
applied
sciences

Article

Automatic Generation Mechanism of Cause-Effect Graph
with Informal Requirement Specification Based on the
Korean Language

Woo Sung Jang and R. Young Chul Kim *

����������
�������

Citation: Jang, W.S.; Kim, R.Y.C.

Automatic Generation Mechanism of

Cause-Effect Graph with Informal

Requirement Specification Based on

the Korean Language. Appl. Sci. 2021,

11, 11775. https://doi.org/10.3390/

app112411775

Academic Editor: Valentino Santucci

Received: 11 November 2021

Accepted: 7 December 2021

Published: 11 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Software Engineering Laboratory, Department of Software and Communication Engineering, Hongik University,
Sejong 30016, Korea; jang@selab.hongik.ac.kr
* Correspondence: bob@hongik.ac.kr; Tel.: +82-44-860-2477

Abstract: In requirement engineering, an important issue is how to transform and tailor the informal
system requirements of users or customers into more structured specification documents, which are
then used by the software developers. In addition, it is both challenging and necessary to redefine
and analyze, from ill-defined or unknown requirements, specifications correctly and automatically
generate test cases with them. There are few kinds of research in Korea for automatically reducing
requirement complexity and developing test cases of the Korean language-based requirement speci-
fications. Why do we need requirement simplification? Requirement complexity causes analyzers
less readability and low understandability. To do this, we propose the automatic cause-effect gener-
ation via a requirement simplification mechanism of informal requirement specifications with the
Korean language, which works the following procedures: (1) the automatic simplification of informal
requirement sentences, (2) the generation of Condition/Conjunction/Clause Tree (C3Tree) Model,
(3) and the Cause-effect generation.

Keywords: Korean language based requirement specification; requirement analysis; requirement
formulation; cause-effect graph

1. Introduction

In recent years, software development organizations must balance the need for high-
quality software through diverse testing technologies [1] and the need to make automatic
test case generation and test execution from informal Korean requirements, which can
reduce testing time and cost in more efficient testing endeavors [2].

However, due to semantic analysis of requirements based on the Korean language [1]
in Korea, it is difficult to automatically generate test cases from informal requirements writ-
ten with the Korean natural language. So, we are still holding on automatically generating
test cases from informal natural Korean language-based requirement specifications. To do
this, we suggest an automatic generation mechanism to extract cause-effect from require-
ments as follows: (1) simplify informal requirements, (2) extract Cause and Effect from
them, (3) create C3Tree with the extracted Cause and Effects, (4) generate the cause-effect
graph, (5) convert this graph into decision tables, and (6) finally generate test cases based
on the decision tables.

Gary E. Mogyorodi [3,4] mentions that the Cause-Effect Graphing is a test case design
technique that is performed once requirements have been reviewed for ambiguity, and
the Cause-Effect Graphing technique derives the minimum number of test cases to cover
100% of functional requirements to improve the quality of test coverage. To automatically
generate a Cause-Effect Graph from the requirements, we propose a method to simplify
the structure of a requirement sentence, identify causes and effects in the simplified sen-
tences, and create a Cause/Conjunction/Clause (C3Tree) Model to express the identified

Appl. Sci. 2021, 11, 11775. https://doi.org/10.3390/app112411775 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2147-5713
https://doi.org/10.3390/app112411775
https://doi.org/10.3390/app112411775
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112411775
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112411775?type=check_update&version=3

Appl. Sci. 2021, 11, 11775 2 of 13

information, and transform C3Tree Model to Cause-Effect Graph Model. In this paper, we
limit to describing the Cause-Effect Graph via Informal requirement specifications.

This paper is organized as follows. Section 2 mentions related works. Section 3
mentions the method of automatically generating Cause-Effect Graphs from the informal
requirements. Section 4 mentions our automatic generation mechanism of the Korean
Requirements Analyzer for Cause-Effect Graph. Section 5 mentions a case study using
actual missile systems. Finally, the conclusion and future work are mentioned in Section 6.

2. Related Studies
2.1. Cause-Effect Graph

To make the Cause-Effect Graph, they did mention identifying the smallest functional
unit from the requirements specification, which defines the identified units as cause and
effect, and pairs them [3]. With Cause-Effect Graph, we can create the minimal test cases
to include the maximal testing domain of software requirement, which reduces testing
time and cost [3]. Additionally, it can show a logical relationship between the input
and output conditions with logical operators-AND, OR, and NOT shown in Figure 1 [5].
(a) means ’If N1 = true, then N2 = true’. (b) means ’If N1 = false, then N2 = true’. (c) means
’If N1 = true or N2 = true, then N3 = true’. (d) means ’If N1 = true and N2 = true, then
N3 = true’. The Left node represents “Cause” to show the input conditions, such as the
changes within a system. On the contrary, The Right node indicates “Effect” to mean the
output conditions, including the state which results from the combination of systematic
transformation or causes.

Appl. Sci. 2021, 11, 11775 2 of 14

information, and transform C3Tree Model to Cause-Effect Graph Model. In this paper, we

limit to describing the Cause-Effect Graph via Informal requirement specifications.

This paper is organized as follows. Section 2 mentions related works. Section 3 men-

tions the method of automatically generating Cause-Effect Graphs from the informal re-

quirements. Section 4 mentions our automatic generation mechanism of the Korean Re-

quirements Analyzer for Cause-Effect Graph. Section 5 mentions a case study using actual

missile systems. Finally, the conclusion and future work are mentioned in Section 6.

2. Related Studies

2.1. Cause-Effect Graph

To make the Cause-Effect Graph, they did mention identifying the smallest func-

tional unit from the requirements specification, which defines the identified units as cause

and effect, and pairs them [3]. With Cause-Effect Graph, we can create the minimal test

cases to include the maximal testing domain of software requirement, which reduces test-

ing time and cost [3]. Additionally, it can show a logical relationship between the input

and output conditions with logical operators-AND, OR, and NOT shown in Figure 1 [5].

(a) means 'If N1=true, then N2=true'. (b) means 'If N1=false, then N2=true'. (c) means 'If

N1=true or N2=true, then N3=true'. (d) means 'If N1=true and N2=true, then N3=true'. The

Left node represents “Cause” to show the input conditions, such as the changes within a

system. On the contrary, The Right node indicates “Effect” to mean the output conditions,

including the state which results from the combination of systematic transformation or

causes.

Berk Bekirolu [6] focused on testing with the cause-effect graph from English soft-

ware specifications. Nobody does work with automatically generating Cause-Effect

Graphs from the Korean requirements.

Figure 1. Connection Types between the identified Nodes for the Cause-Effect Graph.

2.2. Model-Based Test Case Generation Research

Our previous research did follow Gary E. Mogyorodi’s approach, which mentioned

100% functional requirement coverage with the minimal test cases based on a Cause-Effect

Graph [3]. We focused on converting sequence diagrams into cause-effect graphs and then

generating test cases with them. To automatically make test case generation, we adapted

model transformations (such as model-to-model and model-to-text) among models (such

as sequence diagram, cause-effect diagram, decision table, and test case) based on the

meta-modeling approach [7].

In other words, we transformed (1) a cause-effect graph into a decision table and (2)

the decision table into a test case through the model transformation method, which im-

plements the input and output data of the model transformation as all XML metadata

exchange [4]. This approach did not deal with informal requirement sentences. Figure 2

shows this process of model transformations.

Each meta model stores meta information about the model (XMI File). The Cause-

Effect Graph is automatically converted to the Decision Table by Model Transformation

Engine 1 with Transformation Rule 1. Model Transformation Engine1 automatically con-

verts the Cause-Effect Graph generated by referring to the Cause-Effect Meta model to the

Figure 1. Connection Types between the identified Nodes for the Cause-Effect Graph.

Berk Bekirolu [6] focused on testing with the cause-effect graph from English software
specifications. Nobody does work with automatically generating Cause-Effect Graphs
from the Korean requirements.

