to correctly 

analyze requirement specifications to prevent potential errors in requirements and to reduce 

development and maintenance costs [3]. However, in real software projects, most of the informal 

requirement specification documents are written, so it is difficult to analyze informal requirement 

specifications with only linguistic, textual analysis. 

In software-industrial fields in Korea, some natural language-oriented requirement analysis 

methods have been mentioned. Ahn [4] mentioned a method of object extraction and modeling from 

the user requirements with Fillmore’s textual approach, which identifies user requirements to extract 

objects and object modeling through a scenario-based analysis. Anton [5] mentioned a method of 

requirement extraction with goal-based requirement analysis but just mentioned a requirement 

extraction method. J. Kim [6] also mentioned his extraction methods with goal and scenario concepts, 

which generate use-case descriptions based on the scenario-based analysis. His approach had a 

problem requiring a change of requirements that are tailored in a defined scenario. Most of the 

requirement analysis and extraction methods use the concept of goal and scenarios. 

The primary purpose of these studies suggested to identify and analyze requirements 

theoretically because of analyzing no systematic way in existing use-case approaches to handle 

non/functional requirements [1]. Their focused researches are the use-case approach that shows the 
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interaction between an actor and a system based on a user-centric analysis, which easily classify the 

high-level functionalities of the system. Our previous use-case approach is difficult to analyze the 

impact between use-cases [4,5]. When using descriptive requirements, this approach makes use-case 

extraction impossible because of its ambiguous expressions and is not clear with the requirements 

analysis criteria [6]. In natural language analysis fields, some researched focused on developing 

formal grammars and parsers in order to perform analysis of the natural language sentence. Selijan 

[7–9] mentioned to find rules with lexical-functional grammar and case grammar to include semantic 

roles to represent the natural language sentence. Ye [10] mentioned to apply foreign language 

teaching and vocabulary teaching at new student with Fillmore’s case theory. But they never mention 

about how to apply requirement engineering with linguistic analysis. 

To solve such a problem, we propose a use-case extraction method from natural language-

oriented informal requirement specifications based on semantic analysis of Fillmore’s mechanism. 

The suggested method identifies key verbs in requirement sentences and extracts arguments of the 

verb in a sentence. Then it can extract the use-case through constructing a recursive visual modeling 

mechanism until no more slightly connected. To make it easier and more accurate to extract use-

cases, we have adopted Fillmore’s Case Grammar and also have applied with Cockburn’s Goal Use 

Case technique on Requirement Analysis to identify the goals of a system from an effective 

requirement identification approach. He mentioned “It is the goal the primary actor has in trying to 

get work done or the user has in using the system” [11]. The approach looks at the interactions of a 

single category of users at a time, considerably reducing the complexity of requirements 

determination without supporting use-case formalization [11,12]. 

Our use-case extraction process consists of five steps: requirement analysis, sentence analysis, 

verb-noun file list, visual modeling and use-case extraction. 

This study is organized in the following sections: Section 2 mentions the related materials and 

methods for our use-case extraction process with informal requirement specification. Section 3 

describes the result of the case studies. The last section presents the conclusions and future scope. 

2. Materials and Methods 

2.1. Materials 

2.1.1. The Original Fillmore’s Case Grammar 

Linguistics [5,6,13] is the scientific study of human language that systematically and deeply 

understands language through scientific analysis and inference about the components of language. 

Linguists Chomsky and Fillmore proposed a systematic analysis of pure human language. Chomsky 

took a scientific approach to human language. His theory only considered surface relationships, 

which was not suitable for requirement engineering because its in-depth meaning is not considered. 

