KCl Indexed Journal
Volume 10 Number 3, September 2021 ISSN 2288-2847(Print)
ISSN 2288-2855(0Online)

International Journal of

Advanced Smart Convergence

" '[IBC The Institute of Internet, Broadcasting and Communication
http://www.iibc.kr Zonres TN

x Volume 10 Number 3
JASC | Contents September 2021

Table of Contents

Telecommunication Information Technology (TIT)

On Inflated Achievable Sum Rate of 3-User Low-Correlated SC NOMA/ 01

Kyuhyuk Chung
Creating Covert Channel by Harnessing Shapley Values from Smartphone Sensor Data / 10
Jun-Won Ho
Higher Spectral Efficiency of 3-User Cross CSC NOMA in 5G Systems / 17
Kyuhyuk Chung

The Effects of Face on Symbolic Consumption Trends, Product Satisfaction, and New Product Purchase Intention of Online
Golf Product Consumers / 26
Min-Hyeok Yang. Seyun Kim

Periodic Biometric Information Collection Interface Method for Wearable Vulnerable Users / 33
Taegyu Lee

Human-Machine Interaction Technology (HIT)

A Study on Energy Platform Using Data in the US: Based on Opening Platform Model / 41
Song. Minzheong

Deep learning classifier for the number of layers in the subsurface structure / 51
Ho-Chan Kim. Min-Jae Kang

Roadmap Toward Certificate Program for Trustworthy Artificial Intelligence / 59
Min-gyu Han and Dae-Ki Kang

Design for Automation System for Pharmaceutical Prescription Using Arduino and Optical Character Recognition / 66
Myung-Jae Lim, Dong-Kun Jung, Kyu-Dong Kim, Young-Man Kwon

A Study on Metaverse Hype for Sustainable Growth / 72
Jee Young Lee

m Nano Information Technology (NIT)

Quadrature VCO as a Subharmonic Mixer / 82
Nam-Jin Oh

Automatic UML Design Extraction with Software Visualization based on Reverse Engineering / 89
Se Jun Jung, Janghwan Kim. Won Young Lee, Bo Kyung Park. Hyun Seung Son, R. Young Chul Kim

m Culture Information Technology (CIT)

Current Status and Solutions for Promoting Innovative Startup in Vietnam /97
Quoc Cuong Nguyen. Thi Huyen Tran, Quoc Kien Nguyen and HyukDong Kwon

-

Volume 10 Number 3

IJASC Contents September 2021

IJAS

A Study on the Economic Preparation of Retired Women's Old Life / 105
Ahn Na Lim

A Comparative Study of Men and Women on the Preparation of Retirement Life / 113
Ahn Na Lim

Identification Systems of Fake News Contents on Artificial Intelligence & Bigdata / 122
Jangmook KANG, Sangwon LEE

User-Customized News Service by use of Social Network Analysis on Artificial Intelligence & Bigdata / 131
Jangmook KANG. Sangwon LEE

OverIT: An Interactive Overlay for Touchscreen-based Ul Customization by Demonstration / 143
Kyungyeon Lee, SeungA Chung, Uran Oh

A Study for analysis of Inverse Kinematics system to Character Animations & Motion Graphics education / 149
Hyung-ik Cho, Seung-Jung Shin

Case study of Creating CG Handheld Steadicam using maya nParticle / 157
Choi, Chul Young

BM3D and Deep Image Prior based Denoising for the Defense against Adversarial Attacks on Malware Detection Networks

/163
Kumi Sandra and Suk-Ho Lee

Structural Relationship between Perfectionism, Dance Commitment, Career Decision Self-Efficacy, and Dance Achievement

of Middle and High School Students Majoring in Dance / 172
Yun-Mi Min

A Study on the Copyright Survey for Design Protection in Metaverse Period / 181
Kim Gokmi. Ju Hyun Jeon

A Study on the Cremation Status of Public Cremation Facilities By Jurisdiction Area and Outside of the Jurisdiction Area

Targeting Users of E-Haneul Funeral Information System in Jeollabuk-do / 187
Jae-sil Choi, Jeong-lae Kim

A Study on the Utilization of the Public Charnel Facilities for Cremators by Public Cremation Facilities Using E-Haneul

Funeral Information System in the Capital Area /198
Jae-sil Choi, Chang-seok Oh

Applied Practice on Fresh Food Cold Chain System with Blockchain Solution /207
Eun Choul Jang, Janghwan Kim, R. Young Chul Kim

m Bio or medical Information Technology (BIT)

