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Abstract

As interest in cryptocurrencies increases, the blockchain technology market is rapidly expanding. In the
meantime, as we enter the second-generation blockchain era, our interest and research on smart contracts
and Decentralized applications are progressing together. In 2020, with the enactment of the Sofiware
Promotion Act in Korea, we must separate and order the requirements, design, and implementation for a
project. At this moment, we need to make technical research on whether development has been carried out
according to the original requirements-based design is required or not. To solve this problem, we propose
an extraction method of requirement-based smart contract design restoration based on reverse engineering.
Through this, it is expected to validate the reliability of the second-generation blockchain software will
increase and help fast and efficient development.

Keywords: Solidity Visualization, Reverse Engineering, Design Restoration, Block Chain, Ethereum

1. Introduction

Recently, the blockchain market is rapidly expanding due to the crypto currency. With the advent of the
Ethereum blockchain environment, the blockchain Paradigm has shifted to a second-generation blockchain
that creates and uses Decentralized Applications(dApp), unlike other blockchains that focus on functions as a
cryptocurrency [1]. The dApp is a digital application that automatically executes pre-written code when the
conditions of a smart contract are satisfied. Solidity is used as a representative programming language to
implement smart contract [2]. Solidity is a Turing-complete programming language that allows you to write
smart contracts in the Ethereum environment [3].

In 2020, the Software Promotion Act was enacted for separate ordering of design and implementation [4].
Therefore, to reduce the difference between the design and implementation analyzed from the requirements,
it is necessary to verify whether the implemented software is developed according to the requirements-based
design. In academia, research has been conducted to apply various verification techniques that reduce the
difference between design and implementation in existing software. As such research and attempts are
continuing in the existing object-oriented software, but research is hardly conducted about the
blockchain-based dApp.

We propose method about an extraction method of requirement-based smart contract design restoration
based on reverse engineering in the Ethereum environment. Through this, it is expected that errors that may
occur during separate orders for between software development and design can be reduced. In Chapter 2, as
related studies, research on reverse engineering-based object-oriented software design restoration and smart
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contracts with dApp in the Ethereum environment are discussed. Chapter 3 introduces the proposed method
that is how to extract the design from the source code through reverse engineering for the smart contract that
runs in the Ethereum environment. And then, we will remark conclusion with future research in chapter 4.

2. Related works

2.1 Extracting Use Case Design Mechanisms on Reverse Engineering

Extracting software designs through reverse engineering has been continuously studied in the field of
software engineering. This study proposes design extraction according to the relationship between classes in
object diagram and sequence diagram through programming for target code analysis[5]. In addition, this
study focused on design restoration from an object-oriented perspective and studied coupling graphs, class
diagrams, and sequence diagrams together.

input

Source | Analyze
Code | ——> [ Java Parser ]
l Extract

Visualization
Top-Down
Structure AST Class Diagram
(Abstract Sytax Tree) Sequence Diagram

lStored T

| |
Datalist Using ]
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Figure 1. Schematic Diagram of Object-Oriented Software Visualization Tool Chain

Figure 1 is a schematic diagram of the software visualization toolchain. Existing research uses a tool
called Source Navigator to analyze the source code and uses SQLite to store the data in the DB. This study
focused on software that are written in Java programming language and studied design extraction. Unlike the
analysis methods of existing studies, Java parser, a Java static analysis tool, is used instead of Source
Navigator, an open-source tool that requires query statement optimization to extract essential information.
By using the Java parser, the AST of the source code is extracted, and the extracted data is stored in an object,
not in the DB, so that fast and efficient analysis is possible. In addition, instead of GraphViz as a
visualization tool, PlantUML, an open-source extensible tool based on GraphViz, was used to make
visualization more convenient.