2.2. Model-Based Test Case Generation Research

Our previous research did follow Gary E. Mogyorodi’s approach, which mentioned
100% functional requirement coverage with the minimal test cases based on a Cause-Effect
Graph [3]. We focused on converting sequence diagrams into cause-effect graphs and then
generating test cases with them. To automatically make test case generation, we adapted
model transformations (such as model-to-model and model-to-text) among models (such
as sequence diagram, cause-effect diagram, decision table, and test case) based on the
meta-modeling approach [7].

In other words, we transformed (1) a cause-effect graph into a decision table and
(2) the decision table into a test case through the model transformation method, which
implements the input and output data of the model transformation as all XML metadata
exchange [4]. This approach did not deal with informal requirement sentences. Figure 2
shows this process of model transformations.

Each meta model stores meta information about the model (XMI File). The Cause-
Effect Graph is automatically converted to the Decision Table by Model Transformation
Engine 1 with Transformation Rule 1. Model Transformation Engine1 automatically con-
verts the Cause-Effect Graph generated by referring to the Cause-Effect Meta model to the

Appl. Sci. 2021, 11, 11775 3 of 13

Decision Table created by the Decision Table Meta model. Likewise, the Decision Table is
automatically converted into a Test case by Model Transformation Engine 2.

Appl. Sci. 2021, 11, 11775 3 of 14

Decision Table created by the Decision Table Meta model. Likewise, the Decision Table is

automatically converted into a Test case by Model Transformation Engine 2.

Figure 2. The Model transformations [4].

3. Automatic Generation Method of the Cause-Effect Graph from Informal Require-

ment Specifications

We show the process of a cause-effect graph generation from informal requirement

specifications, as shown in Figure 3. We offer the process of a cause-effect graph genera-

tion from informal requirement specifications as follows: (1) Informal Korean Require-

ment Specification as a text file, (2) the Simplified Sentences as program data in memory,

(3) C3Tree Model as a simplified text model file, and (4) Cause-Effect Graph as an output

model file, and Steps 1–3 as methods for generating each output.

In this process, we simplify the informal requirement sentence and express the

C3Tree Model as the simplification. Finally, we represent the C3Tree Model as a Cause-

Effect Graph.

Figure 3. The Process of Cause-Effect Graph Generation from Informal Requirement Spec.

3.1. Step 1. Simplify Complex Requirements

We identify the “Cause” node, “Effect” node with the “Identity” relationship, “NOT”

relationship, “AND” relationship, and “OR” relationship between the cause and the effect

node in natural language-based requirement sentences. Then we draw a Cause-Effect

Graph using the identified information, placing the “Cause” node in the Condition clause

and the “Effect” node in the Result clause of a natural language sentence. There exists the

“AND” or “OR” relationship between a Conjunction clause and the Following clause

nested from each “Cause” and “Effect” node. It can also place the “NOT” relationship in

both the Condition clause and Result clause.

We use a morpheme analyzer to analyze the morpheme in a sentence, which identi-

fies the types (condition, result, conjunction, and following) of the Clauses in the sentence

included with the analyzed morphemes. The morpheme analyzer represents tags instead

of part of speech (POS) to identify morphemes of the sentence. Table 1 shows details of

the tags of POS used in the morpheme analyzer.

Figure 2. The Model transformations [4].

3. Automatic Generation Method of the Cause-Effect Graph from Informal
Requirement Specifications

We show the process of a cause-effect graph generation from informal requirement
specifications, as shown in Figure 3. We offer the process of a cause-effect graph gener-
ation from informal requirement specifications as follows: (1) Informal Korean Require-
ment Specification as a text file, (2) the Simplified Sentences as program data in memory,
(3) C3Tree Model as a simplified text model file, and (4) Cause-Effect Graph as an output
model file, and Steps 1–3 as methods for generating each output.

Appl. Sci. 2021, 11, 11775 3 of 14

Decision Table created by the Decision Table Meta model. Likewise, the Decision Table is

automatically converted into a Test case by Model Transformation Engine 2.

Figure 2. The Model transformations [4].

3. Automatic Generation Method of the Cause-Effect Graph from Informal Require-

ment Specifications

We show the process of a cause-effect graph generation from informal requirement

specifications, as shown in Figure 3. We offer the process of a cause-effect graph genera-

tion from informal requirement specifications as follows: (1) Informal Korean Require-

ment Specification as a text file, (2) the Simplified Sentences as program data in memory,

(3) C3Tree Model as a simplified text model file, and (4) Cause-Effect Graph as an output

model file, and Steps 1–3 as methods for generating each output.

In this process, we simplify the informal requirement sentence and express the

C3Tree Model as the simplification. Finally, we represent the C3Tree Model as a Cause-

Effect Graph.

Figure 3. The Process of Cause-Effect Graph Generation from Informal Requirement Spec.

3.1. Step 1. Simplify Complex Requirements

We identify the “Cause” node, “Effect” node with the “Identity” relationship, “NOT”

relationship, “AND” relationship, and “OR” relationship between the cause and the effect

node in natural language-based requirement sentences. Then we draw a Cause-Effect

Graph using the identified information, placing the “Cause” node in the Condition clause

and the “Effect” node in the Result clause of a natural language sentence. There exists the

“AND” or “OR” relationship between a Conjunction clause and the Following clause

nested from each “Cause” and “Effect” node. It can also place the “NOT” relationship in

both the Condition clause and Result clause.

We use a morpheme analyzer to analyze the morpheme in a sentence, which identi-

fies the types (condition, result, conjunction, and following) of the Clauses in the sentence

included with the analyzed morphemes. The morpheme analyzer represents tags instead

of part of speech (POS) to identify morphemes of the sentence. Table 1 shows details of

the tags of POS used in the morpheme analyzer.

Figure 3. The Process of Cause-Effect Graph Generation from Informal Requirement Spec.

In this process, we simplify the informal requirement sentence and express the
C3Tree Model as the simplification. Finally, we represent the C3Tree Model as a Cause-
Effect Graph.

3.1. Step 1. Simplify Complex Requirements

We identify the “Cause” node, “Effect” node with the “Identity” relationship, “NOT”
relationship, “AND” relationship, and “OR” relationship between the cause and the effect
node in natural language-based requirement sentences. Then we draw a Cause-Effect
Graph using the identified information, placing the “Cause” node in the Condition clause
and the “Effect” node in the Result clause of a natural language sentence. There exists
the “AND” or “OR” relationship between a Conjunction clause and the Following clause
nested from each “Cause” and “Effect” node. It can also place the “NOT” relationship in
both the Condition clause and Result clause.

We use a morpheme analyzer to analyze the morpheme in a sentence, which identifies
the types (condition, result, conjunction, and following) of the Clauses in the sentence
included with the analyzed morphemes. The morpheme analyzer represents tags instead
of part of speech (POS) to identify morphemes of the sentence. Table 1 shows details of the
tags of POS used in the morpheme analyzer.

Appl. Sci. 2021, 11, 11775 4 of 13

Table 1. Parts of POS tags in the Korean language.

Tag Description Tag Description Tag Description

S Sentence VP Verb phrase EF Final ending

CDC Condition Clause SL Foreign language SF Terminal punctuation

RC Result Clause JKS Subjective case marker VV Verb

CJC Conjunction Clause NNG General Noun VX Auxiliary verb

FC Following Clause XSV Verb derivational suffix - -

NP_SBJ Subjective noun phrase EC Connective ending - -

3.1.1. Identify the Condition-Positive, Condition-Negative Relationship

We use the identification method to identify condition clauses in natural language
sentences as shown in Figure 4. Figure 4 consists of two clauses in the sentence. In
Korean, the clauses are separated with a Connective Ending (EC). The EC as an original
Korean morpheme is added at the end of Clause. The EC has diverse forms of simple and
complex types.

Appl. Sci. 2021, 11, 11775 4 of 14

Table 1. Parts of POS tags in the Korean language.

Tag Description Tag Description Tag Description

S Sentence VP Verb phrase EF Final ending

CDC Condition Clause SL Foreign language SF
Terminal

punctuation

RC Result Clause JKS Subjective case marker VV Verb

CJC Conjunction Clause NNG General Noun VX Auxiliary verb

FC Following Clause XSV Verb derivational suffix - -

NP_SBJ
Subjective noun

phrase
EC Connective ending - -

3.1.1. Identify the Condition-Positive, Condition-Negative Relationship

We use the identification method to identify condition clauses in natural language

sentences as shown in Figure 4. Figure 4 consists of two clauses in the sentence. In Korean,

the clauses are separated with a Connective Ending (EC). The EC as an original Korean

morpheme is added at the end of Clause. The EC has diverse forms of simple and complex

types.