The Effect of Fermented Antler Extract in Prevention of Osteoporosis or Reduced Physical Activity in Females during

Menopause / 214
Hyun-Kyoung Kim

Development of Blueberry Cakes with Addition of Mealworm Powder (Tenebrio molitor Lavare) Using sensory evaluation

[225
Chilsuk Ma, Youngkyun Kim

m Envirol

Combust

A Case S

A Devele

Volume 10 Number 3, September 2021

International Journal of Advanced Smart Convergence

B Telecommunication Information Technology (TIT)

On Inflated Achievable Sum Rate of 3-User Low-Correlated SC NOMA/ 01
Kyuhyuk Chung

Creating Covert Channel by Harnessing Shapley Values from Smartphone Sensor Data / 10 Harianib

Higher Spectral Efficiency of 3-User Cross CSC NOMA in 5G Systems / 17 Kyahyuk Chung

;he Fﬁe%s of Face on ngbolic Consumption Trends, Product Satisfaction, and New Product Purchase Intention of Online Golf
uct Consumers / 2
Min-Hyeok Yang, Seyun Kim

Periodic Biometric Information Collection Interface Method for Wearable Vulnerable Users / 33
Taegyu Lee

B Human-Machine Interaction Technology (HIT)

A Study on Energy Platform Using Data in the US: Based on Opening Platform Model / 41 Song, Minzheong

Deep learning classifier for the number of layers in the subsurface structure / 51 Ho-Chan Kirn. Min-Jae Kang

Roadmap Toward Certificate P for Tr h ificial Intelli ce /5
I=] cate Program for Trustworthy Artificial Intelligence / 59 Min- Han and Dae-Ki Kang

Design for Automation System for Pharmaceutical Prescription Using Arduino and Optical Character Recognition / 66
a ! eutica ption Mygung- ae%lm,cboll':lg' nJung,f{yu-éoﬁgi(irn,Yuung—Man Kwon

A Study on Metaverse Hype for Sustainable Growth / 72 Jea Voung Lee

B Nano Information Technology (NIT)

uadrature VCO as a Subh i i
Quadrature as a Subharmonic Mixer / 82 Nam-Jin Oh

Automatic UML Design Extraction with Software Visyalization based on Reverse Engineering / 8!
g ‘ge Jun ung’.- Jangﬂnwan I?lm, Won Young Lee, o?éyung Pgrk, ayun Seung Son, R. Young Chul Kim

B Culture Information Technology (CIT)

FICNE SEMUK et Selafiols for Pomoting Innovativ&&&%ﬁ%&%ﬁ?ﬂ;&fﬁi Huyen Tran, Quoc Kien Nguyen and HyukDong Kwon

A Stud th i i o
udy on the Economic Preparation of Retired Women's Old Life / 105 AbinNa s

A Comparative Study of Men and Wom the P ti f Reti tLife/ 113
P Y 'omen on the Preparation of Retiremen e/ A RaLIm

Identification Systems of Fake News Contents on Artificial Intelligence & Bigdata / 122
¥ - - Jangmook KANG, Sangwon LEE

User-Customized N Service b f Social Net k Analysi Artificial Intelli & Bigdata / 131
u zed News Service by use of Social Network Analysis on cial Intelligence gdata S ook KANG: Sangwon LEE
OverlIT: An Interactive Overlay for Touchscreen-based Ul Customization by Demonstration / 143
Kyungyeon Lee, SeungA Chung, Uran Oh

A Study for analysis of Inverse Kinematics system to Character Animations & Motion Graphics education / 14
¥ e ¥ R Hyung-ie Cho, Seung-Jung Shin

C tudy of Creating CG Handheld Steadi i Particle / 157
ase study of Creating andhe! eadicam using maya nParticle / Chol. Chul Young

?%%D and Deep Image Prior based Denoising for the Defense against Adversarial Attacks on Malware Detection Networks
Kumi Sandra and Suk-Ho Lee
ral R i i - i t of
a{gﬂ: ral B ﬂlati?rslg &Pgttl_plv :rr‘\t:'e ajgigglf:bgggecﬁ ‘C?{nrnitment. Career Decision Self-Efficacy, and Dance Achi evemin OM, -
un-