On the other hand, Fillmore argued a case grammar mechanism to describe a deeper language 

structure than Chomsky’s theory. His theory described sentences with semantic roles instead of 

structural cases [13,14]. That is, there is a maintenance of a semantic relationship between nouns with 

a center of a predicate (verb) within a sentence. This relationship was classified with arguments 

(nouns) into categories. In 1968, Fillmore proposed six cases as agent, instrumental, dative, objective, 

factitive and locative. The original case grammar mechanism can classify noun phrases related to 

verbs into case categories: 

(1) An Agent is a subject that is perceived to cause an action represented by a verb. 

(2) An Instrumental is an object that becomes the cause of an action or a state which a verb 

represents. 

(3) A Dative means a person or an animal affected by a state or an action represented by a verb. 

(4) An Objective is an object that is affected by an action or a state which a verb expresses. 

(5) A ‘Factitive’ means a person or an animal that exists as a result of an action and a condition of a 

verb. 

(6) A Locative refers to a state that a verb represents or where an action occurs. 
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Since 1971, the case grammar has been added to and modified by other theorists. Table 1 shows 

the definitions of the cases proposed by Fillmore & other theorists. 

Table 1. Original Fillmore’s Case [15]. 

Case Definition 

Agent A person or entity causing a verb’s action to be performed. 

Counter agent The force or resistance against which a verb’s action is carried. 

Object An entity affected directly by a transitive verb’s action. 

Experiencer A person or thing affected by a verb’s action, replacing of the dative. 

Source The place from which something moves. 

Goal The place to which something moves. 

Locative Location or spatial orientation of the state or action. 

Instrument The inanimate entity causally involved in a verb’s action. 

Time The time of the event. 

2.1.2. The Existing Requirement Analysis Method 

Requirement engineering is the most important area in software engineering research and 

practice [16]. Requirement analysts interview customers about the system process, collect and 

document data. However, they are difficult to analyze requirements written in natural language. The 

problems of requirement analysis are as follows: 1) communication between developers and 

customers, 2) frequent changes in requirements and 3) difficulty in a natural language-oriented 

informal requirement specification. The communication problem and informal specification are 

caused to understand the system to be developed differently. 

Frequent requirement changes may result from an inaccurate representation of the user 

requirements of a system. In order to solve such problems, many researchers have proposed exact 

requirement analysis methods. 

Kim [17] proposed an integrated requirement analysis method based on Goal and scenarios. This 

method effectively integrates data collection and other techniques for requirements analysis. The 

problem of this approach classifies and consolidates requirements according to given scenarios. 

EM Sibarani [18] suggested a method for extracting actors and use-cases from text-based 

requirement specifications. It analyzes natural language-oriented requirements through parsing with 

an automated tool. Its problems are as follows: 1) requirements must be changed to a defined format 

(SPO: Subject-Predicate-Object), 2) a complex sentence has to be replaced with a simple one, 3) verbal 

analysis can analyze only active sentences. 

R. Abbott [19] also used natural language-based textual analysis. He proposed an empirical 

knowledge method to identify objects, attributes and relevance from the requirement specification. 

It maps linguistic components to model elements [5]. Its advantage is that natural language analysis 

can focus on the user’s terms. However, the natural language does not distinguish meanings 

accurately. Thus, natural language-based object models are incorrectly derived. To solve this 

problem, developers need to identify and standardize objects and terms, and then, have to clarify 

different representations of requirement specifications [4]. 

2.2. Methods for Adapting Requirement Engineering with Textual Approach 

2.2.1. Our Refined Fillmore’s Case Mechanism 

Our proposed case mechanism has refined the semantic concepts of the original case grammar 

and has been applied to the requirement engineering [20,21]. The case grammar modeling procedure 

can be used to extract use-cases from natural language-oriented informal requirements, which is a 

top-down method. In other words, it will identify from use-case identification in a larger unit to 

objects and functions in a smaller unit. Through refined methods, we expect to analyze the high level 

of requirements, which will develop high-quality software. 



