
applied
sciences

Article

Microarchitectural Characterization on a Mobile Workload

Woohyong Lee 1, Jiyoung Lee 1, Bo Kyung Park 2 and R. Young Chul Kim 2,*

����������
�������

Citation: Lee, W.; Lee, J.; Park, B.K.;

Kim, R.Y.C. Microarchitectural

Characterization on a Mobile

Workload. Appl. Sci. 2021, 11, 1225.

https://doi.org/10.3390/app11031225

Academic Editor: Christos Bouras

Received: 13 November 2020

Accepted: 25 January 2021

Published: 29 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Samsung Electronics Co., Ltd., Hwasung 18448, Korea; woohyong.lee@samsung.com (W.L.);
jy99.lee@samsung.com (J.L.)

2 SE Lab., Department of Software and Communication Engineering, Hongik University, Sejong 30016, Korea;
parkse@hongik.ac.kr

* Correspondence: bob@hongik.ac.kr; Tel.: +82-44-860-2477

Abstract: Geekbench is one of the most referenced cross-platform benchmarks in the mobile world.
Most of its workloads are synthetic but some of them aim to simulate real-world behavior. In
the mobile world, its microarchitectural behavior has been reported rarely since the hardware
profiling features are limited to the public. As a popular mobile performance workload, it is hard
to find Geekbench’s microarchitecture characteristics in mobile devices. In this paper, a thorough
experimental study of Geekbench performance characterization is reported with detailed performance
metrics. This study also identifies mobile system on chip (SoC) microarchitecture impacts, such
as the cache subsystem, instruction-level parallelism, and branch performance. After the study,
we could understand the bottleneck of workloads, especially in the cache sub-system. This means
that the change of data set size directly impacts performance score significantly in some systems
and will ruin the fairness of the CPU benchmark. In the experiment, Samsung’s Exynos9820-based
platform was used as the tested device with Android Native Development Kit (NDK) built binaries.
The Exynos9820 is a superscalar processor capable of dual issuing some instructions. To help
performance analysis, we enable the capability to collect performance events with performance
monitoring unit (PMU) registers. The PMU is a set of hardware performance counters which are built
into microprocessors to store the counts of hardware-related activities. Throughout the experiment,
functional and microarchitectural performance profiles were fully studied. This paper describes the
details of the mobile performance studies above. In our experiment, the ARM DS5 tool was used for
collecting runtime PMU profiles including OS-level performance data. After the comparative study
is completed, users will understand more about the mobile architecture behavior, and this will help
to evaluate which benchmark is preferable for fair performance comparison.

Keywords: Android native development kit (NDK); Exynos9820; ARM DS5; Geekbench; perfor-
mance monitoring unit (PMU)

1. Introduction

Analysis of workload execution and identification of software and hardware perfor-
mance barriers provide critical engineering benefit; these include guidance on software
optimization, hardware design tradeoffs, configuration tuning, and comparative assess-
ments for platforms. In this paper, we describe the microarchitecture performance analysis
of Primate Lab’s mobile performance evaluation workload, called Geekbench. This analy-
sis can explain the weaknesses of the experimental workload. For example, it can easily
achieve the maximum performance on certain devices with only bigger cache sizes which
are not actually needed in most real-world cases. This means that the change of data
set size directly impacts performance score significantly in some systems and will ruin
the fairness of the CPU benchmark. Some devices will get the benefit without overall
system enhancements.

Geekbench is one of the most well-known CPU-intensive cross-platform benchmarks.
Geekbench ver. 5 is Primate Labs’ latest version which generates comparable performance

Appl. Sci. 2021, 11, 1225. https://doi.org/10.3390/app11031225 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7007-852X
https://orcid.org/0000-0002-2147-5713
https://doi.org/10.3390/app11031225
https://doi.org/10.3390/app11031225
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11031225
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/3/1225?type=check_update&version=1

Appl. Sci. 2021, 11, 1225 2 of 13

numbers on various architectures (e.g., x86, ARM, and Apple) in relatively fair implemen-
tation, with a scoring system that separates single-core and multi-core performance. Most
of Geekbench’s workloads are synthetic but some workloads aim to simulate real-world
runtime scenarios.

As one of the most popular mobile software platforms, Android provides a develop-
ment environment for Android developers to develop Android applications. Additionally,
to have maximum performance, Android NDK is provided. It is a C/C++ compiler for
multi-platforms including ARM architecture-based platforms. The NDK uses the Clang
compiler to compile C/C [1]. The Android version of Geekbench has been compiled in
NDK to get maximum performance.

Unlike performance studies on desktops or servers, mobile performance studies on
common workloads have not been widely researched. In particular, it is hard to find
microarchitecture studies in mobile devices since hardware-supported performance profile
features are generally hidden when the devices are released commercially. In our study,
we have enabled the performance monitoring unit (PMU) register counters of a Samsung
Exynos9820 for profiling on Geekbench. Exynos9820 is a mobile device system on chip
(SoC) with tri-cluster architecture. Each cluster consists of two big cores, two medium
cores, and four little cores.

PMU counters have been widely used in x86 architectures. However, in mobile
SoCs, such a study has not been performed since the SoC vendors should enable the
PMU counters. However, many of them are disabled when they provide them to the end
customers. Our study experimented with enabled PMU counters and used a customized
DS5 profile tool.

The main part of this paper describes the common performance metrics for charac-
terizing Geekbench’s performance behavior. The hardware profile uses PMU registers.
PMUs are hardware performance counters which are built-in microprocessors to store
the counts of hardware-related activities within systems. With the collected PMU data,
the explained characteristics include instructions per cycle (IPC), cache-related counters,
branch prediction-related counters, translation look aside buffer (TLB)-related counters,
and other performance-related counters. All these counters are strongly related to run-
time performance.