Tables 2 and 3 show the types of EC for condition clauses. The Simple type means

the simple EC type with a conditional meaning. The Complex type means combinations

of some simple types. An Opened condition mentions the conditions of uncertain facts. A

Closed condition means the conditions of certain facts. A Positive condition means the

condition of true content. A Negative condition means the condition of false content. The

Negative condition is expressed as a NOT relationship in the Cause-Effect Graph. As a

result, as in Tables 2 and 3, the clauses with the Connective Ending (EC) are Condition

clauses, and the following clause of the condition clause is likely to be the result clause.

Figure 4. Identification of conditional clauses.

Figure 4. Identification of conditional clauses.

Tables 2 and 3 show the types of EC for condition clauses. The Simple type means the
simple EC type with a conditional meaning. The Complex type means combinations of
some simple types. An Opened condition mentions the conditions of uncertain facts. A
Closed condition means the conditions of certain facts. A Positive condition means the
condition of true content. A Negative condition means the condition of false content. The
Negative condition is expressed as a NOT relationship in the Cause-Effect Graph. As a
result, as in Tables 2 and 3, the clauses with the Connective Ending (EC) are Condition
clauses, and the following clause of the condition clause is likely to be the result clause.

Appl. Sci. 2021, 11, 11775 5 of 13

Table 2. Part of Connective ending (EC) types [8] in the Korean language.

Connective Ending (EC) Type EC Forms (Korean) English Description

Simple type -면(Myun), -거든(Geodeun), -어야(Uya) Simple IF statements

Complex type
-다면(Damyeon), -은들(Eundeul), -다가(Daga), -든지(Deunji),

-려면(Lyeomyeon), -거드면(Geodeumyeon), -거들
랑(Geodeullang), -대서야(Daeseoya), -고야(Goya), . . .

Nested IF statements

Table 3. Part of Condition types [8] in the Korean language.

Condition Type Subtype EC Forms (Korean) English Description

Opened condition - -면(Myun), -거든(Geodeun), . . . It means conditions of uncertain facts.

Closed condition
Positive condition -아(A)/어(Uh)/여야(Uya), . . . It means conditions of certain facts.

The Result is positive (true).

Negative condition -던들(Deondeul), . . . It means conditions of certain facts.
The result is negative (false).

3.1.2. Identify the Conjunction-AND, Conjunction-OR Relationship

The identification method of conjunction clauses in natural language sentences is
shown in Figure 5. The sentence consists of two clauses. Table 4 describes the types of
Connective Endings for the Conjunction clause. The clauses that contain the Connective
Ending (EC) of Table 4 are Conjunction clauses. The next clause of the conjunction clause is
the following clause.

Additionally, we identify “AND” and “OR” through the connective ending (EC) for
the conjunction clause. Table 5 shows the identification process. As a result, the conjunction
clause and the following clause of Causality Relationship, Sequential relationship, Parallel
relationship, Time relationship, Cause and Reason Relationship, Purpose and Intention
Relations, and Conversion Relationship have an “AND” relationship. The conjunction
clause and the following clause of Contrast Relationship, Selection Relationship, and
Concession Relationship have an “OR” relationship.

Appl. Sci. 2021, 11, 11775 5 of 14

Table 2. Part of Connective ending (EC) types [8] in the Korean language.

Connective Ending

(EC) Type
EC Forms (Korean) English Description

Simple type -면(Myun), -거든(Geodeun), -어야(Uya) Simple IF statements

Complex type

-다면(Damyeon), -은들(Eundeul), -다가(Daga), -든지(Deunji), -

려면(Lyeomyeon), -거드면(Geodeumyeon), -거들랑(Ge-

odeullang), -대서야(Daeseoya), -고야(Goya), …

Nested IF statements

Table 3. Part of Condition types [8] in the Korean language

Condition Type Subtype EC Forms (Korean) English Description

Opened condition -
-면(Myun), -거든(Geodeun),

…
It means conditions of uncertain facts.

Closed condition

Positive condition -아(A)/어(Uh)/여야(Uya), …
It means conditions of certain facts.

The Result is positive (true).

Negative condition -던들(Deondeul), …
It means conditions of certain facts.

The result is negative (false).

3.1.2. Identify the Conjunction-AND, Conjunction-OR Relationship

The identification method of conjunction clauses in natural language sentences is

shown in Figure 5. The sentence consists of two clauses. Table 4 describes the types of

Connective Endings for the Conjunction clause. The clauses that contain the Connective

Ending (EC) of Table 4 are Conjunction clauses. The next clause of the conjunction clause

is the following clause.

Additionally, we identify “AND” and “OR” through the connective ending (EC) for

the conjunction clause. Table 5 shows the identification process. As a result, the conjunc-

tion clause and the following clause of Causality Relationship, Sequential relationship,

Parallel relationship, Time relationship, Cause and Reason Relationship, Purpose and In-

tention Relations, and Conversion Relationship have an “AND” relationship. The con-

junction clause and the following clause of Contrast Relationship, Selection Relationship,

and Concession Relationship have an “OR” relationship.

Figure 5. Identification of conjunction clauses.

Appl. Sci. 2021, 11, 11775 6 of 13

Table 4. Parts of Combination Types between Conjunctions.

Conjunction Type EC Forms [9–11] (Korean) English Description

Causality Relationship ‘-느라고(Nerago),’ Etc. If B for A, then C.
(A = true, B = true, C = true)

Sequential relationship ‘-고(Go)(서(Seo)),’ Etc. If B after A, then C.
(A = true, B = true, C = true)

Parallel relationship ‘-고(Go),’ ‘-(으(Eu))며(Myeo),’ ‘-(으(Eu)면
서(Myeonseo),’ Etc.

If A and B are at the same time, then C.
(A = true, B = true, C = true)

Contrast Relationship ‘-(으(Eu))나(Na),’ ‘-지만(Jiman),’ Etc. If A and B, then C.
(A = false, B = true, C = true)

Table 5. Parts of Logical Expression of Conjunction.

Conjunction Type Mathematical
Expression

A Logical Combination of A and
B for C = True

Causality
Relationship B:A- > C AND

Sequential
relationship A:B- > C AND

Parallel relationship A||B- > C AND

Contrast
Relationship ¬A:B- > C OR

3.1.3. Corpus Normalization

We use corpus normalization [9–11] to automatically convert a sentence with a passive
meaning into a sentence with an active substance. These include 1) changing the passive
sentence to the active sentence and 2) changing the causative sentence to the active sentence.
It is challenging to analyze the meaning of informal sentences. In the case of Korean, it
is difficult to identify the subject and object in the passive sentences. That is why we
convert passive sentences into active sentences. In other words, if the sentence contains an
ambiguous subject and object, we can recognize the clear subject and object through corpus
normalization. This method changes the form or position of a case marker in the sentence.
The case marker is only one of the morphemes in the Korean language. For example, the
case marker ‘가(ga)’ is also only the Korean morpheme. The ’A가(ga)’ means that a subject
‘A’ and a case marker ‘가(ga).’ Therefore, we represent the case marker ‘가(ga)’ after a
noun ‘A’ in Figure 5. The subject word in Korean Sentence admits any front position of
a sentence, unlike English sentences, such as ‘Subject = word + subject case marker’ and
‘Object = word + object case marker.’ A subject and an object are determined according to
the type of case marker. As a result, the form and position of the case marker are changed,
then the subject can be changed to the object. An Underlined is a case marker. Table 6
shows the example case.

Table 6. One Example of Converting Passive Sentence to Active Sentence.

Passive Sentence Active Sentence

Korean English Korean English

그들에의해협상이깨어지다.
(geudeul-e uihae hyeobsang-i

kkaeeojida.)
Negotiations are broken by them. 그들이협상을깨다. (geudeul-i

hyeobsang-eul kkaeda.)
They break

negotiations.