A Study on the Copyright Survey for Design Protection in Met. Period / 181
y pyrig y for Design Protection in Metaverse Pe K Goloni St Hyime Jaon

Stud T: i
Osert; é’fiﬂ-fgﬁeﬁﬂﬁg%? |§1t J'}lrrs‘gtflgle’l’gtg;grﬂ_‘a :foa?lggﬂméféIBYBJyrisdicﬂon Area and Outside of the Jurisdiction Area Targeting
Jae-sil Choi, Jeong-lae Kim

r a;udg ?n the Urllizatl?ln of the Public fharnel Facilities for Cremators by Public Cremation Facilities Using E-Haneul Funeral
nformation System in the Capital Area / 198
Jae-sil Choi, Chang-seok Oh

Applied Practice on Fresh Food Cold Chain System with Blockchain Solution / 207
Eun Choul Jang, Janghwan Kim, R. Young Chul Kim

W Bio or medical Information Technology (BIT)
B?Effect of Fermented Antler Extract in Prevention of Osteoporosis or Reduced Physical Activity in Females during Menopause
Hyun-Kyoung Kim
Pﬂglopment of Blueberry Cakes with Addition of Mealworm Powder (Tenebrio malitor Lavare) Using sensory evaluation
Chilsuk Ma, Youngkyun Kim

Combustible Gas and Visible Distance Sprinkler Head for Safe! f Gymnasi Work: /232
Y SPRN I C for SR ST Cafimasiion YRl et Jae-Cheon, Ah, Ha-Sung, Kong

A Case Study of Disaster Accidents at Construction Site Based PDCATh /245
s Sk it bl S Dong-Won, Shin, Ha-Sung, Kong

A Development of the Customer based On-premise ERP Implementation Process Frﬁ)rre\gr%lgtal éﬁ7Hyeong- Xim, SeungHee Bim

The Institute of Internet, Broadcasting and Communication

International Journal of Advanced Smart Convergence Vol.10 No.3 89-96 (2021)
http://dx.doi.org/10.7236/1JASC.2021.10.3.89

1JASC 21-3-12

Automatic UML Design Extraction with Software Visualization
based on Reverse Engineering

Se Jun Jung?, Janghwan Kim?, Won Young Lee?,
Bo Kyung Park?, Hyun Seung Son®, R. Young Chul Kim®

12M.S, Software Engineering Laboratory, Department of Software and Communication
Engineering, Hongik University, Korea
3M.S, Defense Korea Agency for Technology and Quality
4Assistant Professor, Dept. of Computer Education, ChinJu National University of Education,
SAssistant Professor, Dept. of Computer Engineering, Mokpo National University
®Professor, S.E Laboratory, Dept. of Software and Communication Engineering, Hongik University,
E-mail : {*bvcx79, 2)janghwan, 3leewy, Shob}@selab.ac.kr, ‘parkse@cue.ac.kr, Shson@mokpo.ac.kr

Abstract

In various areas of the 4th industry, a big issue is software quality enhancement for stability and reliability
of the smart software systems. After revising software promotion law at 2020, we must clearly define
requirements and separate design parts and implementation parts of an all public software development
contracts. In this study, we need to validate whether the final implementation of software is followed by the
original design or not. To do this, we consider the design restoration through software visualization based on
reverse engineering. Therefore we propose an UML design extraction and visualization method based on
reverse engineering. Based on this, we may validate whether it is implemented according to the original design,
and how much visualizes and includes the code the internal complexity for improvement of software quality.

Keywords: UML, OOP, Reverse engineering, Software visualization

1. Introduction

As the knowledge-information society continues, the fields in which digital information is used in various
ways are increasing. As software that uses digital information appears in various fields, such as robots, artificial
intelligence, and the Internet of Things, the scale of software grows and becomes more complex, technology is
needed to achieve sophistication of software quality. In addition, since software programs require continuous
development and patching, a maintenance system that manages the implemented software for high quality is
important for complex software. However, due to invisibility, which is a characteristic of software, it is difficult
to measure the complexity of software and to reflect requirements, making it difficult to maintain software [1].
Moreover, in IT ventures or small and medium-sized enterprises, the lack of a maintenance system due to frequent
developer turnover, frequent changes in requirements, and lack of design documents is a big problem [2]. Those
complex parts of the software that are not discovered due to the invisibility of the software can potentially cause
bigger problems and additional costs for the company.