ARM DS5 is used for collecting PMU events. In DS5, a Streamline profiler provides
source-level analysis on Android platforms. It uses hardware performance counters to
present detailed aspects of program performance. In our experiment, sampling data of
PMU events are collected through the gator daemon, which enables us to gather PMU
register values.

For evaluating the performance, key performance metrics are described. First, runtime
instruction distribution is explained. It gives the overall characteristics of Geekbench.
Second, measured IPC numbers are described. Some high IPC numbers come from Geek-
bench’s synthetic characteristics. Third, cache studies are explained in detail. Cache sub-
system efficiency can impact the Geekbench score significantly. Next, branch performance
is discussed. Many object-oriented programs (OOPs) struggle with branch implementation
since a large number of branch invocations characteristic of OOPs.

The remainder of this paper is organized as follows. Section 2 explains the details of
related works and the motivation. Section 3 introduces Samsung’s custom Exynos9820 SoC.
Section 4 briefly describes the most popular mobile workloads. Section 5 covers the tools
and experiments in detail. In Section 6, experimental data are summarized and discussed.
The last section presents the conclusion of this paper.

2. Motivation

From the performance perspective, the current architectural roadmap for smartphone
platforms has largely followed its desktop predecessors—cramming more and more ar-
chitectural features, such as branch predictors or cache prefetchers, and putting more and
more cores on the same die [2]. However, there are only a few studies of the performance ef-

Appl. Sci. 2021, 11, 1225 3 of 13

fects on decent mobile microarchitectures. Microarchitecture analysis is a key performance
enhancement process that identifies inefficient performance bottlenecks.

We use Geekbench ver. 5 as an experimental workload. Geekbench is a well-known
mobile SoC performance benchmark. There is currently no detailed performance study on
version 5. However, in a previous study, a test was performed on non-mobile architecture.
It was tested under x86 platforms. For collecting microarchitecture events, this study uses
Intel’s performance profiler called VTune for collecting microarchitecture PMU events
on Windows 10. For Linux, Linux provides a VTune-relevant tool called Perf. This is a
command-line tool that has more flexibility to build automated profiling scripts [3].

The presented performance metrics explain the architectural behavior of Geekbench
during runtime. This will help mobile benchmark developers to design workloads more
carefully with the studied architectural characteristics. It will also help to prevent develop-
ing for a specific favored architecture design.

3. Tested Device

In the experiment, we select a Samsung Galaxy 10+ with Exynos9820 (8nm) as the
target device to analyze mobile behavior on Geekbench 5. Exynos9820 is Samsung’s
ARM v8 architecture compatible mobile SoC. All the Hardware (HW) features can be
enabled including PMUs. This is the main reason why we choose the Exynos9820 device
as the experimental device. Recently, Exynos9820 was placed on Samsung’s S10 premium
smartphones. The hardware specification of the test device is shown in Table 1 [4].

Table 1. Exynos9820 hardware specification.

Hardware Specification

OS Android 9.0 (Pie)

CPU
Octa-core (2xM4 (2.73 GHz)
+2xCortex-A75 (2.31 GHz)
+4xCortex-A55 (1.95 GHz))

GPU Mali-G76 MP12
Memory RAM—6 GB

M4 Cache
L1 I/D cache1—64 KB/64 KB (private)
L2 cache—1 MB (private)
L3 cache—3 MB (shared)

4. Mobile Device Workloads

This paper describes a detailed analysis of a mobile performance benchmark. Bench-
marking is a method of measuring performance against a standard or given set of standards.
Processor performance depends on the types of workload used, and designers typically
use benchmark suites with the initial assumption that the workloads they provide are
representative of user programs [5]. In the field of benchmarking, there are three types of
benchmark to in general [6,7]:

- Synthetic benchmarks (e.g., Whetstone Benchmark, Dhrystone Benchmark, etc.) de-
veloped to measure system-specific parameters (by CPU, compiler, and so on).

- Application-based benchmarks (“real-world” benchmarks) developed to compare
different system architectures in the same real application fields.

- Algorithm-based benchmarks (a compromise between the first and the second type)
developed to compare different system architectures in special (synthetic) fields
of application.

In mobile worlds, there are many performance benchmarks but only a few are accepted
as industrial standard benchmarks. Among them, Geekbench is a commonly referenced
workload. Geekbench is mainly focused on CPU. It also provides GPU workloads but it is
located in a separate space. It is called compute benchmark.

Geekbench is a CPU-centric Primate Labs benchmark. It is widely used in mobile
contexts for evaluating CPU performance. Cross-platform compatibility is a key reason for

Appl. Sci. 2021, 11, 1225 4 of 13

its wide usability. The covered platforms are Linux, Windows, iOS, macOS, and Android [8].
Geekbench’s binary size is relatively small since most workloads are synthetically designed
with small size code. Its runtime is about 90 s on premium devices (e.g., Galaxy S10+). As
the most recent version, Geekbench ver. 5 is divided into two categories: CPU benchmark
and compute benchmark for GPU. In this paper, we will focus only on the CPU benchmark
of Geekbench ver. 5. Geekbench’s CPU benchmark contains a single-core test and multi-
core test and each consists of 21 workloads sorted by crypto, integer, and floating-point
workload. The details are in Table 2.

Table 2. Geekbench 5 workload list.