2.2 Extracting Use Case Design Mechanisms on Reverse Engineering [6]

The smart contract is a technology that has not been actively used until the release of the Ethereum
platform due to security vulnerabilities and technical limitations [7]. However, it became the starting point of
implementing contract automation by overcoming the limitations through Ethereum. Typically, smart
contracts are not only used for cryptocurrency transactions, but are also actively applied to fields such as
trade, finance, and real estate [8].

A decentralized application (dApp) generally consists of a smart contract recorded on a distributed ledger
and a program executed through agreement of the contract [9]. Figure 2 describes a simplified diagram of the
dApp operation process. As shown in Figure 2, the user manipulates the dApp through the user interface.
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This calls the necessary functions through the remote procedure call(RPC) method from the smart contract
recorded in the blockchain network [10]. The value of state variable that is changed in this process is
recorded in a new block through a transaction.

| Block Chain Network |

Byte code

—- Transaction

Ethereum
Virtual Machine

RPC
(Remote Procedure Call)

JAVA, Java Script,
[ Web3JS ]—— PHP Python —[ User ]

Fiqure 2. Schematic Diagram of dApp Operation Process

3. Design Extraction of Smart Contract Code based on Reverse Engineering

This describes a blockchain-based software visualization toolchain in the Ethereum environment that can
analyze solidity codes into class diagrams, sequence diagrams, and use case diagrams. Figure 3 is a structural
diagram regards the blockchain-based software visualization process that we mentioned above. First, the .sol
file written in the Solidity language is entered into the tool-chain as an input. Then, the AST for the source
code is extracted through the Solidity Static Binaries Compiler which is provided by official solidity web
repository. The extracted AST is saved in .json format, and the AST of the source code is stored in an object
in memory using the Solidity AST.JSON Parser which we developed for this tool-chain. Finally, the
toolchain retrieves the necessary information for each diagram from the stored data and then, it draws each
diagram by executing PlantUML, a visualization tool. In this paper, we draw class diagrams, sequence
diagrams, and use case diagrams to restore the high-level design.
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Figure 3. High-level Design Extraction Process for Blockchain based Application

3.1 AST Collector for Solidity
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AST Collector for Solidity is a tool that stores AST information extracted with Solidity Complier as
objects in memory. AST information consists of nodes such as SourceUnit, PragmaDirective,
ContractDefinition, and VariableDeclaration. When AST Collector receives .sol files as an input, a
SourceUnit node is created for each .sol file. The PragmaDirective node is a child node of the SourceUnit
node and has compiler version that extract AST. The ContractDefinition node contains all information about
the Contract and is created as Contracts are declared. Contract nodes include nodes corresponding to state
variables, functions, structures, modifiers, events, and enum structures declared in the contract. For example,
if a state variable A is declared in a contract, a VariableDeclaration node is created as a branch of the
Contract node. Then, information such as name, data type, and declaration method are stored for the state
variable A.

3.2 High-level Design Restoring Application

High-level Design Restoration Application processes data according to each diagram to draw each UML
diagram from the AST information stored in the object. After that, it draws the UML diagram through the
PlantUML which is a visualizer. The following is a summary of the extraction methods for each diagram.

3.2.1 Class Diagram for Solidity

In blockchain software written by Solidity language, the structure called ‘Contract’ is very similar to
‘Class’ in object-oriented design. However, we will use word ‘Contract diagram’ for the class diagram in this
environment because it is used as the name of the contract instead of the class. The contract diagram includes
the contract components (state variable, struct, enum, function, constructor, event, modifier, Visibility, State
Mutability, etc.), which are data structures of software in the Ethereum environment. A state variable is a
variable declared in a contract but is not declared in a function. A struct is a integrated data type that consists
of variables that are different data types. An enum is a list of predefined constant values. A function is a set
of program code designed to perform a special task. A constructor is a function that is executed when the
contract is created. Only one constructor can be used per contract. An event is an action or event that can be
detected and handled by a program. A modifier is a structure associated with a function that always executes
before the target function to change the function's behavior. Visibility limits the access scope of functions
like access modifiers in Java or C++. A State Mutability is a type of qualifier that affects the operation of a
function and is used to clarify the role of a function. Therefore, it is possible to intuitively grasp the
relationship and structure between contracts through the contract diagram. Figure 3 is an example contract