To improve these problems, this paper proposes the ways to improve the software quality by recovering the

Manuscript Received: July. 15, 2021 / Revised: July. 20, 2021 / Accepted: July. 22, 2021

Corresponding Author: bob@selab.hongik.ac.kr

Tel: +82-44-860-2477, Fax: +XX-XX-XXX-XXXX

Professor, Software Engineering Laboratory, Department of Software and Communication Engineering, Hongik University, Korea

90 International Journal of Advanced Smart Convergence Vol.10 No.3 89-96 (2021)

design document through the software implemented based on the design to improve and verify the completeness
of the design. In the design phase of the software development lifecycle, errors can be identified, corrected, and
reduced at a lower cost than the implementation phase. In that case, verification work can be performed in
advance through the method suggested by the software engineer, and errors can be identified and corrected in
early stage with the verification result. Then, the company can expect to reduce the cost for the maintenance of
the software. This paper is organized in the following order. In Chapter 2, reverse engineering and software
visualization methods are mentioned as related studies, and in Chapter 3, the visualization process for UML
design restoration and verification based on reverse engineering is introduced. Chapter 4 shows the design
restoration of the online shopping mall data system as a case study. Section 5 ends this paper with a conclusion.

2. Related Works
2.1 Software Architecture Visualization and Software Process Visualization

Research on visualization of the software development process through reverse engineering is ongoing. J.
Chikofsky researched the forward engineering, reverse engineering, and maintenance of the SW process, which
is the core of SW reverse engineering and Tool-Chain [3]. Based on these, Software Reverse Engineering is the
operation of analyzing developed software to recover its product such as higher-level documents or design
drawings from lower-level products. And the J. Park researched of Tool-Chain, a tool for source code analysis,
proposed a Matrix to find the Bad Smell of the code and to visualization [4]. And more, the data structure for
extracting the design drawing use-case from the source code or tracking object information has been researched
[5]. These studies show advantages in terms of maintenance because information about the software development
process can be analyzed at the design level and the overall structure can be seen easily.

Develop

Project Source Code SOUFCE
Management Version
Tool Controller COde(s)

T Tool-Chain

Continuous Semantic
Integration Analyzer
Tool —1—

Information
Base

S T

View
Composers

A

Graph

Figure 1. Software Process Visualization

In software development, the invisibility of software is always a problem throughout the development process.
This is because these characteristics make it difficult to quickly identify various problems that occur throughout
the software development process. So There have been studies to Software Process Visualization. B. Park
researched about combines Tool-Chain and process visualization [6]. The software development process can be
efficiently managed through software visualization techniques, and the quality of software development can be
improved by understanding the entire process. This allows for early detection of software development problems
by ensuring transparency in the software development process. In addition, this can reduce the maintenance cost,

Automatic UML Design Extraction with Software Visualization based on Reverse Engineering 91

thereby reducing the economic burden of the company.
3. UML Designs Extraction

3.1 The Previous Tool-Chain for Software Architecture Visualization

Sou_rce Dot
Navwviator

1)Data Extraction |
Java

Software SParsel‘. View | New Views of
Work SEEEEE Composers Product
Product Analyzer | |
[y
4) visualization
2) Data save 3) ta analyze
A4

[Information Base

V

(sQuite)

Figure 2. Previous Tool-chain of Software Architecture Visualization[7]

Figure 2 shows Software Architecture Visualization Tool-chain that used in previous researches. Source
Navigator is an open-source tool that analyzes both C and Java as a parser in the existing software architecture
visualization Tool-Chain. As the first step of this visualization, a file is created as a result of analyzing the target
source code using Source Navigator. Although a total of 29 source code analysis files are provided as types of
files, there are few types of practically useful analysis result files. When the target source code is written in Java
code, there are fewer than 10 useful information can be derived, and there is a limit to obtaining specific
information or additional information of the target source code [8]. In addition, in order to apply the analyzed
result file to the Tool-Chain, an external program called 'dbdump’ must be used, and the analyzed content is stored
in the database almost as it is. In other words, since unnecessary work is required to interpret and move data,
when the size of the target code is large, more time is required in the program for information analysis, movement,
and storage. Moreover, since information is stored in the database, there is a disadvantage that new information
must be extracted only from the information stored in the database, and additionally, the process of searching and
extracting through a query is additionally required for this extraction operation. Therefore, there is a problem in
terms of optimization of the query statement in the process of using the query statement. To improve on these
problems, we need a parser that can directly get the information we need and can provide more information.