Category Index Workload Name

Crypto (5%) 101 Advanced Encryption Standard-Ciphertext Stealing
(AES-XTS)

Integer (65%)

201 Text Compression
202 Image Compression
203 Navigation
204 HTML5
205 SQLite
206 PDF Rendering
207 Text Rendering
208 Clang
209 Camera

Floating Point (30%)

301 N-Body Physics
302 Rigid Body Physics
303 Gaussian Blur
305 Face Detection
306 Horizon Detection
307 Image Inpainting
308 HDR
309 Ray Tracing
310 Structure From Motion
312 Speech Recognition
313 Machine Learning

The overall performance score consists of three sections. Each section has its weight
which is decided by Primate Labs, but the weight allocation logic is not clear. The scoring
weights are crypto 5%, integer 65%, and floating point 30%. The weights have been changed
from the previously released official versions. This might be an issue since the competitive
scores are directly affected by the designed weights.

5. Tool

To collect profiling data, there are choices for analyzing tools, including Google’s
Simpleperf and ARM’s DS5 Streamline Performance Analyzer. Simpleperf is a light and
simple open-source tool. Google introduced Simpleperf as a native CPU profiling tool for
Android. It can be used to profile both Android applications and native processes running
on Android. However, we have chosen ARM DS5 since it provides more professional
features and Simpleperf has limitations when gathering events in the Samsung custom-
built Exyno9820 SoC. In our experiment, we used a Samsung Galaxy 10+ with Exynos9820
SoC since we can enable all hardware profile features as required. This is not allowed
for public users. Additionally, ARM provides special features for Samsung custom SoCs
in DS5.

DS5 is a microarchitecture profile capable tool for ARM architectures. Common mobile
devices are equipped with ARM instruction set architecture (ISA)-compatible SoCs. DS5
provides more detailed functions, such as time- and event-based sampling, performance
counter monitoring, functional call graph, and kernel level analysis. In our experiment,
sampling data of PMU events are collected through the gator daemon, which is connected

Appl. Sci. 2021, 11, 1225 5 of 13

to the kernel. The one of reasons for using DS5 is filtering that can set the exact range from
the entire execution.

In most previous microarchitecture studies on common workloads, Intel’s VTune
performance profiler has been used. Intel® VTune™ Profiler collects key profiling data and
presents it with an interface that simplifies their analysis and interpretation [3].

DS5 gathers performance events more precisely compared to open-source tools. It
provides the capability of setting an accurate range of the target runtime with several view
options: live view, timeline view and table view. With the table view, we can analyze
functional hotspots. DS5 counts the number of invocations of targeted PMU events and
displays charts of the data during the capture session in the live view and timeline view,
which provides additional information in a panel [9]. To enable the profiling on the target
device, it needs a gator daemon to communicate with the kernel of the target system.
Streamline application in DS5 provides a pre-built gator, but a user can also build a
customized gator daemon by modifying the .xml file. After the gator daemon is ready, root
privilege is required on the target device and then the gator daemon can detect defined
PMU events. Table 3 lists collected PMU events and explanations. In Table 4, the key
performance index (KPI) is listed with formulas.

Table 3. Performance monitoring unit (PMU) events and description on Streamline.

Index PMU Events Event Description

A CPU CYCLES CPU cycles
B CRYPTO SPECa Cryptographic instruction
C DP SPEC Integer instruction
D LD SPEC Load instruction
E ST SPEC Store instruction
F VFP SPEC Floating point instruction
G INST RETIRED Retired instruction
H INST SPEC Speculatively executed
I ASE SPEC Advanced SIMDb instruction
J L1D TLB Level 1 data TLB access
K L1D TLB REFILL L1 data TLB refill
L L1I CACHE L1 instruction cache access
M L1I CACHE REFILL L1 instruction cache refill
N L1D CACHE L1 data cache access
O L1D CACHE REFILL L1 data cache refill
P L2D CACHE L2 unified cache access
Q L2D CACHE REFILL L2 unified cache refill
R L3D CACHE Level 3 unified cache access
S L3D CACHE REFILL Level 3 unified cache refill
T BR MIS PRED RETIRED Architecturally executed, mispredicted branch
U BR RETIRED Architecturally executed branch
V BUS ACCESS Bus access
W BUS CYCLES Bus cycles
X STALL FRONTEND Not issued, due to the frontend
Y STALL BACKEND Not issued, due to the backend

SPECa: Speculatively executed event; SIMDb: Single instruction multiple data.

Table 4. Key performance index (KPI) list and formula on Streamline.

Category KPI Formula

Instruction mix

Crypto % B/H
Integer % C/H
Float % (F + I)/H
LD/ST %
(LD/ST: sum of load instructions and store instructions) (D + E)/H

IPC IPC G/A

Appl. Sci. 2021, 11, 1225 6 of 13

Table 4. Cont.

Category KPI Formula

Cache

L1D TLB Miss Rate K/J
L1I Cache Miss Rate M/L
L1D Cache Miss Rate O/N
L2D Cache Miss Rate Q/P
L3D Cache Miss Rate S/R
L1D TLB MPKI K/G * 1000
L1I Cache MPKI M/G * 1000
L1D Cache MPKI O/G * 1000
L2D Cache MPKI Q/G * 1000
L3D Cache MPKI S/G * 1000

Branch
Retired Branch Miss Rate T/U
Retired Branch MPKI T/G * 1000

Others
Frontend Cycle Idle Rate X/A
Backend Cycle Idle Rate Y/A
Bus Access Per Cycle V/W

6. Experiment

This paper mainly discusses the single-core behavior of the CPU benchmark on
Geekbench ver. 5. We only consider the single-core test for a clear understanding of the
analysis. Unlike for desktop, mobile multi-core execution is not aiming for maximum
multithread performance as the primary goal. In general, it tries to allocate low utilized
tasks into low-frequency CPU cores, called mid-core or little core. The main concern is the
power consumption rather than the peak performance. Geekbench is the most referenced
mobile performance benchmark but its multi-core implementation is too synthetic. There
is no such a multi-core behavior in real-world scenarios. That is a reason why we exclude
the multi-core section from the experiment.