Appl. Sci. 2020, 10, 3044 4 of 15 

Figure 1 shows the refined Fillmore’s Case Mechanism on how to adapt UML with the case 

mechanism for use-case extraction. This method analyzes semantic relationships between words 

based on the main verbs. Therefore, processing natural language as requirement specifications may 

be more easily handled. Our refined case mechanism consists of eight cases: actor, secondary actor, 

object, source, theme, instrument and goal [15,20]. 

 

Figure 1. Refined Fillmore’s case mechanism. 

We redefine the existing agent case as an actor in the use-case diagram like changing agent to 

actor (A). The existing dative case has a similar role as counter actor. We change dative to counter 

actor (CA). The existing object and experiencer cases are changed to object (O). Source and goal cases 

represent a location or a place of moving something. We integrate the two cases into Source (S). 

Instrumental and locative cases are integrated into the instrument (I). In this study, we add ‘theme 

object (TO)’ of case Grammar in 1971. In addition, the goal (G) is added, which indicates system goal 

to achieve the needs of users of a system. This is different from the existing goal (“The destination of 

a location or a place where something moves”). 

Table 2 lists the categories of refined cases. They consist of a role, notation and meaning of 

arguments which are associated with each verb. These cases can analyze all requirement sentences 

by arguments with the categories of cases. 

Table 2. Refined definition and notation of the Fillmore’s cases [20,21]. 

Case Notation Definition 

Actor A The instigator of the event/action. 

Counter actor CA The force or resistance against which an action is carried out. 

Object O 
The entity which moves or changes or whose existence is in 

consideration. 

Theme TO The subjective entity of Objects 

Result R “Entity” that comes into existence as a result of the action. 

Source S Origin of object. 

Instrument I Facility used in carrying out an event. 

Experience E 
“Entity” that receives or accepts or experiences or undergoes the effect 
of an action. 

Goal G Destination of object.  

Main Verb V A change defined by an event. 
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For example, the following example illustrates the defined case mechanism on the sentence as the semantic 

role that different objects play when a Purchase ACTION is carried out. An employee acts as the ACTOR 

initiating the purchase utilizing the INSTRUMENT of PURCHASE order. Each purchase order identifies a 

set of OBJECTS, in this case Parts, which are to be purchased from a supplier SOURCE with GOAL of 

delivery to a specific Project.  

We do repeatedly extract cases in a requirement sentence until checking all requirement 

sentences. 

2.2.2. Visual Modeling as Transformation Modeling 

The proposed use-case extraction method is applied to requirements engineering with refined 

case grammar. Its purpose is to accurately carry the requirements to those involved in the 

development, which generate a use-case diagram more easily. This approach is applied to the natural 

language-oriented informal requirements written by the customer. Next, a use-case is extracted 

according to the association with the visual model transformed from requirements based on slightly 

connected in graph theory. 

The text-to-model identification algorithm identifies main verbs in natural language sentences 

according to these case grammars and extracts the arguments (nouns) related to the core predicate 

(main verb). Table 3 shows the basic notations for the use-case identification, which identifies 

arguments based on the requirement specifications like natural language sentences. It consists of 

predicate, argument and identifier. Predicate refers to verbs, adjectives, etc. Argument is nouns that 

can be taken according to its characteristics. Finally, identifier distinguishes arguments. The 

abbreviation ‘P’ is a predicate of a sentence. ‘Ai’ are arguments that can be taken depending on the 

nature of the predicate. ‘I’ indicates whether an identifier exists. 

Table 3. Notation of visual modeling [20]. 

Case Notation Comment 

Predicate 
 

Represent main verb in a sentence. 

Argument 
 

Represent nouns that is related to subjective 

verb in a sentence. 

Identification  

of the same ‘Ai’ Type  
Identification Line. 

Noun 

(not include case 

mechanism)  

Nouns that is not related to case 

mechanism.  

 
Figure 2 shows the relationship between the extracted models as shown in Table 3. Using these 

relationships, we extract a use-case as a set of the transformed models from requirement sentences. 