3.2 Our Proposed Tool-Chain for Software Visualization

.

Parser

1)Data Extraction

Java
Software View New Views ol

Composers Product

Work Semantic
Product \ Analyzer

lz) Data save |2 ta analyze 4) visualization

I Information Base]

Figure 3. Proposed Tool-Chain for Software Visualization

92 International Journal of Advanced Smart Convergence Vol.10 No.3 89-96 (2021)

Figure 3 shows the schematic diagram of the Tool-Chain within the software architecture visualization with
the method proposed in this paper. The source navigator, which was used as a static analysis tool of analyzing
source code, is replaced with a static analysis for Java called ‘Java parser’. Instead of the file extracted by the
source navigator, the Java parser creates information in AST (Abstract Sytax Tree) form and stores the extracted
results in a Java object. The AST has a top-down structure, allowing top-down access to specific detailed
information. You can use the supported libraries to find and work with the specific syntax that you want in the
AST. Therefore, the new Tool-Chain uses the JavaParser object to create an AST as an object rather than a file,
and extracts the desired data using the created object. In addition, necessary information and information obtained
through analysis are processed and stored as objects. This allows for more flexible processing than parsers that
used to use and optionally stores the results in a database. By using this method, it is possible to increase
modularity by replacing the complexity problem of the existing query statement and to obtain data directly from
the object, so the additional tasks that we metioned above can be significantly reduced. Also, Source Navigator
imported from legacy tools runs as a process, while Java parser uses Java objects. This tool can also be run
together as a process in a Tool-Chain running in Java Eclipse. In other words, since it operates only within the
JVM, problems such as specifying the path of the existing source navigator and accessing the OS are eliminated,
increasing the modularity of the Tool-Chain.

We choose to create graphs using PlantUML instead of GraphViz as a visualization tool. Both Graphviz and
PlantUML generate plots automatically via the Dot language. The tool supports a variety of diagrams, including
sequence diagrams, use case diagrams, class diagrams, and more. PlantUML is an open-source extension of
Graphviz that provides more convenient support for UML drawing. PlantUML can easily visualize various
diagrams by changing the shape of the Dot language for each diagram. It can be applied to Tool-Chain in the
same way as GraphViz, and you can use GraphViz's dot language as needed. Therefore, the new Tool-Chain
handles all data analysis and storage in the JVM. Therefore, the parsing step is simple compared to the previous
Source Navigator and DB installation and connection. DB can be selectively applied, and most processing is
possible with one Java program, and data to be analyzed can be directly defined and extended.

3.3 Design restoration using Java parser and PlantUML

1.Parsing 2.Data Save
input output fnput

| JavaParser & AST(S) »| DataMaker(s)

S
4.Visualization INake Graph] Ollt+pll(

output inpyt input

GraphMaker(s) DataList Data(S)

A

Figure 4. Steps for New Tool Chain

Figure 4 shows the Software Architecture Visualization Tool-Chain process to recover desgin in UML form
from source code that is written in Java. The following shows the Tool-Chain process using Java parser and
PlantUML step by step.

Automatic UML Design Extraction with Software Visualization based on Reverse Engineering 93

Step 1. First, when the program is executed, the Tool-Chain reads the configuration file, the library to be used,
the path for the target source code. And then, it initializes the Java parser object. This initialized parser parses the
target source code and generates AST after a static analysis of the source code. In general, program will generate
one AST per one Java file.

Tld Fild Class Declaration
Declaration || Declaration Method Declaration

MethodCall If Statement
Constructor Method Expr
Declaration Declaratio
1 I 1
Member L : Class ——1 Function

Figure 5. AST Structure diagram

Step 2. In this step, DataMaker iterates through the generated AST, and it extracts the necessary information that
set up in DataMaker. And then, it creates and modifies data objects with that information [4]. It extracts the
necessary information from each line of codes to create a data object or add information. DataMaker leverages
the AST structure to extract the information that are set. Then, it creates a data object or adds information to
objects. The extracted and created data objects are collected and managed in the DatalList. This operation is
repeated until all files are cycled, creating and updating data objects in the DataL.ist. Figure 5 shows some of the
AST structures that mentioned above. Nodes such as methods and constructors exist inside the class Node
structure, and MethodCallExpr nodes and If Statement nodes exist inside the method nodes.