Additionally, the multi-core test may cause blended results due to the scheduler,
multi-core parallelism, and others according to the design strategy [10]. In other words,
the single-core test would be a clearer approach to follow up the mobile device behavior of
Geekbench. In our experiment, the single-core test is only considered for a big core in an
SoC since the running thread of a single core workload is allocated to a big core. All the
presented data in the paper are from the big core PMU events.

In the experiment, the customized gator was used for the test for enabling the profile
daemon. A limitation of the tool is that the target device can collect only six PMU counters
at a time. To extract reasonable data, the test examines three criteria: (1) the active thread is
monitored to decide the proper range to collect data in the graph; (2) the score gap between
individual command line run and overall Android application package (APK) run. If the
gap is larger than the run-to-run variation, we need to reconsider the use of collected data.
There would be thermal throttling impact during the run; (3) clock count is also used to
know whether it is the right one.

Geekbench generates a primary running thread for every workload in the single-core
test. We examine the thread as the first criterion to distinguish the start point and the
end point of the tested area. The DS5 tool adopts a sampling method for minimizing the
runtime load when it collects profile data. The sampling method does not make it possible
to collect identical data on every run. However, the characteristics are the same in common
cases. Figure 1 shows the main running thread (yellow bar) in image compression as
an example.

We tried to collect reliable microarchitecture data by upholding the above three
standards. The detailed experimental results are discussed in the following sections.

Appl. Sci. 2021, 11, 1225 7 of 13

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 14

at a time. To extract reasonable data, the test examines three criteria: (1) the active thread

is monitored to decide the proper range to collect data in the graph; (2) the score gap

between individual command line run and overall Android application package (APK)

run. If the gap is larger than the run-to-run variation, we need to reconsider the use of

collected data. There would be thermal throttling impact during the run; (3) clock count

is also used to know whether it is the right one.

Geekbench generates a primary running thread for every workload in the single-core

test. We examine the thread as the first criterion to distinguish the start point and the end

point of the tested area. The DS5 tool adopts a sampling method for minimizing the

runtime load when it collects profile data. The sampling method does not make it possible

to collect identical data on every run. However, the characteristics are the same in com-

mon cases. Figure 1 shows the main running thread (yellow bar) in image compression as

an example.

Figure 1. Main thread in image compression.

We tried to collect reliable microarchitecture data by upholding the above three

standards. The detailed experimental results are discussed in the following sections.

7. Results

Our experiment gathers events in the sampling method as explained. The sampling

period specifies the number of such events that are allowed to occur between two samples.

In this experiment, we set 10 ms as the default. After several trials of the test, the experi-

mental results are close to reliable data.

Table 5 shows the summarized result of instruction mix, cache performance, IPC,

branch performance, and bus access. The instruction mix explains instruction-level stress.

Here, we can see that integer instructions are the most executed operations. L1, L2, and

L3 cache performances are also described. However, the overall cache performance is not

quite meaningful since there are three distinct sections in Geekbench 5. For IPC, if the IPC

number is high (bigger than 1.5), this means the workload is more likely to be a synthetic

workload or highly optimized workload. In real-world apps, IPCs are generally from

0.5~1 based on our previous study. We also studied the overall branch impact. The exper-

imental result explains that the branch performance impact is minimal. However, some

low branch performance workloads need to consider branch improvement.

In the following sections, we describe the details of microarchitecture analysis, which

includes instruction mix, IPC, cache, branch, and other performance-related events.

Table 5. Summarized result.

Category KPI Formula

Instruction mix

Crypto % 0.97%

Integer % 52.81%

Float % 21.16%

Figure 1. Main thread in image compression.

7. Results

Our experiment gathers events in the sampling method as explained. The sampling
period specifies the number of such events that are allowed to occur between two sam-
ples. In this experiment, we set 10 ms as the default. After several trials of the test, the
experimental results are close to reliable data.

Table 5 shows the summarized result of instruction mix, cache performance, IPC,
branch performance, and bus access. The instruction mix explains instruction-level stress.
Here, we can see that integer instructions are the most executed operations. L1, L2, and
L3 cache performances are also described. However, the overall cache performance is not
quite meaningful since there are three distinct sections in Geekbench 5. For IPC, if the IPC
number is high (bigger than 1.5), this means the workload is more likely to be a synthetic
workload or highly optimized workload. In real-world apps, IPCs are generally from 0.5~1
based on our previous study. We also studied the overall branch impact. The experimental
result explains that the branch performance impact is minimal. However, some low branch
performance workloads need to consider branch improvement.

Table 5. Summarized result.

Category KPI Formula

Instruction mix

Crypto % 0.97%
Integer % 52.81%
Float % 21.16%

LD/ST % 25.07%
(Sum of Instruction mix) 100.00%

IPC IPC 1.96

Cache

L1D TLB Miss Rate 0.39%
L1I Cache Miss Rate 0.21%
L1D Cache Miss Rate 5.03%
L2D Cache Miss Rate 13.54%
L3D Cache Miss Rate 23.49%

L1D TLB MPKI 1.93
L1I Cache MPKI 0.63
L1D Cache MPKI 18.57
L2D Cache MPKI 7.82
L3D Cache MPKI 2.99

Branch
Retired Branch Miss Rate 1.88%

Retired Branch MPKI 2.71

Others
Frontend Cycle Idle Rate N/A
Backend Cycle Idle Rate N/A

Bus Access Per Cycle 0.14

Appl. Sci. 2021, 11, 1225 8 of 13

In the following sections, we describe the details of microarchitecture analysis, which
includes instruction mix, IPC, cache, branch, and other performance-related events.