@ Ariiat @ @ Manager
[constantimanagerRight: bool = true
animalCharactenstics: struct={ State: spum = { Working, Breaking, Leaving }
hasWing: bool state: State
;‘;’;g'-iﬁfr;:}”"f =#=numFood: unit = 0
b — = = =¥=>grade: ManageManager
animall: animalCharactenstics > - ? ?
<#>popularty: int = 0 (2 <==working(). State
<#=|payable|buyFood{unit): bool, unit
<@>cry(string): string @ @ManagerManageManager)
<f>move(bool, unit, unit). unit {event}isHapy(message: string)
<¥»|payablelfeed(Manager). bool “onlyOwnerowner. string)

Figure 4. Example of Contract Diagram

diagram.

The contract diagram is divided into three main parts. Area @ is displayed as general, abstract, and

interface according to the name of the contract and the type of the contract. In area (), state variables, struct,
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and enumeration types are displayed. Area 3 displays functions, constructors, events, and modifiers. State

variables are indicated in orange as 'variable name: data type'. Struct are colored in gray and indicated as

‘struct name: struct = {content}’. Enumeration types are expressed in purple as ‘enum type name: enum =
{content}’. Functions are indicated in yellow and marked as ‘function name (parameter: data type): return
type’. Constructors are indicated by ' in light blue. Events are marked with ‘ {event}’ in blue. Modifiers are
indicated by using ‘@’ in red. Visibility is indicated in pink with + for public, # for internal, - for private,
and * for external. State Mutability is indicated by ‘[]’ sign in green, and there are four types such as,
constant, view, pure, and payable. The representation of the relationship between each contract is the same as
in the existing class diagram for object-oriented structure. Table 1 shows a summary of notation that express
unique elements to Solidity that do not correspond to the existing class diagram.

Table 1. New Expressions to Contract Diagram

Category Notation Category Notation
constant [constant] public +
State view [view] . internal #
. Visibility .
Mutability pure [pure] private -
payable [payable] external *
Struct Struct name: struct = {...} Constructor A
Enum Enum name: enum = {...} Event (event)
Modifier @

3.2.2 Sequence Diagram for Solidity

Sequence diagrams show the interactions between contracts, allowing you to intuitively understand the
flow of messages between contracts. After we find the connection between functions by analyzing the call
relationship between functions, the list of connected functions is called case. Then, the flow of each case is
expressed as a sequence diagram. Figure 4 is an example of a blockchain-based sequence diagram. The flow
is understood by expressing the name of the function that calls the message between the contract lifelines.

Sequence 1 Sequence 2
Animal Manager Animal
| | |
Loyl ' 1 move()

| 2 buyFood() .:|

| ::l 1 2 feed()

I 3 working() ' :;
Animal Manager Animal

Figure 5. Example of Sequence Diagram for Solidity
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3.2.3 Use Case Diagram for Solidity

Use case diagrams represent the interactions between users and systems, making software intuitively
understandable. We try to help to compare the design and development results by analyzing the written code
as a use case diagram. Figure 5 is an example of a blockchain-based use case diagram. Actors are
represented as contractors for contract agreement, and cases are represented by functions analyzed through
sequence diagrams.

DApp

(el
— -—_\_____\__ :

Actor 1 Actor 2

Figure 6. Example of Use case Diagram for Solidity

4. Conclusion

Our works is about a design extraction based on reverse engineering of smart contract code that is written
in Solidity language. We restore the high-level design from the source code that is written in Solidity, a
contract-oriented language, through an object-oriented approach using reverse engineering. This language is
like an object-oriented language, but research on this topic is still insufficient. In the future, we plan to
restore the design and requirements by tracing from the source code to the requirements based on the design
and study the Solidity Static Analyzer.
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