Step 3. In this step, the program creates a script file for the visualization using the DataList completed through
GraphMaker, a class for design restoration. GraphMaker writes scripts to utilize PlantUML. ClassDgMaker needs
class information and information such as methods, references, and inheritance relationships to generate class
diagrams. SequenceDgMaker needs information such as the object to call, method calls, and order to create a
sequence diagram. Following these rules, GraphMaker completes a single script by appending the specified rules
of Dot language and the necessary data to the string.

Step 4. In this step, the program runs plantUML on the OS using Java process object via Tool-Chain. The
plantUML draws a graph based on the script that are created in the previous step, and recovers the design for the
program from the source code. Then, users review the result with the existing design documentation.

4. Applied Practice with Online Shopping Mall

4.1 Target source code
Apply the proposed method to design a simple online shopping mall data system. The requirements are:
The shopping mall system stores account and product information.
Each account has a username, a password, and a balance of account.
Each product has a name, a price, and product ID.
Users access to their account via their username and password.
The user adds the balance to the account.
The user purchases a product with the balance.

94

International Journal of Advanced Smart Convergence Vol.10 No.3 89-96 (2021)

Shop System

m dd
—{Registration| | - product
0 ;
e |] Login

{e)

9
-

Manage

Shap i
e Srng Q Q
UserData GoodsData

User/Manage Shop System

regist(id, pwd)
new User(id, pwd)
login(id, pwd)
login(id, pwd)
I result
— charge(id, money) _|
User lem chargetmeney)
—_ e _
buy(user, goods)
-id String -niame : String g P N
P String it Seing L |
H harge(-)
-money : int -money - Int) =
k ds . pric)»
+huyftanet) mew Goods(name, price)
ahae) | | | e Y i —

Figure 6. Online Shop System Diagrams

Figure 6 shows the diagram generated according to the requirements. From left, there are Use-Case, Class, and

Sequence diagrams.

4.2 Design restoration

Step 1. First, program executes the Tool-Chain by setting the target source code and library information for the
Online shopping mall to recover the design for. Figure 7 shows the source code for the 'shop' class, which is the
code written according to the design document and requirements of Figure 6, and the "TestScenario' class for

testing this shop class.

public class Shop

public class TestScenario

{ {
Map<String, Goods> goodsSet; public static Shop shop = new Shop();
Map<String, User> usersSet; @Test
public boolean regist(String id, String pwd) $ub11c static void Login()
if(null == userSet.get(id)) shop.login("id", "password");
{ }
userSet.put(id, new User(id, pwd)); @Test
yal return true; public static void Buy_Product()
else
{
t fal ;
} return Taise; shop.buy(null, null);
public User login(String id, String pwd) }
@Test
User tryUser = userSet.get(id); public static void Charge_Money()
if(tryUser.chckPwd(pwd)) {
return tryUser; shop.charge(null, 8);
elee) P ge(s @);
return null; @Test
public boolean buy(User user , Goods goods) public static void Add_Product()
{
if(check(user, goods)) shop.addGoods(null, null);
return user.buy(goods); }
else @Test
return false; public static void Registration()
public boolean charge(User user, int charge)[] { R e " "
public void addGoods(Goods goods, String id)[] shop.regist("id", "password");
private boolean check(User user, Goods goods)[] }
3

Figure 7. Part of the input source code to be applied to the object-oriented Tool-Chain

Step 2. Executing the program loops through the AST, which is the result of parsing the target source code,
making it a data object and completing the DataL.ist.

Step 3. Using the DataL.ist and the Script Maker to create script statements.

Automatic UML Design Extraction with Software Visualization based on Reverse Engineering 95

Figure 8. Part of the generated script statement
In Figure 8, the script on the left shows source code to draw a class diagram, and the script on the right is for
drawing a sequence diagram.
Step 4. Finally, the program recovers the design by creating a diagram through the script file.

£

void Loging /)
login(java.lang.String, java.lang String))_:
<]

void Buy Product) __/J

buy(shop.User, shop.Goods)

M,
N,
® @ @©¢
=
=]
-]

000003

1 buy(shop.Goods) !
\DuyshopGoads))

void Charge Money(Q J

charge(shop.User, int)

oA

TestScenario ~

call shop.Goods

! sethoney(int)
<
=< |

void Add_Product)

addGoods(shop.Goods, javalang.String) |

(@

void Registration:)
regist(ava.langString, java.lang.String) !
addGoods] !