7.1. Instruction Mix

Table 6 shows the instruction mix of individual workloads in crypto, integer, and
float. In crypto (AES-XTS), the crypto instruction occupies 20% but the major operation
is integer (25%). In the integer section, the integer instruction consumes up to 83% of the
total executed instructions. In particular, in text compression, it mostly computes integer
numbers and a few loads/stores.

Table 6. Instruction mix in Geekbench 5.

Workloads Crypto % Integer % Float % LD/ST %

AES-XTS 20.26% 24.66% 33.98% 21.10%

Text Compression 0.00% 82.62% 0.02% 17.35%
Image Compression 0.00% 74.29% 9.21% 16.50%
Navigation 0.00% 59.18% 1.10% 39.72%
HTML5 0.00% 65.24% 1.87% 32.89%
SQLite 0.00% 67.36% 0.65% 31.99%
PDF Rendering 0.00% 70.51% 3.82% 25.67%
Text Rendering 0.00% 65.00% 1.82% 33.19%
Clang 0.00% 72.84% 0.44% 26.72%
Camera 0.02% 49.96% 26.64% 23.39%

N-Body Physics 0.00% 28.56% 34.38% 37.06%
Rigid Body Physics 0.00% 36.79% 39.56% 23.65%
Gaussian Blur 0.00% 14.55% 52.59% 32.86%
Face Detection 0.00% 49.96% 28.16% 21.88%
Horizon Detection 0.00% 59.60% 20.55% 19.84%
Image Inpainting 0.00% 44.21% 33.76% 22.03%
HDR 0.00% 66.64% 16.23% 17.12%
Ray Tracing 0.00% 35.42% 39.35% 25.23%
Structure From motion 0.00% 46.29% 30.82% 22.89%
Speech Recognition 0.00% 66.62% 13.30% 20.08%
Machine Learning 0.00% 28.60% 56.15% 15.25%

As one of Geekbench’s synthetic runtimes, float workloads force float computation
load to SIMD and vector floating point (VFP). Even in this case, it still requires significant
integer operations. It occupies up to 70% of total instruction distribution. Compared to
other CPU benchmarks, we can hardly say that Geekbench ver. 5 float workloads are
a well-presented floating operation. Some workloads invoke more integer operations
rather than float operations. Face detection, horizon detection, structure of motion, image
inpainting, and speech recognition show higher instruction mix proportions in integer.

We have studied microarchitecture behavior on common mobile benchmarks and
real-world apps. For profiling float operations, heavy float point invocation workloads are
hardly seen in real-world apps. Geekbench ver. 5 float workloads generate continuous
float computation loads on the float section. This occupies up to 50% of total instruction
executions. However, some workloads are lower than 20%. In particular, speech recognition
only consumes 13% of float instructions whereas 67% of runtime is integer operation. For
this case, we may suggest that speech recognition should be located in the integer section.

7.2. IPC

IPC is a critical performance metric in common microprocessors. It analyzes execution
time as a product of instruction count. It evaluates the level of instruction-level parallelism.
Without instruction-level parallelism, a processor can only issue less than one instruction
per clock cycle (IPC < 1) [11].

Appl. Sci. 2021, 11, 1225 9 of 13

Figure 2 is the IPC for Geekbench workloads. In general, a CPU-centric benchmark’s
IPC number tends to bigger than one. Similarly, Geekbench 5 shows an average of 2.0 IPC.
In Figure 2, the highest number is 3.4 IPC on high dynamic range (HDR). It means that HDR
runtime seems to be highly optimized. To have a high IPC number, key microarchitecture
performances are required to be good, including cache and branch. HDR’s L1 D-cache
miss rate is less than 1.2% and the misses per kilo-instruction (MPKI) number is only 2.5.
Additionally, there is minimum branch performance impact. Branch MPKI is about 0.1.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 14

As one of Geekbench’s synthetic runtimes, float workloads force float computation

load to SIMD and vector floating point (VFP). Even in this case, it still requires significant

integer operations. It occupies up to 70% of total instruction distribution. Compared to

other CPU benchmarks, we can hardly say that Geekbench ver. 5 float workloads are a

well-presented floating operation. Some workloads invoke more integer operations rather

than float operations. Face detection, horizon detection, structure of motion, image

inpainting, and speech recognition show higher instruction mix proportions in integer.

We have studied microarchitecture behavior on common mobile benchmarks and

real-world apps. For profiling float operations, heavy float point invocation workloads

are hardly seen in real-world apps. Geekbench ver. 5 float workloads generate continuous

float computation loads on the float section. This occupies up to 50% of total instruction

executions. However, some workloads are lower than 20%. In particular, speech recogni-

tion only consumes 13% of float instructions whereas 67% of runtime is integer operation.

For this case, we may suggest that speech recognition should be located in the integer

section.

7.2. IPC

IPC is a critical performance metric in common microprocessors. It analyzes execu-

tion time as a product of instruction count. It evaluates the level of instruction-level par-

allelism. Without instruction-level parallelism, a processor can only issue less than one

instruction per clock cycle (IPC < 1) [11].

Figure 2 is the IPC for Geekbench workloads. In general, a CPU-centric benchmark’s

IPC number tends to bigger than one. Similarly, Geekbench 5 shows an average of 2.0 IPC.