There are two ways to express relationships. (1) Figure 2 categorizes the arguments (nouns) affected 

by the verbs into the categories of cases (the roles of nouns) and (2) shows where the classified 

arguments overlap for the same A. 

 

Figure 2. Relationship notation for visual modeling. 

Figure 3 and 4 show the transformed model with the refined Fillmore’s case grammar for use-

case extraction. It represents the use-case extraction models in Table 3, and the relationships used in 
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use-case extraction modeling in Figure 2. The argument types for use-case extraction are defined as 

follows: 

A1 … An = { actor, counter-actor, object, theme, result, source, instrument, experience, goal} 

 

Figure 3. Visual modeling as the transformed model of refined case structure for use-case extraction. 

 

Figure 4. Visual modeling example. 

2.2.3. Our Use Case Extraction Process with Informal Requirement Specification 

We propose to extract use-cases and a use-case diagram from natural language-oriented 

informal requirement specification with semantic analysis of Linguist Fillmore’s approach. We can 

also estimate software effort with the extracted use-cases based on the original use-case point (UCP). 

Our proposed approach has these advantages as follows. (1) Making it possible to analyze the 

requirements to meet the goals of the developing system. (2) Adapting Linguist Fillmore’s semantic 

approach of textual analysis for requirement engineering. As a result, this method expects to identify 

use-cases from informal requirement specifications easily. (3) Estimating software effort estimation 

based on the use-cases & use-case diagram extraction in requirement specifications. Figure 5 shows 

the use-case extraction process. 



Appl. Sci. 2020, 10, 3044 7 of 15 

 

Figure 5. Use case extraction process. 

We describe the whole Use Case Extraction Process as follows: 

Step 1: Requirement Analysis 

- This step analyzes natural language-oriented requirement specifications 

Step 2: Sentence Analysis 

- This step analyzes a sentence structure of the requirement using a parser. Here, the parser 

extracts the textual relationships between sentences through analyzing their dependency 

characteristics. 

Step 3: Token List 

- This step lists verbs and nouns from the data analyzed in step 1 and 2. That is, we make a 

multiple list with VB*s and NP on terminal nodes from abstract symbol tree extracted by 

Stanford parser. The main verb will be distinguished from verbs with Abbot’s method [19]. 

Step 4: Visual Modeling as Transformation model 

- This step identifies the relevant arguments according to the characteristics of the 

distinguished verbs and analyzes the arguments associated with each identified one. Then 

the transformed model based on improved grammar structure is used to identify the 

relationship between predicates (verbs) and arguments (nouns). If the relationship between 

the extracted verbs and nouns are performed repeatedly, a large chunk can be recognized 

as a unit of use-case like loosely connected in Graph theory. In other words, a use-case can 

be extracted & related semantically by having the relationships between verbs and 

arguments in some paragraph units of informal requirement specifications. In the extracted 

use-case, we extract the inclusion and extension relationships between use-cases. Inclusion 

identifies the functions that are commonly found in several use-cases. Extension is the ability 

to add or extend one use-case under certain conditions. Inclusion and Extension can be 

identified in analyzing sentences. 

Step 5: Software Effort Estimation based on use-case point 

- This step is software effort estimation, which calculates the total man-hours of the 

developing software using the use-case point (UCP) [22]. 
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3. Results 

The use-case extraction process consists of five steps. 

Step 1: Requirement analysis: 

Figure 6 shows goal identification and classification of natural language-oriented requirement 

analysis. Each requirement is identified according to its goals (G) and classified for its goal of each 

use-case. As shown in Figure 6, these requirements are numbered and listed by sentences. 

 

Figure 6. Goal identification and classification of natural language oriented informal requirement 

analysis. 