Appl. Sci. 2021, 11, 11775 7 of 13

3.1.4. Identify the Order of Each Different Clause

We propose a clause order recognition method for identifying each clause’s priority
of connective endings (ECs) in a sequential or composited sentence. In Figure 6, we show
our clause order algorithm for determining the priority of each connective ending (EC)
of clauses in a sentence as follows: In the first step, identify all kinds of ECs and the
number of ECs in the sentence, in the second step, classify condition clause/result clause
or conjunction clause/result clause. Until not including any EC in the sentence, the whole
sentence crumbles into fractions, that is, morphemes of phases of clauses of one sentence.

Appl. Sci. 2021, 11, 11775 7 of 14

Table 6. One Example of Converting Passive Sentence to Active Sentence.

Passive Sentence Active Sentence

Korean English Korean English

그들에 의해 협상이 깨어지다. (geudeul-e

uihae hyeobsang-i kkaeeojida.)

Negotiations are bro-

ken by them.

그들이 협상을 깨다. (geudeul-i

hyeobsang-eul kkaeda.)

They break

negotiations.

3.1.4. Identify the Order of Each Different Clause

We propose a clause order recognition method for identifying each clause’s priority

of connective endings (ECs) in a sequential or composited sentence. In Figure 6, we show

our clause order algorithm for determining the priority of each connective ending (EC) of

clauses in a sentence as follows: In the first step, identify all kinds of ECs and the number

of ECs in the sentence, in the second step, classify condition clause/result clause or con-

junction clause/result clause. Until not including any EC in the sentence, the whole sen-

tence crumbles into fractions, that is, morphemes of phases of clauses of one sentence.

Figure 6. The clause order algorithm for identifying the priority of each connective ending (EC) of

clauses in a sentence.

In Figure 7, we identify three clauses (C1, C2, C3) with the connective ending (EC) of

the morphemes after identifying the morphemes in the sentence. When we adopt the

clause order algorithm with three clauses C1, C2, and C3 in Figure 7, we can locate the

‘AND’ relationship between C1 and C2 and identify the ‘IF-Then’ relationship between

C3 and ‘C1∩C2’.

Figure 7. One example of identifying the priority of clauses in a simple sentence.

Figure 6. The clause order algorithm for identifying the priority of each connective ending (EC) of clauses in a sentence.

In Figure 7, we identify three clauses (C1, C2, C3) with the connective ending (EC)
of the morphemes after identifying the morphemes in the sentence. When we adopt the
clause order algorithm with three clauses C1, C2, and C3 in Figure 7, we can locate the
‘AND’ relationship between C1 and C2 and identify the ‘IF-Then’ relationship between C3
and ‘C1∩C2’.

Figure 8 shows four clauses (C1, C2, C3, and C4) in a sentence. By applying the clause
order algorithm with four clauses C1, C2, C3, and C4, in Figure 8, we can identify the
‘IF-Then’ relationship between C1 and C2 and identify the ‘IF-Then’ relationship between
C3 and C4. Finally, place the ‘AND’ relationship between them.

Appl. Sci. 2021, 11, 11775 7 of 14

Table 6. One Example of Converting Passive Sentence to Active Sentence.

Passive Sentence Active Sentence

Korean English Korean English

그들에 의해 협상이 깨어지다. (geudeul-e

uihae hyeobsang-i kkaeeojida.)

Negotiations are bro-

ken by them.

그들이 협상을 깨다. (geudeul-i

hyeobsang-eul kkaeda.)

They break

negotiations.

3.1.4. Identify the Order of Each Different Clause

We propose a clause order recognition method for identifying each clause’s priority

of connective endings (ECs) in a sequential or composited sentence. In Figure 6, we show

our clause order algorithm for determining the priority of each connective ending (EC) of

clauses in a sentence as follows: In the first step, identify all kinds of ECs and the number

of ECs in the sentence, in the second step, classify condition clause/result clause or con-

junction clause/result clause. Until not including any EC in the sentence, the whole sen-

tence crumbles into fractions, that is, morphemes of phases of clauses of one sentence.

Figure 6. The clause order algorithm for identifying the priority of each connective ending (EC) of

clauses in a sentence.

In Figure 7, we identify three clauses (C1, C2, C3) with the connective ending (EC) of

the morphemes after identifying the morphemes in the sentence. When we adopt the

clause order algorithm with three clauses C1, C2, and C3 in Figure 7, we can locate the

‘AND’ relationship between C1 and C2 and identify the ‘IF-Then’ relationship between

C3 and ‘C1∩C2’.

Figure 7. One example of identifying the priority of clauses in a simple sentence. Figure 7. One example of identifying the priority of clauses in a simple sentence.

Appl. Sci. 2021, 11, 11775 8 of 13

Appl. Sci. 2021, 11, 11775 8 of 14

Figure 8 shows four clauses (C1, C2, C3, and C4) in a sentence. By applying the clause

order algorithm with four clauses C1, C2, C3, and C4, in Figure 8, we can identify the ‘IF-

Then’ relationship between C1 and C2 and identify the ‘IF-Then’ relationship between C3

and C4. Finally, place the ‘AND’ relationship between them.

Figure 8. One example of identifying the priority of clauses in a composite sentence.

We mention the clauses of natural language sentences combined in various ways, for

example, sentence complexity with diverse clause combinations. However, we consider

some limited formulas of clause identification patterns within Table 7.

Table 7. Types of identifiable clause patterns.

Pattern Formula Identification Clause Pattern Formula Identification Clause

1 ∑(𝑪𝑭𝒏)

∞

𝒏=𝟏

 CF identification 4 ∑(𝐶𝑅𝑛 + 𝐶𝐹𝑛)

∞

𝒏=𝟏

CF identification after

CR identification

2 ∑(𝑪𝑹𝒏)

∞

𝒏=𝟏

 CR identification 5 ∑(𝑪𝑭𝒏)

∞

𝒏=𝟏

+ 𝑪𝑹 + ∑(𝑪𝑭𝒏)

∞

𝒏=𝟏

CF identification after

CR identification

3 ∑(𝐶𝐹𝑛 + 𝐶𝑅𝑛)

∞

𝒏=𝟏

CR identification after

CF identification
6 ∑(𝑪𝑹𝒏)

∞

𝒏=𝟏

+ 𝑪𝑭 + ∑(𝑪𝑹𝒏)

∞

𝒏=𝟏

CR identification after

CF identification

CF = Conjunction Clause + Following Clause, CR = Conditional Clause + Result Clause.

3.2. Step 2. Generate C3Tree Model

We define C3Tree Model (like a tree structure) to convert a simplified sentence into

a complex sentence.

3.2.1. Do Simplification Method

First, we store ‘the original complex sentence’ into the top node root of this Model.

Second. We also save the simplified sentence into the bottom nodes of the tree model.

Third, until not is any condition and conjunction clause in the sentence, we repeatedly

separate into condition clause and result clause if having any EC in the condition clause

of a sentence or split into conjunction clause and the following clause if including any EC

in the conjunction clause of a sentence.

Figure 8. One example of identifying the priority of clauses in a composite sentence.

We mention the clauses of natural language sentences combined in various ways, for
example, sentence complexity with diverse clause combinations. However, we consider
some limited formulas of clause identification patterns within Table 7.

Table 7. Types of identifiable clause patterns.

Pattern Formula Identification Clause Pattern Formula Identification Clause

1
∞
∑

n=1
(CFn) CF identification 4

∞
∑

n=1
(CRn + CFn)

CF identification after
CR identification

2
∞
∑

n=1
(CRn) CR identification 5

∞
∑

n=1
(CFn) + CR +

∞
∑

n=1
(CFn)

CF identification after
CR identification

3
∞
∑

n=1
(CFn + CRn)

CR identification after
CF identification 6

∞
∑

n=1
(CRn) + CF +

∞
∑

n=1
(CRn)

CR identification after
CF identification

CF = Conjunction Clause + Following Clause, CR = Conditional Clause + Result Clause.

3.2. Step 2. Generate C3Tree Model

We define C3Tree Model (like a tree structure) to convert a simplified sentence into a
complex sentence.