In Figure 2, the highest number is 3.4 IPC on high dynamic range (HDR). It means that

HDR runtime seems to be highly optimized. To have a high IPC number, key microarchi-

tecture performances are required to be good, including cache and branch. HDR’s L1 D-

cache miss rate is less than 1.2% and the misses per kilo-instruction (MPKI) number is

only 2.5. Additionally, there is minimum branch performance impact. Branch MPKI is

about 0.1.

Figure 2. Instructions per cycle (IPC) for Geekbench workloads.

There are four workloads (text compression, navigation, N-body physics, and speech

recognition) that have IPC lower than 1. These workloads are memory subsystem depend-

ent. It implies that cache performance is critical to maximizing the benchmark score. In

our study, N-body physics occupies 37% of memory operations from the entire execution.

The L1 D-cache miss ratio is up to 13% in the experiment. There was no such behavior in

the previous CPU benchmark study [12]. This experiment implies that the size of input

Figure 2. Instructions per cycle (IPC) for Geekbench workloads.

There are four workloads (text compression, navigation, N-body physics, and speech
recognition) that have IPC lower than 1. These workloads are memory subsystem depen-
dent. It implies that cache performance is critical to maximizing the benchmark score. In
our study, N-body physics occupies 37% of memory operations from the entire execution.
The L1 D-cache miss ratio is up to 13% in the experiment. There was no such behavior in
the previous CPU benchmark study [12]. This experiment implies that the size of input data
contributes to the performance score significantly due to cache efficiency. If benchmark
vendors ignore the impact of cache sensitivity on CPU benchmarks, a specific architecture
may be favored (e.g., large cache architecture CPU).

7.3. Cache Performance

Data in traditional “caching” data systems reside in secondary storage and are read
into the main memory only when operated on. This limits system performance. Main
memory data stores with data always in the main memory are much faster. For this, we
analyze the cache subsystem impact on Geekbench 5. The major key metrics of the cache are
miss ratio and cache MPKI. Previously, there were studies on cache performance with PMU
analysis but mostly on desktop or server systems. The commonly tested benchmark is SPEC
CPU (current version is 2017). The SPEC CPU® 2017 benchmark package contains SPEC’s
next-generation, CPU-intensive suites for measuring and comparing intensive computation
performance, memory subsystem, and compiler, and stressing a system’s processor [13].

In a published SPEC2017 study, the average L1, L2, and L3 cache miss rates are 3%,
2%, and 14%, respectively. In SPEC2017, the integer section exhibits higher cache miss rates
than the float section [12]. In most SPEC2017 workloads, the cache subsystem performance
impact is minimal. Figure 3 is L1D cache MPKI and miss ratio.

Overall, the L2 cache miss ratio is about 18% and MPKI is 36. Cache performance
on L2 and L3 is correlated with L1 performance. N-body physics (301), Gaussian blur
(303), and speech recognition (312) show low performance on L2 and L3 as well as on
L1. In this case, a workload performance score is varied with input data set size since the

Appl. Sci. 2021, 11, 1225 10 of 13

tested devices’ cache subsystem architectures are not the same. The L2 and L3 details are
in Figures 4–7.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 14

data contributes to the performance score significantly due to cache efficiency. If bench-

mark vendors ignore the impact of cache sensitivity on CPU benchmarks, a specific archi-

tecture may be favored (e.g., large cache architecture CPU).

7.3. Cache Performance

Data in traditional “caching” data systems reside in secondary storage and are read

into the main memory only when operated on. This limits system performance. Main

memory data stores with data always in the main memory are much faster. For this, we

analyze the cache subsystem impact on Geekbench 5. The major key metrics of the cache

are miss ratio and cache MPKI. Previously, there were studies on cache performance with

PMU analysis but mostly on desktop or server systems. The commonly tested benchmark

is SPEC CPU (current version is 2017). The SPEC CPU® 2017 benchmark package contains

SPEC’s next-generation, CPU-intensive suites for measuring and comparing intensive

computation performance, memory subsystem, and compiler, and stressing a system’s

processor [13].

In a published SPEC2017 study, the average L1, L2, and L3 cache miss rates are 3%,

2%, and 14%, respectively. In SPEC2017, the integer section exhibits higher cache miss

rates than the float section [12]. In most SPEC2017 workloads, the cache subsystem per-

formance impact is minimal. Figure 3 is L1D cache MPKI and miss ratio.

Figure 3. L1D-cache MPKI and miss ratio.

Overall, the L2 cache miss ratio is about 18% and MPKI is 36. Cache performance on

L2 and L3 is correlated with L1 performance. N-body physics (301), Gaussian blur (303),

and speech recognition (312) show low performance on L2 and L3 as well as on L1. In this

case, a workload performance score is varied with input data set size since the tested de-

vices’ cache subsystem architectures are not the same. The L2 and L3 details are in Figures

4–7.

Figure 3. L1D-cache MPKI and miss ratio.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 14

Figure 4. L2 cache MPKI.

Figure 5. L2 cache miss ratio.

Figure 6. L3 cache MPKI.

Figure 4. L2 cache MPKI.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 14

Figure 4. L2 cache MPKI.

Figure 5. L2 cache miss ratio.

Figure 6. L3 cache MPKI.

Figure 5. L2 cache miss ratio.

Appl. Sci. 2021, 11, 1225 11 of 13

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 14

Figure 4. L2 cache MPKI.

Figure 5. L2 cache miss ratio.

Figure 6. L3 cache MPKI. Figure 6. L3 cache MPKI.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 14

Figure 7. L3 cache miss ratio.