Step 2: Sentence Analysis: 

We use a parser to analyze sentences like the requirements partitioned in step 1. For our research, 

the Stanford Parser [23] is used to study linguistic analysis and provides a “Stanford Natural 

Language Processing Group.” Based on neural networks, this tool determines the grammatical 

structure of each sentence. By analyzing the characteristics of dependency, the parser detects the 

textual relationship between sentences. The dependency represents it in the graph. According to the 

analysis, nouns are defined as NN, and VBD is the past form of a verb. Finally, DT is a determinant, 

and JJ is an adjective. Figure 7 shows the sentence analysis for the structure of the language. 
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Figure 7. Sentence analysis. 

Step 3: Token (Verb, Noun) List: 

The data analyzed in Steps 1 and 2 are divided into verbs and nouns. Among them, verbs are 

stored and listed in a file list to apply Abbott’s method. This method analyzes requirements and 

extracts class diagrams. In Table 4, we analyze nouns, verbs and adjectives in the requirements and 

map them to model components (object, class, method, etc.). The purpose of our method is to analyze 

the main verb from the requirements and extract a use-case diagram. Therefore, only the verb part is 

applying in Abbott’s method in detail. 

Table 4. Mapping parts of speech to object model components [18]. 

Part of Speech Model Component Definition 

Proper Noun Object Jim, Smith 

Doing Verb Method Buy, Recommend 

Being Verb Inheritance Is-a (kind-of) 

Having Verb Aggregation Has an 

Transitive Verb Method Enter 

Intransitive Verb Method (Event) Depends on 

 

The types of verbs include doing verb, being verb, having verb, etc., which are mapped as 

method, inheritance, aggregation, etc. We model use-case diagrams by analyzing subjects and objects 

associated with the main verb as a center. Here, the use-case name combines the main verb with the 

theme that was defined earlier. The use-case name is recommended to have a form of ‘Verb + Noun’ 

to specify it concretely. We define it as ‘Main Verb + Theme.’ Theme indicates ‘Subject that is changed 

as an action or a subject (noun),’ which is the core of a paragraph. Therefore, intransitive verbs are 

excluded among those of Abbot. Being verb stands for an inheritance, and having verb shows 

aggregation. Modal verbs represent a constraint, and they are excluded from the main verb because 

they indicate components of a class diagram. The main verb is selected from a doing verb (method 

or operation) or a transitive verb (method or operation). 
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Step 4: Visual Modeling (transformed model): 

Visual modeling is divided into six steps. First, Step 4–1 identifies key predicates of requirements 

analysis. This step identifies the main verb while using data from Steps 1, 2 and 3. In the example of 

Figure 8, the main verb is “mails.” 

 

Figure 8. Key verb identification of requirement analysis. 

Step 4–2 examines the properties of key verbs to detect their major roles. Steps 2 and 3 identify 

semantically related arguments based on the identified verbs. However, they cannot distinguish 

every noun from a sentence. Instead, they only find arguments related to the predicate. In Figure 9, 

the arguments related to the main verb “mails” are Customer and Postal Mail. Postal Mail is analyzed 

as a theme while a customer is an actor. 

 

Figure 9. Assignment of argument’s role. 

Step 4–3 extracts the identified arguments and related verbs. The verb list contains several verbs 

that are analyzed in the requirement sentences. Key words and related verbs are then found in a 

sentence containing the identified arguments. Figure 10 shows finding another argument in a 

sentence related to Postal Letter. Thus, as in Figure 10, ‘postal letter’ can find arguments such as 

‘deliver,’ ‘sort’ and ‘accept.’ In addition, ‘customer’ can get related predicates like ‘accept’ and ‘pay.’ 
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Step Sentence Link Process Result 

1 

  

2 

 
 

3 

  

4 

  

5 

  
 

Figure 10. Related verb extractions. 

Step 4–4 identifies the relationship between a verb and an argument. Steps 2 and 3 are repeated 

with the predicates (verbs) found in Step 3. It will stop until there is a relationship between a verb 
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and a noun repeatedly on each sentence. In Figure 11, the sentence ‘the postal system sorts postal 

letter from zip-code’ is analyzed. The predicate ‘sort’ affected by the argument is the ‘postal system.’ 