3.2.1. Do Simplification Method

First, we store ‘the original complex sentence’ into the top node root of this Model.
Second. We also save the simplified sentence into the bottom nodes of the tree model.
Third, until not is any condition and conjunction clause in the sentence, we repeatedly
separate into condition clause and result clause if having any EC in the condition clause of
a sentence or split into conjunction clause and the following clause if including any EC in
the conjunction clause of a sentence.

3.2.2. Define Notations of the C3Tree Model

The C3Tree Model consists of nodes and links for visualizing the sentence simplifica-
tion. That is, we divide a long and complex sentence into some short sentences. Table 8
shows nodes and links of the C3Tree Model.

The C3Tree Model is expressed by XMI code. Table 9 is an example of the C3Tree
Model XMI code.

Appl. Sci. 2021, 11, 11775 9 of 13

Table 8. C3Tree Notation.

Node Description Link Description

Appl. Sci. 2021, 11, 11775 9 of 14

3.2.2. Define Notations of the C3Tree Model
The C3Tree Model consists of nodes and links for visualizing the sentence

simplification. That is, we divide a long and complex sentence into some short sentences.
Table 8 shows nodes and links of the C3Tree Model.

Table 8. C3Tree Notation.

Node Description Link Description

Sentence

Positive condition link (If left node = true,
right node = true)

Clause in sentence

Negative condition link (If left node =
true, right node = false)

The complex clause in a
sentence (includes two or

more child nodes)

AND conjunction link (If all child nodes =
true, parent node = true)

- -
OR conjunction link (If one of the child

nodes = true, parent node = true)

The C3Tree Model is expressed by XMI code. Table 9 is an example of the C3Tree
Model XMI code.

Table 9. XMI Code of C3Tree Model Example.

C3Tree
Model

XMI Code
(Korean)

<node ctid=“1” type=“sentence” string=“A가

입력되고 B가 출력되면 C가 출력되다.”/>

<node ctid=“2” type=“cclause” string=“A가

입력되고 B가 입력되다.”/>

<node ctid=“3” type=“clause” string=“C가

출력되다.”/>

<node ctid=“4” type=“clause” string=“A가

입력되다.”/>

<node ctid=“5” type=“clause” string=“B가

입력되다.”/>
<link type=“condp” parent=“1” left=“2” right=“3”/>
<link type=“conjand” parent=“2” left=“4”
right=“5”/>

XMI Code
(English)

<node ctid=“1” type=“sentence” string=“If the
input A is satisfied and the input B is satisfied,
then the output C is printed.”/>
<node ctid=“2” type=“clause” string=“The input
A is satisfied and the input B is satisfied.”/>
<node ctid=“3” type=“clause” string=“The output
C is printed.”/>
<node ctid=“4” type=“clause” string=“The input
A is satisfied.”/>
<node ctid=“5” type=“clause” string=“The input
B is satisfied.”/>
<link type=“condp” parent=“1” left=“2”
right=“3”/>
<link type=“conjand” parent=“2” left=“4”
right=“5”/>

Sentence

Appl. Sci. 2021, 11, 11775 9 of 14

3.2.2. Define Notations of the C3Tree Model
The C3Tree Model consists of nodes and links for visualizing the sentence

simplification. That is, we divide a long and complex sentence into some short sentences.
Table 8 shows nodes and links of the C3Tree Model.

Table 8. C3Tree Notation.

Node Description Link Description

Sentence

Positive condition link (If left node = true,
right node = true)

Clause in sentence

Negative condition link (If left node =
true, right node = false)

The complex clause in a
sentence (includes two or

more child nodes)

AND conjunction link (If all child nodes =
true, parent node = true)

- -
OR conjunction link (If one of the child

nodes = true, parent node = true)

The C3Tree Model is expressed by XMI code. Table 9 is an example of the C3Tree
Model XMI code.

Table 9. XMI Code of C3Tree Model Example.

C3Tree
Model

XMI Code
(Korean)

<node ctid=“1” type=“sentence” string=“A가

입력되고 B가 출력되면 C가 출력되다.”/>

<node ctid=“2” type=“cclause” string=“A가

입력되고 B가 입력되다.”/>

<node ctid=“3” type=“clause” string=“C가

출력되다.”/>

<node ctid=“4” type=“clause” string=“A가

입력되다.”/>

<node ctid=“5” type=“clause” string=“B가

입력되다.”/>
<link type=“condp” parent=“1” left=“2” right=“3”/>
<link type=“conjand” parent=“2” left=“4”
right=“5”/>

XMI Code
(English)

<node ctid=“1” type=“sentence” string=“If the
input A is satisfied and the input B is satisfied,
then the output C is printed.”/>
<node ctid=“2” type=“clause” string=“The input
A is satisfied and the input B is satisfied.”/>
<node ctid=“3” type=“clause” string=“The output
C is printed.”/>
<node ctid=“4” type=“clause” string=“The input
A is satisfied.”/>
<node ctid=“5” type=“clause” string=“The input
B is satisfied.”/>
<link type=“condp” parent=“1” left=“2”
right=“3”/>
<link type=“conjand” parent=“2” left=“4”
right=“5”/>

Positive condition link (If left node =
true, right node = true)

Appl. Sci. 2021, 11, 11775 9 of 14

3.2.2. Define Notations of the C3Tree Model
The C3Tree Model consists of nodes and links for visualizing the sentence

simplification. That is, we divide a long and complex sentence into some short sentences.
Table 8 shows nodes and links of the C3Tree Model.

Table 8. C3Tree Notation.

Node Description Link Description

Sentence

Positive condition link (If left node = true,
right node = true)

Clause in sentence

Negative condition link (If left node =
true, right node = false)

The complex clause in a
sentence (includes two or

more child nodes)

AND conjunction link (If all child nodes =
true, parent node = true)

- -
OR conjunction link (If one of the child

nodes = true, parent node = true)

The C3Tree Model is expressed by XMI code. Table 9 is an example of the C3Tree
Model XMI code.

Table 9. XMI Code of C3Tree Model Example.

C3Tree
Model

XMI Code
(Korean)

<node ctid=“1” type=“sentence” string=“A가

입력되고 B가 출력되면 C가 출력되다.”/>

<node ctid=“2” type=“cclause” string=“A가

입력되고 B가 입력되다.”/>

<node ctid=“3” type=“clause” string=“C가

출력되다.”/>

<node ctid=“4” type=“clause” string=“A가

입력되다.”/>

<node ctid=“5” type=“clause” string=“B가

입력되다.”/>
<link type=“condp” parent=“1” left=“2” right=“3”/>
<link type=“conjand” parent=“2” left=“4”
right=“5”/>

XMI Code
(English)

<node ctid=“1” type=“sentence” string=“If the
input A is satisfied and the input B is satisfied,
then the output C is printed.”/>
<node ctid=“2” type=“clause” string=“The input
A is satisfied and the input B is satisfied.”/>
<node ctid=“3” type=“clause” string=“The output
C is printed.”/>
<node ctid=“4” type=“clause” string=“The input
A is satisfied.”/>
<node ctid=“5” type=“clause” string=“The input
B is satisfied.”/>
<link type=“condp” parent=“1” left=“2”
right=“3”/>
<link type=“conjand” parent=“2” left=“4”
right=“5”/>

Clause in sentence

Appl. Sci. 2021, 11, 11775 9 of 14

3.2.2. Define Notations of the C3Tree Model
The C3Tree Model consists of nodes and links for visualizing the sentence

simplification. That is, we divide a long and complex sentence into some short sentences.
Table 8 shows nodes and links of the C3Tree Model.

Table 8. C3Tree Notation.

Node Description Link Description

Sentence

Positive condition link (If left node = true,
right node = true)

Clause in sentence

Negative condition link (If left node =
true, right node = false)

The complex clause in a
sentence (includes two or

more child nodes)

AND conjunction link (If all child nodes =
true, parent node = true)

- -
OR conjunction link (If one of the child

nodes = true, parent node = true)

The C3Tree Model is expressed by XMI code. Table 9 is an example of the C3Tree
Model XMI code.