7.4. Branch

As a feature of object-oriented programming in common mobile platforms, branch

predictors have a major role to improve the instruction pipeline’s efficiency. The branch

prediction accuracy is critical for this. Inefficient branch prediction performance may

cause serious wasting of clock cycles.

After the branch prediction performance study on Geekbench 5, we could conclude

that branch performance impact is not as critical as cache. The measured branch MPKI is

up to 15 and its average is 2.7. The average branch prediction hit ratio is about 98%. In

common cases, we may need to consider branch performance if MPKI is higher than 20.

Figure 8 displays the measured data.

Figure 8. Branch MPKI and miss ratio.

In the study, the relatively high MPKI workloads are text compression (201), naviga-

tion (203), N-body physics (301), and speech recognition (312). Among them, text com-

pression (201) shows the lowest branch prediction performance. However, the improve-

ment of branch performance does not help much in improving performance scores.

Mostly, it would be less than 1%.

7.5. Other Performance Metrics

Along with the above performance-critical PMUs, cache translation lookaside buffer

(TLB) misses and bus access per clock cycle (BAPCC) were measured to provide addi-

tional information.

A TLB stores the recent translations of virtual memory to physical memory and can

be called an address translation cache [14]. The location of the TLB is between the CPU

Figure 7. L3 cache miss ratio.

7.4. Branch

As a feature of object-oriented programming in common mobile platforms, branch
predictors have a major role to improve the instruction pipeline’s efficiency. The branch
prediction accuracy is critical for this. Inefficient branch prediction performance may cause
serious wasting of clock cycles.

After the branch prediction performance study on Geekbench 5, we could conclude
that branch performance impact is not as critical as cache. The measured branch MPKI is
up to 15 and its average is 2.7. The average branch prediction hit ratio is about 98%. In
common cases, we may need to consider branch performance if MPKI is higher than 20.
Figure 8 displays the measured data.

In the study, the relatively high MPKI workloads are text compression (201), navigation
(203), N-body physics (301), and speech recognition (312). Among them, text compression
(201) shows the lowest branch prediction performance. However, the improvement of
branch performance does not help much in improving performance scores. Mostly, it
would be less than 1%.

7.5. Other Performance Metrics

Along with the above performance-critical PMUs, cache translation lookaside buffer
(TLB) misses and bus access per clock cycle (BAPCC) were measured to provide addi-
tional information.

A TLB stores the recent translations of virtual memory to physical memory and can
be called an address translation cache [14]. The location of the TLB is between the CPU

Appl. Sci. 2021, 11, 1225 12 of 13

and the CPU cache. The access of the TLB is essential in modern architecture to perform
optimized parallel lookup with cache access. If a TLB miss occurs, it requires a page table
check. This causes additional run cycles in the system. In Geekbench 5, the average L1 data
cache TLB hit ratio is 99.4%. This means that the TLB is not a component to be enhanced.

The number of BAPCC implies whether the tested workload is back-end bound.
N-body physics, Gaussian blur, inpainting, and speech recognition generate relatively
high BAPCC (range 0.16–0.19). The cache performances of those workloads are low
(range 33–68).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 14

Figure 7. L3 cache miss ratio.

7.4. Branch

As a feature of object-oriented programming in common mobile platforms, branch

predictors have a major role to improve the instruction pipeline’s efficiency. The branch

prediction accuracy is critical for this. Inefficient branch prediction performance may

cause serious wasting of clock cycles.

After the branch prediction performance study on Geekbench 5, we could conclude

that branch performance impact is not as critical as cache. The measured branch MPKI is

up to 15 and its average is 2.7. The average branch prediction hit ratio is about 98%. In

common cases, we may need to consider branch performance if MPKI is higher than 20.

Figure 8 displays the measured data.

Figure 8. Branch MPKI and miss ratio.

In the study, the relatively high MPKI workloads are text compression (201), naviga-

tion (203), N-body physics (301), and speech recognition (312). Among them, text com-

pression (201) shows the lowest branch prediction performance. However, the improve-

ment of branch performance does not help much in improving performance scores.

Mostly, it would be less than 1%.

7.5. Other Performance Metrics

Along with the above performance-critical PMUs, cache translation lookaside buffer

(TLB) misses and bus access per clock cycle (BAPCC) were measured to provide addi-

tional information.

A TLB stores the recent translations of virtual memory to physical memory and can

be called an address translation cache [14]. The location of the TLB is between the CPU

Figure 8. Branch MPKI and miss ratio.

8. Conclusions

In this paper, Geekbench ver. 5 microarchitecture has been studied thoroughly.
The experimental characteristics include instruction mix, IPC, cache, branch, and other
performance-related PMUs. Previously, there were limited studies on desktops or servers
with non-mobile workloads (e.g., SPEC CPU). The tested platforms are mostly Intel’s x86
architecture. In our study, we thoroughly analyze a mobile device microarchitecture with
Geekbench 5 as a CPU-intensive benchmark.

The presented tables and figures compare the characteristics of Geekbench 5’s work-
load. We began the study by analyzing the instruction distribution. Overall, integer
operations are the major invocation. Even in the float section, the integer operations are
significant. After we thoroughly studied Geekbench 5, we understood the brittleness of
workloads, especially in the cache sub-system. It means that the change of data set size
directly and significantly impacts performance scores in some systems.

Our experiment was done on Geekbench 5’s single-core workloads. We know that a
multi-core study would be worth it. However, Geekbench 5’s multi-core workloads can be
easily optimized to have maximum performance. As in our experiment, a simple round-
robin thread scheduler can achieve maximum performance. However, most multi-core
runtime cases require energy aware scheduling (EAS). It means that power consumption
should be primarily considered as for real-world use cases.