Its system acts as Subject and ‘postal letter’ is Object. Zip-code is Instrumental. Finally, we can visualize 

them using a relationship. 

 

Figure 11. Verb and argument identification. 

Step 4–5 shows the relevant use-case diagram. As shown in Figure 12, the extracted predicates 

and arguments have repeated relationships in clusters, which is assigned as a use-case unit. It can be 

used to analyze the relationship between a predicate which can identify a use-case and arguments. 

Figure 12 shows an example of identifying the ‘Mails the postal letter’ use-case. 

 

Figure 12. Use case extraction. 
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Step 6 represents the relationship between ‘inclusion and extension.’ Use cases represent 

Inclusions and Extension relationships. In other words, inclusion is a way of expressing similar 

systematic functions found in various use-cases. For example, the use-cases analyzed in the post 

information system have ‘mails letter’ and ‘banks financial service’ with similar functions found in 

these two use-cases. In Figure 13, the inclusion information is defined as ‘register information.’ 

 

Figure 13. Inclusion relationship. 

Extension occurs when a use-case is extended under certain conditions. It is used to represent 

the addition of use-cases. In order to express extension, the use-case is analyzed and the use-case 

model is expressed as ‘condition’ in this study. Figure 14 shows the extension relationship between 

the ‘Banks financial service’ use-case and the ‘Cancel transaction’ use-case. 

 

Figure 14. Inclusion and extension relationship. 

Step 5: Software Effort Estimation: 

This step shows Software Effort Estimation. We calculate the total Man-Hours of software which 

means to spend the developing time based on the extracted use-cases. The calculation method uses 

use-case point to estimate man-hours. In other words, an estimate of the development effort is 

needed. Karner [22] define this value as 20 h/UCP. 

Equation (1) is a calculation method of Total Man-hours: 
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Total Man − Hours =  �� (������ ����)  ×  ��� (1)

There are four use-cases extracted from the above example. Table 5 shows the Total Man-hours. 

Table 5. Mapping parts of speech to object model components [22]. 

Use Case Name Actor Use Case UUCP TCF EF 

Mail the letter 3 15 18 30 11 

Bank the financial service 3 15 18 32 11.5 

Cancel Transaction 2 10 12 28.5 9.5 

Register Information 1 5 6 16.5 9 

Total 9 45 54 107 41 

Final Technical Complexity Factor 1.67 

Final Environmental Factor 0.17 

use-case point 15.3306 

Total Man-Hours (ER:20) 306.612 

4. Conclusions and Future Work 

To develop high-quality software, we require an accurate analysis of requirements in the early 

stages of software development. However, most of the natural language-oriented informal 

requirement specifications are difficult to be analyzed. We propose the use-case extraction method 

using natural language analysis techniques and goal modeling. To do this, we have improved the 

original Fillmore’s Case Grammar and Goal Modeling to understand natural language requirements. 

Our suggested method classifies natural language requirements through Goal Modeling and 

analyzes the requirements to identify the structure and the relationships of sentences through 

parsing. Verbs are listed from this information, and a main verb is extracted. Arguments of a sentence 

are analyzed with requirements based on eight improved cases, and the analyzed information 

extracts use-cases through visual modeling, that is, transformed model. Finally, the software cost is 

calculated based on the extracted use-case. 

Our method can extract a use-case without modifying the natural language requirements, which 

can handle for stakeholders to understand them easily. In addition, SW Effort Estimation can be made 

based on the UCP technique. 

In the future, we will develop an automated tool by applying the proposed method. In addition, 

we intend to use a reverse engineering-based software visualization method to extract use-case 

models from source code. Then we will be able to compare the software effort estimation before 

developing the system with the actual effort through reverse engineering. 
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