Table 9. XMI Code of C3Tree Model Example.

C3Tree
Model

XMI Code
(Korean)

<node ctid=“1” type=“sentence” string=“A가

입력되고 B가 출력되면 C가 출력되다.”/>

<node ctid=“2” type=“cclause” string=“A가

입력되고 B가 입력되다.”/>

<node ctid=“3” type=“clause” string=“C가

출력되다.”/>

<node ctid=“4” type=“clause” string=“A가

입력되다.”/>

<node ctid=“5” type=“clause” string=“B가

입력되다.”/>
<link type=“condp” parent=“1” left=“2” right=“3”/>
<link type=“conjand” parent=“2” left=“4”
right=“5”/>

XMI Code
(English)

<node ctid=“1” type=“sentence” string=“If the
input A is satisfied and the input B is satisfied,
then the output C is printed.”/>
<node ctid=“2” type=“clause” string=“The input
A is satisfied and the input B is satisfied.”/>
<node ctid=“3” type=“clause” string=“The output
C is printed.”/>
<node ctid=“4” type=“clause” string=“The input
A is satisfied.”/>
<node ctid=“5” type=“clause” string=“The input
B is satisfied.”/>
<link type=“condp” parent=“1” left=“2”
right=“3”/>
<link type=“conjand” parent=“2” left=“4”
right=“5”/>

Negative condition link (If left node =
true, right node = false)

Appl. Sci. 2021, 11, 11775 9 of 14

3.2.2. Define Notations of the C3Tree Model
The C3Tree Model consists of nodes and links for visualizing the sentence

simplification. That is, we divide a long and complex sentence into some short sentences.
Table 8 shows nodes and links of the C3Tree Model.

Table 8. C3Tree Notation.

Node Description Link Description

Sentence

Positive condition link (If left node = true,
right node = true)

Clause in sentence

Negative condition link (If left node =
true, right node = false)

The complex clause in a
sentence (includes two or

more child nodes)

AND conjunction link (If all child nodes =
true, parent node = true)

- -
OR conjunction link (If one of the child

nodes = true, parent node = true)

The C3Tree Model is expressed by XMI code. Table 9 is an example of the C3Tree
Model XMI code.

Table 9. XMI Code of C3Tree Model Example.

C3Tree
Model

XMI Code
(Korean)

<node ctid=“1” type=“sentence” string=“A가

입력되고 B가 출력되면 C가 출력되다.”/>

<node ctid=“2” type=“cclause” string=“A가

입력되고 B가 입력되다.”/>

<node ctid=“3” type=“clause” string=“C가

출력되다.”/>

<node ctid=“4” type=“clause” string=“A가

입력되다.”/>

<node ctid=“5” type=“clause” string=“B가

입력되다.”/>
<link type=“condp” parent=“1” left=“2” right=“3”/>
<link type=“conjand” parent=“2” left=“4”
right=“5”/>

XMI Code
(English)

<node ctid=“1” type=“sentence” string=“If the
input A is satisfied and the input B is satisfied,
then the output C is printed.”/>
<node ctid=“2” type=“clause” string=“The input
A is satisfied and the input B is satisfied.”/>
<node ctid=“3” type=“clause” string=“The output
C is printed.”/>
<node ctid=“4” type=“clause” string=“The input
A is satisfied.”/>
<node ctid=“5” type=“clause” string=“The input
B is satisfied.”/>
<link type=“condp” parent=“1” left=“2”
right=“3”/>
<link type=“conjand” parent=“2” left=“4”
right=“5”/>

The complex clause in a sentence
(includes two or more child nodes)

Appl. Sci. 2021, 11, 11775 9 of 14

3.2.2. Define Notations of the C3Tree Model
The C3Tree Model consists of nodes and links for visualizing the sentence

simplification. That is, we divide a long and complex sentence into some short sentences.
Table 8 shows nodes and links of the C3Tree Model.

Table 8. C3Tree Notation.

Node Description Link Description

Sentence

Positive condition link (If left node = true,
right node = true)

Clause in sentence

Negative condition link (If left node =
true, right node = false)

The complex clause in a
sentence (includes two or

more child nodes)

AND conjunction link (If all child nodes =
true, parent node = true)

- -
OR conjunction link (If one of the child

nodes = true, parent node = true)

The C3Tree Model is expressed by XMI code. Table 9 is an example of the C3Tree
Model XMI code.

Table 9. XMI Code of C3Tree Model Example.

C3Tree
Model

XMI Code
(Korean)

<node ctid=“1” type=“sentence” string=“A가

입력되고 B가 출력되면 C가 출력되다.”/>

<node ctid=“2” type=“cclause” string=“A가

입력되고 B가 입력되다.”/>

<node ctid=“3” type=“clause” string=“C가

출력되다.”/>

<node ctid=“4” type=“clause” string=“A가

입력되다.”/>

<node ctid=“5” type=“clause” string=“B가

입력되다.”/>
<link type=“condp” parent=“1” left=“2” right=“3”/>
<link type=“conjand” parent=“2” left=“4”
right=“5”/>

XMI Code
(English)

<node ctid=“1” type=“sentence” string=“If the
input A is satisfied and the input B is satisfied,
then the output C is printed.”/>
<node ctid=“2” type=“clause” string=“The input
A is satisfied and the input B is satisfied.”/>
<node ctid=“3” type=“clause” string=“The output
C is printed.”/>
<node ctid=“4” type=“clause” string=“The input
A is satisfied.”/>
<node ctid=“5” type=“clause” string=“The input
B is satisfied.”/>
<link type=“condp” parent=“1” left=“2”
right=“3”/>
<link type=“conjand” parent=“2” left=“4”
right=“5”/>

AND conjunction link (If all child
nodes = true, parent node = true)

- -

Appl. Sci. 2021, 11, 11775 9 of 14

3.2.2. Define Notations of the C3Tree Model
The C3Tree Model consists of nodes and links for visualizing the sentence

simplification. That is, we divide a long and complex sentence into some short sentences.
Table 8 shows nodes and links of the C3Tree Model.

Table 8. C3Tree Notation.

Node Description Link Description

Sentence

Positive condition link (If left node = true,
right node = true)

Clause in sentence

Negative condition link (If left node =
true, right node = false)

The complex clause in a
sentence (includes two or

more child nodes)

AND conjunction link (If all child nodes =
true, parent node = true)

- -
OR conjunction link (If one of the child

nodes = true, parent node = true)

The C3Tree Model is expressed by XMI code. Table 9 is an example of the C3Tree
Model XMI code.

Table 9. XMI Code of C3Tree Model Example.

C3Tree
Model

XMI Code
(Korean)

<node ctid=“1” type=“sentence” string=“A가

입력되고 B가 출력되면 C가 출력되다.”/>

<node ctid=“2” type=“cclause” string=“A가

입력되고 B가 입력되다.”/>

<node ctid=“3” type=“clause” string=“C가

출력되다.”/>

<node ctid=“4” type=“clause” string=“A가

입력되다.”/>

<node ctid=“5” type=“clause” string=“B가

입력되다.”/>
<link type=“condp” parent=“1” left=“2” right=“3”/>
<link type=“conjand” parent=“2” left=“4”
right=“5”/>

XMI Code
(English)

<node ctid=“1” type=“sentence” string=“If the
input A is satisfied and the input B is satisfied,
then the output C is printed.”/>
<node ctid=“2” type=“clause” string=“The input
A is satisfied and the input B is satisfied.”/>
<node ctid=“3” type=“clause” string=“The output
C is printed.”/>
<node ctid=“4” type=“clause” string=“The input
A is satisfied.”/>
<node ctid=“5” type=“clause” string=“The input
B is satisfied.”/>
<link type=“condp” parent=“1” left=“2”
right=“3”/>
<link type=“conjand” parent=“2” left=“4”
right=“5”/>

OR conjunction link (If one of the child
nodes = true, parent node = true)

Table 9. XMI Code of C3Tree Model Example.