Figure 9. Restored Diagram

Comparing Figure 6 with Figure 9, it can be seen that the diagram has been restored similarly. Looking at the
code in Figure 9, the TestScenario class was created by integrating Manage and User. The class diagram in Figure
9 is recoverd based on the fields and methods of the coresponding class. Then, we associate reference
relationships between classes based on invocations. Therefore, you can see the difference in Figure 9 in that the
has relationship is expressed as a Map.

Similar to the Use-Case diagram, the Sequence Diagram creates labels based on the methods in the Test Scenario
and restores the object's method invocation relationship. The purchase scenario in Figure 6 is designed to adjust
the amount using a price (-price). However, in the code implemented in practice, the user's ability to purchase
controls the cost. Therefore, it satisfies the requirement of “purchase one product with the balance of the logged-
in account”, but it can be seen that the implementation is different from the design. Also, as in Use-Case, Manage
and User are unified into TestScenario. Therefore, there is no Manage Actor of Use-Case, so it can be judged
whether the requirements are reflected according to the viewpoint of performing TestScenario. In the
implemented code, since there is no case to call or use the Shop class by distinguishing actors, it can be determined
that more implementations for users and administrators of the requirements are needed.

96 International Journal of Advanced Smart Convergence Vol.10 No.3 89-96 (2021)

5. Conclusion

In various areas of the 4th industry, a big issue is software quality enhancement for stability and reliability
of the smart software systems. After revising software promotion law in 2020, we must clearly define
requirements and separate design parts and implementation parts of an all-public software development
contracts. This means who to be responsible for and how to sperate between requirement & high-level design
and low-level design & implementation. We should validate the product whether a software development is
followed the requirements of a project or not. Therefore, our research focus on automated UML design
extraction with software visualization based on reverse engineering. The proposed method can quickly and
easily recover the UML design from the source code through the Tool-Chain system. As a result, we can
compare the original and manual design with the design of reverse engineering. Now we need to quantify
completely and verify the complexity of the design and source code.

Through the proposed method, a more accurate design could be extracted by improving and extracting more
information from the source code. In addition, the modularity of the Tool-Chain is increased by reducing
unnecessary processes. We are going to research further on the software design and source code complexity
matrix for increasing modularity.

Acknowledgement

This work was supported by the National Research Foundation NRF), Korea, under project BK21 FOUR,
and also by Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education (2021R111A305040711).

References

[1] S. Moon, and R. Kim, "Code Structure Visualization with A Tool-Chain Method", International Journal of Applied
Engineering Research, ISSN 0973-4562 Vol.10 No.99, 2015.

[2] C. Kim, J. Park, "A Software Maintenance Capability Maturity Model Based on Service", Korea Institute of
Information Technology, pp.173-184, 2014.

DOI: http://dx.doi.org/10.14801/kiitr.2014.12.5.173

[3]J. Chikofsky, H. Cross, “Reverse engineering and design recovery: A taxonomy” |EEE Software, Vol.7, No.1, pp. 13-
17, 1990.

DOI: https://doi.org/10.1109/52.43044

[4] J. Park, et al, “Building a Code Visualization Process to Extract Bad Smell Codes”, KIPS Transactions on Software
and Data Engineering, VVol.8, No.12, 465~472, 2019.

[5]S. Jung, et al “Code Visualization with Object-Oriented Mapping Structure for Object Traceability”, The Korea Smart
Media Society Spring Conference 2021, Vol 10 Issue 1, 11-14, 2021.

DOI: https://doi.org/10.3745/KTSDE.2019.8.12.465

[6] B. Park, et al, "Best Practices on Software Development and Management Process for the Republic of Korea Army
Information System", Korean Society of Information Sciences, Vol.47 No.10, 911-925, 2020

DOI: https://doi.org/10.5626/J0K.2020.47.10.911

[7] W. Lee, et al. "The Constructing & Visualizing Practices in Effective Static Analyzer for analyzing the Quality of
Object-Oriented Source Code", The Korea Information Processing Society (KIPS) Fall Conference 2019, Vol. 38, No.2,
704-707, 2019.

[8] B. Park, et al. "A Case Study on Improving SW Quality through Software Visualization ", Journal of the Korean
Society of Information Sciences, Vol.41, No.11, 935-942, 2014.

DOI: https://doi.org/10.5626/J0K.2014.41.11.935