There are studies about minimizing the multi-core energy consumption in a hetero-
geneous system like Exynos9820. They present power consumption, response time, and
energy consumption models for mobile platforms. Using these models, the energy con-
sumption of baseline platforms under power, response time, and thermal constraints was
optimized with and without introducing new resources [15].

The next planned experiment will be on an integrated test benchmark that does not
test only the CPU but also other components, like memories, Input Output (IOs), and
Graphics Processing Unit (GPUs). After the comparative study is completed, users will

Appl. Sci. 2021, 11, 1225 13 of 13

understand more about the mobile architecture behavior, and this will help to evaluate
which benchmark is preferable for fair performance comparisons. This will challenge the
appropriateness of the benchmark in mobile worlds.

Author Contributions: W.L., J.L., B.K.P., and R.Y.C.K. designed the present study, reviewed the
literature, and drafted the manuscript; W.L. and J.L. performed mobile performance experiments;
B.K.P. and R.Y.C.K. critically revised the manuscript; all authors gave approval for the final version of
the manuscript submitted for publication. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by the Ministry of Trade, Industry and Energy (MOTIE), Korea,
through the Education Program for Creative and Industrial Convergence (Grant Number N0000717).

Institutional Review Board Statement: This study has been approved for the publications by Sam-
sung (Secutrans 20201109).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy reasons.

Conflicts of Interest: The authors have no conflict of interest.

References
1. Android NDK for Developers. Available online: https://developer.android.com/ndk (accessed on 2 March 2020).
2. Pandiyan, D.; Lee, S.; Wu, C. Performance, energy characterizations and architectural implications of an emerging mobile platform

benchmark suite–MobileBench. In Proceedings of the 2013 IEEE International Symposium on Workload Characterization (IISWC),
Portland, OR, USA, 22–24 September 2013; pp. 133–142.

3. Intel Vtune Website. Available online: https://software.intel.com/en-us/vtune (accessed on 2 March 2020).
4. Samsung Galaxy S10 Spec Official Website. Available online: https://www.samsung.com/global/galaxy/galaxy-s10/specs/

(accessed on 2 March 2020).
5. Poovey, J.A.; Conte, T.M.; Levy, M.; Gal-On, S. A Benchmark Characterization of the EEMBC Benchmark Suite. IEEE Micro 2009,

29, 18–29. [CrossRef]
6. Kramer, K.; Stolze, T.; Oppelt, A. Microprocessor Benchmarks-A Detailed Look at Techniques, Problems and Solutions. In

Proceedings of the 2011 21st International Conference on Systems Engineering, Las Vegas, NV, USA, 16–18 August 2011; pp.
337–340.

7. Weiss; Alan, R. Dhrystone Benchmark, History, Analysis, Scores and Recommendations; White Paper; ebenchmarks; Weiss: Los Angels,
CA, USA, 2002.

8. Geekbench Home Page. Available online: http://primatelabs.com (accessed on 2 March 2020).
9. ARM DS-5 Streamline User Guide. Available online: https://static.docs.arm.com/dui0482/w/DUI0482W_streamline_user_

guide.pdf (accessed on 2 March 2020).
10. Dhotre, S.; Patil, P.; Patil, S.H.; Jamale, R. Analysis of scheduler settings on the performance of multi-core processors. In

Proceedings of the 2017 International Conference on Trends in Electronics and Informatics (ICEI), Tirunelveli, India, 11–12 May
2017; pp. 687–691.

11. Gottlieb, A.; Almasi, S. Highly Parallel Computing; Benjamin-Cummings Pub Co.: Los Angels, CA, USA, 1989.
12. Limaye, A.; Adegbija, T. A Workload Characterization of the SPEC CPU2017 Benchmark Suite. In Proceedings of the 2018 IEEE

International Symposium on Performance Analysis of Systems and Software (ISPASS), Belfast, UK, 2–4 April 2018; pp. 149–158.
13. SPEC2017 Home Page. Available online: https://www.spec.org/cpu2017/ (accessed on 2 March 2020).
14. Villavieja, C.; Karakostas, V.; Vilanova, L.; Etsion, Y.; Ramirez, Y.; Mendelson, A.; Navarro, N.; Cristal, A.; Unsal, S. DiDi:

Mitigating the Performance Impact of TLB Shootdowns Using a Shared TLB Directory. In Proceedings of the 2011 International
Conference on Parallel Architectures and Compilation Techniques, Galveston, TX, USA, 10–14 October 2011; pp. 340–349.

15. Gupta, U.; Korrapati, S.; Matturu, N.; Ogras, U. A Generic Energy Optimization Framework for Heterogeneous Platforms using
Scaling Models. Microprocess. Microsyst. 2016, 40, 74–87. [CrossRef]

https://developer.android.com/ndk
https://software.intel.com/en-us/vtune
https://www.samsung.com/global/galaxy/galaxy-s10/specs/
http://doi.org/10.1109/MM.2009.74
http://primatelabs.com
https://static.docs.arm.com/dui0482/w/DUI0482W_streamline_user_guide.pdf
https://static.docs.arm.com/dui0482/w/DUI0482W_streamline_user_guide.pdf
https://www.spec.org/cpu2017/
http://doi.org/10.1016/j.micpro.2015.06.009

	Introduction
	Motivation
	Tested Device
	Mobile Device Workloads
	Tool
	Experiment
	Results
	Instruction Mix
	IPC
	Cache Performance
	Branch
	Other Performance Metrics

	Conclusions
	References