C3Tree Model

Appl. Sci. 2021, 11, 11775 9 of 14

3.2.2. Define Notations of the C3Tree Model
The C3Tree Model consists of nodes and links for visualizing the sentence

simplification. That is, we divide a long and complex sentence into some short sentences.
Table 8 shows nodes and links of the C3Tree Model.

Table 8. C3Tree Notation.

Node Description Link Description

Sentence

Positive condition link (If left node = true,
right node = true)

Clause in sentence

Negative condition link (If left node =
true, right node = false)

The complex clause in a
sentence (includes two or

more child nodes)

AND conjunction link (If all child nodes =
true, parent node = true)

- -
OR conjunction link (If one of the child

nodes = true, parent node = true)

The C3Tree Model is expressed by XMI code. Table 9 is an example of the C3Tree
Model XMI code.

Table 9. XMI Code of C3Tree Model Example.

C3Tree
Model

XMI Code
(Korean)

<node ctid=“1” type=“sentence” string=“A가

입력되고 B가 출력되면 C가 출력되다.”/>

<node ctid=“2” type=“cclause” string=“A가

입력되고 B가 입력되다.”/>

<node ctid=“3” type=“clause” string=“C가

출력되다.”/>

<node ctid=“4” type=“clause” string=“A가

입력되다.”/>

<node ctid=“5” type=“clause” string=“B가

입력되다.”/>
<link type=“condp” parent=“1” left=“2” right=“3”/>
<link type=“conjand” parent=“2” left=“4”
right=“5”/>

XMI Code
(English)

<node ctid=“1” type=“sentence” string=“If the
input A is satisfied and the input B is satisfied,
then the output C is printed.”/>
<node ctid=“2” type=“clause” string=“The input
A is satisfied and the input B is satisfied.”/>
<node ctid=“3” type=“clause” string=“The output
C is printed.”/>
<node ctid=“4” type=“clause” string=“The input
A is satisfied.”/>
<node ctid=“5” type=“clause” string=“The input
B is satisfied.”/>
<link type=“condp” parent=“1” left=“2”
right=“3”/>
<link type=“conjand” parent=“2” left=“4”
right=“5”/>

XMI Code
(Korean)

<node ctid=“1” type=“sentence”
string=“A가입력되고 B가출력되면 C가
출력되다.”/>
<node ctid=“2” type=“cclause”
string=“A가입력되고 B가입력되다.”/>
<node ctid=“3” type=“clause”
string=“C가출력되다.”/>
<node ctid=“4” type=“clause”
string=“A가입력되다.”/>
<node ctid=“5” type=“clause”
string=“B가입력되다.”/>
<link type=“condp” parent=“1” left=“2”
right=“3”/>
<link type=“conjand” parent=“2” left=“4”
right=“5”/>

XMI Code
(English)

<node ctid=“1” type=“sentence” string=“If
the input A is satisfied and the input B is
satisfied, then the output C is printed.”/>
<node ctid=“2” type=“clause” string=“The
input A is satisfied and the input B is
satisfied.”/>
<node ctid=“3” type=“clause” string=“The
output C is printed.”/>
<node ctid=“4” type=“clause” string=“The
input A is satisfied.”/>
<node ctid=“5” type=“clause” string=“The
input B is satisfied.”/>
<link type=“condp” parent=“1” left=“2”
right=“3”/>
<link type=“conjand” parent=“2” left=“4”
right=“5”/>

3.3. Transform C3Tree Model to Cause-Effect Graph

In this section, we transform the notations of C3Tree Model notation into the no-
tation of the Cause-Effect Graph. Therefore, a <<Clause>> node of the C3Tree Model
is transformed into a <<Node>> in the Cause-Effect Graph. In Table 10, we show the
transformation relationship between C3Tree Model and Cause-Effect Graph.

Figure 9 is an example of the transformation process. First, five <<Clause>> nodes
at the bottom level of C3TREE are transformed to N1~N5 of a cause-effect graph. The
left node of COND-J is transformed to the Cause node. The right node of COND-J is
transformed as the Effect node. CONJ-AND is transformed to AND. “The output C is
printed” node of the left tree and “The output C is printed” node of the right tree has the
same sentence. Therefore, the “The output C is printed” node of the left tree and “The
output C is printed” node of the right tree are integrated into N3.

Appl. Sci. 2021, 11, 11775 10 of 13

Table 10. Relationship between C3Tree Model Notations and Cause-Effect Graph Notations.

Case C3Tree Model Notation Cause-Effect Graph Notation

1 Clause Node

2 CONJ-AND AND

3 CONJ-OR OR

4 The left child node of COND-P(COND-N) Cause

5 The right child node of COND-P(COND-N) Effect

6 COND-P Identity

7 COND-N NOT

Appl. Sci. 2021, 11, 11775 10 of 14

3.3. Transform C3Tree Model to Cause-Effect Graph

In this section, we transform the notations of C3Tree Model notation into the notation

of the Cause-Effect Graph. Therefore, a <<Clause>> node of the C3Tree Model is trans-

formed into a <<Node>> in the Cause-Effect Graph. In Table 10, we show the transfor-

mation relationship between C3Tree Model and Cause-Effect Graph.

Table 10. Relationship between C3Tree Model Notations and Cause-Effect Graph Notations.

Case C3Tree Model Notation Cause-Effect Graph Notation

1 Clause Node

2 CONJ-AND AND

3 CONJ-OR OR

4 The left child node of COND-P(COND-N) Cause

5 The right child node of COND-P(COND-N) Effect

6 COND-P Identity

7 COND-N NOT

Figure 9 is an example of the transformation process. First, five <<Clause>> nodes at

the bottom level of C3TREE are transformed to N1~N5 of a cause-effect graph. The left

node of COND-J is transformed to the Cause node. The right node of COND-J is trans-

formed as the Effect node. CONJ-AND is transformed to AND. “The output C is printed”

node of the left tree and “The output C is printed” node of the right tree has the same

sentence. Therefore, the “The output C is printed” node of the left tree and “The output C

is printed” node of the right tree are integrated into N3.

The Cause-Effect Graph is expressed in XMI code. Table 11 is the XMI code for Cause-

Effect Graph in Figure 9.

Figure 9. The transformation process of Cause-Effect Graph from C3Tree Model.

Table 11. XMI Code of Cause-Effect Graph.

XMI Code (Korean) XMI Code (English)

<node ctid=”3;” ceid=”1” string=”A가 입력되다.”/>

<node ctid=”5;” ceid=”2” string=”B가 입력되다.”/>

<node ctid=”4;7;” ceid=”3” string=”C가 출력되다.”/>

<node ctid=”8;” ceid=”4” string=”D가 입력되다.”/>

<node ctid=”3;” ceid=”1” string=”The input A is entered.”/>

<node ctid=”5;” ceid=”2” string=”The input B is entered.”/>

<node ctid=”4;7;” ceid=”3” string=”The output C is printed.”/>

<node ctid=”8;” ceid=”4” string=”The input D is entered.”/>

<node ctid=”6;” ceid=”5” string=”The output E is printed.”/>

Figure 9. The transformation process of Cause-Effect Graph from C3Tree Model.

The Cause-Effect Graph is expressed in XMI code. Table 11 is the XMI code for
Cause-Effect Graph in Figure 9.

Table 11. XMI Code of Cause-Effect Graph.

XMI Code (Korean) XMI Code (English)

<node ctid=”3;” ceid=”1” string=”A가입력되다.”/>
<node ctid=”5;” ceid=”2” string=”B가입력되다.”/>
<node ctid=”4;7;” ceid=”3” string=”C가출력되다.”/>
<node ctid=”8;” ceid=”4” string=”D가입력되다.”/>
<node ctid=”6;” ceid=”5” string=”E가출력되다.”/>
<link type=”and” cause=”1;2;” effect=”3”/>
<link type=”and” cause=”3;4;” effect=”5”/>

<node ctid=”3;” ceid=”1” string=”The input A is entered.”/>
<node ctid=”5;” ceid=”2” string=”The input B is entered.”/>
<node ctid=”4;7;” ceid=”3” string=”The output C is printed.”/>
<node ctid=”8;” ceid=”4” string=”The input D is entered.”/>
<node ctid=”6;” ceid=”5” string=”The output E is printed.”/>
<link type=”and” cause=”1;2;” effect=”3”/>
<link type=”and” cause=”3;4;” effect=”5”/>

4. Automatic Generation Mechanism

We suggest the automatic generation mechanism mentioned in chapter 3. That is, we
describe the procedure of the automatic generation mechanism with informal requirements
sentences and then generate a Cause-Effect Graph as follows: (1) Input the Korean language
sentence, (2) Analyze morpheme in a sentence, (3) Identify cause using EC morpheme,
(4) Convert clauses to sentences, (5) Convert passive sentence to active sentence, (6) Inte-
gration similar sentences, (7) Generate Cause-Effect Graph. Figure 10 shows the detailed
procedure of the generation process.

Appl. Sci. 2021, 11, 11775 11 of 13Appl. Sci. 2021, 11, 11775 12 of 14

Figure 10. Our automatic generation mechanism of the Korean Requirements Analyzer for Cause-Effect Graph. Figure 10. Our automatic generation mechanism of the Korean Requirements Analyzer for Cause-Effect Graph.

Appl. Sci. 2021, 11, 11775 12 of 13

5. A Case Study

We explain our mechanism with real requirements of ‘A guidance for completing
DPS for a Missile system [12]. Figure 11 is part of the requirement specifications (R1.1.7
communications) in the missile system.

Appl. Sci. 2021, 11, 11775 13 of 14

5. A Case Study

We explain our mechanism with real requirements of ‘A guidance for completing

DPS for a Missile system [12]. Figure 11 is part of the requirement specifications (R1.1.7

communications) in the missile system.

Figure 11. Requirement specifications in the missile system.

Figure 12 is the C3Tree Model generated from the requirement specification. Four

<<Clause>> were generated.

Figure 12. C3Tree Model generated from Requirement specifications.

Figure 13 is the Cause-Effect Graph generated from the C3Tree Model. Four

<<Clause>> are changed to nodes.

Figure 13. Cause-Effect Graph generated from C3Tree Model.

Figure 11. Requirement specifications in the missile system.

Figure 12 is the C3Tree Model generated from the requirement specification. Four <<Clause>>
were generated.

Appl. Sci. 2021, 11, 11775 13 of 14

5. A Case Study

We explain our mechanism with real requirements of ‘A guidance for completing

DPS for a Missile system [12]. Figure 11 is part of the requirement specifications (R1.1.7

communications) in the missile system.

Figure 11. Requirement specifications in the missile system.

Figure 12 is the C3Tree Model generated from the requirement specification. Four

<<Clause>> were generated.

Figure 12. C3Tree Model generated from Requirement specifications.

Figure 13 is the Cause-Effect Graph generated from the C3Tree Model. Four

<<Clause>> are changed to nodes.

Figure 13. Cause-Effect Graph generated from C3Tree Model.

Figure 12. C3Tree Model generated from Requirement specifications.

Figure 13 is the Cause-Effect Graph generated from the C3Tree Model. Four <<Clause>>
are changed to nodes.

Appl. Sci. 2021, 11, 11775 13 of 14

5. A Case Study

We explain our mechanism with real requirements of ‘A guidance for completing

DPS for a Missile system [12]. Figure 11 is part of the requirement specifications (R1.1.7

communications) in the missile system.

Figure 11. Requirement specifications in the missile system.

Figure 12 is the C3Tree Model generated from the requirement specification. Four

<<Clause>> were generated.

Figure 12. C3Tree Model generated from Requirement specifications.

Figure 13 is the Cause-Effect Graph generated from the C3Tree Model. Four

<<Clause>> are changed to nodes.

Figure 13. Cause-Effect Graph generated from C3Tree Model. Figure 13. Cause-Effect Graph generated from C3Tree Model.

Appl. Sci. 2021, 11, 11775 13 of 13

6. Conclusions and Future Research

Our software industries ask us to automatically generate test cases with only informal
Korean requirement documents in the Korea academy. Until now, none consider test case
generation with informal Korean requirements. We focus on automatically generating test
cases from requirements. As our first step, we propose a mechanism for automatically
transforming requirements into the Cause-Effect Graphs as an intermediate process for gen-
erating test cases from informal requirement specifications written in the Korean language.
To do this, we define our C3Tree structure for converting complex and lengthy sentences
to simplified and short sentences, which are generated by applying a formal sentence
analysis method with requirements and provided traceability of intermediate changing
steps between the original sentence and a Cause-Effect Graph. As a case study, we apply
the proposed mechanism with actual requirements of the Defined Pricing Structure (DPS)
for a Missile system.

In future work, we should develop our tool for dealing with a vast requirement,
which effectively and automatically transforms test cases via the Cause-Effect Model from
informal requirement sentences.

Author Contributions: W.S.J. and R.Y.C.K. designed the present study, reviewed the literature, and
drafted the manuscript; W.S.J. and R.Y.C.K. performed the verification of the model generation
process; W.S.J. and R.Y.C.K. critically revised the manuscript. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the National Research Foundation (NRF), Korea, under project
BK21 FOUR (F21YY8102068), and also by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1I1A305040711).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors have no conflict of interest.

References
1. Kwon, O.S.; Hong, S.N. Effective iterative testing based on log. In Proceedings of the Korea Society of Management Information

Systems Fall Conference, Seoul, Korea, 13 November 2009; pp. 685–690.
2. Shepperd, M.; Ince, D. Derivation and Validation of Software Metrics; Oxford Science Publications: Oxford, UK, 1993.
3. Mogyorodi, G.E. Requirements-Based Testing-Cause-Effect Graphing; In Software Testing Services: ON, Canada, 2005.
4. Son, H.S.; Park, Y.B.; Kim, R.Y.C. Test case Generation from Cause-Effect Graph based on Model Transformation. In Proceedings

of the 2014 International Conference on Information Science & Applications (ICISA), Seoul, Korea, 6–9 May 2014; pp. 591–593.
5. Myers, G.L. The Art of Software Testing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1979.
6. Bekiroglu, B. A Cause-Effect Graph Software Testing Tool. Eur. J. Comput. Sci. Inf. Technol. 2017, 5, 11–24.
7. Woo, S.; Son, H.; Kim, W.; Kim, J.; Kim, R.Y. A Study Testcase Extraction based M&S for Pre-Testing. Korea Conf. Softw. Eng. 2012,

14, 181–183.
8. Ha, J.M. A Contrastive Study on Korean Conditional Connective Ending and Chinese Conditional Conjunction Expression; Kyunghee

University: Seoul, Korea, 2007.
9. Cho, J.M.; Cho, Y.H.; Kim, G.C. A Corpus Formalization for Extracting the Syntactic Relations. In Proceedings of the 8th Annual

Conference on Human & Cognitive Language Technology, Daejeon, Korea, 11 October 1996; pp. 207–215.
10. Cho, J.M.; Kim, G.C. A Corpus Formalization for Extracting the Syntactic Relations. Korean Soc. Cogn. Sci. 1996, 7, 39–56.
11. Kim, K.A. Comparative Study on Conjoined Sentence between Modern Mongolian and Korean. Korean Assoc. Mong. Stud. 2009,

27, 151–186.
12. Guidance for Completing DPS for a Missile System. Available online: https://www.gov.uk/government/uploads/system/

uploads/attachment_data/file/437322/DPS_principles_guidance.PDF (accessed on 1 November 2021).

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/437322/DPS_principles_guidance.PDF
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/437322/DPS_principles_guidance.PDF

	Introduction
	Related Studies
	Cause-Effect Graph
	Model-Based Test Case Generation Research

	Automatic Generation Method of the Cause-Effect Graph from Informal Requirement Specifications
	Step 1. Simplify Complex Requirements
	Identify the Condition-Positive, Condition-Negative Relationship
	Identify the Conjunction-AND, Conjunction-OR Relationship
	Corpus Normalization
	Identify the Order of Each Different Clause

	Step 2. Generate C3Tree Model
	Do Simplification Method
	Define Notations of the C3Tree Model

	Transform C3Tree Model to Cause-Effect Graph

	Automatic Generation Mechanism
	A Case Study
	Conclusions and Future Research
	References

