Advanced and Applied Convergence Letters AACL 17

Advanced and Applied Convergence

& Adavanced Culture Technology

9th International Symposium; ISAAC 2021
in Conjunction with ICACT 2021, ICKAI 2021

November 11 - 13, 2021, SETEC, Korea
Revised Selected Papers

IIBC IO |
Z\PACT -

Volume Editors:

Jeong-Jin Kang
Dong Seoul University, 423 Bokjeong-Dong, Sujeong-Gu, Seongnam, Gyunggi, 13117 Korea
E-mail: jjkang@du.ac.kr

Edward J. Rothwell
Michigan State University, 2120 Engineering Building East Lansing, Ml 48824-1226, USA
E-mail: rothwell@egr.msu.edu

Yang Hao
Queen Mary University of London, Mile End Road, London E1 4NS, UK
y.hao@gmul.ac.uk

Jongwook Jang
Dongeui University, 176, Eomgwang-ro, Busanjin-gu, Busan, Korea
jwjang@deu.ac.kr

ISSN: 2288-6060

Copyright (©The Institute of Internet, Broadcasting and Communication (IIBC) All rights reserved
Copyright and Reprint Permissions: This work is subject to copyright. All rights are reserved,
whether the whole or part of the material is concerned, specifically the rights of translation,
reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other
way. Abstracting is permitted with the credit to the source.

Other copying, reprint request should be addressed to: I1IBC Copyrights Manager, Head Office

101 Jungdae-ro, Dongbu Sunville #610, Songpa-gu, Seoul, 05719 Korea
Tel: +82 2-407-7718 Fax: +82 2-407-7716
* Printed on acid-free paper

Please note that the papers in this proceeding book are neither reviewed by peer or professional
editor nor accepted as official papers. The papers are working papers that the authors study
their research recently.

CONTENTS

Hair Style matching using FCN for VR hair styling contents / 1
Junghyun Kim, Yunhan Lee, Seongah Chin

Enhancing Korean Learners’ Cultural Competencethrough English Language Textbooks / 7
Bok-Myung, Chang

Latent Profile Analysis of High School Students’ Fire Safety Awareness / 13
Soon-Beom, Lee, Eun-Mi, Kim and Ha-Sung, Kong

Latent Profile Analysis of High School Students’ Disaster Safety Awareness / 14
Soon-Beom,Lee, Eun-Mi, Kim and Ha-Sung, Kong

A study on image processing techniques applying artificial intelligence-based gray scale and RGB scale / 15
Hyun-Tae Kim, Gi-Seok Lee, Malrey Lee, SangHyun Lee

Design Validation Practices on Design Extraction of Solidity’s Smart Contract Code based on Reverse Engineering / 26
Chansol Park, Jungeun Park, Seohee Hong, Jiyun Kim, Janghwan Kim, Bokyung Park, Soyoung Moon,
Hyun Seung Son, R. Young Chul Kim

Development of a Prototype of Sign Language Understanding using CNN and 13D architecture / 32
Jason Buquiran, Jacob Mukkada, Jong Yoon Lim, and Ho Seok Ahn

Motion Analysis and Medicine Taking with Assistive Robots / 38
Ninger Gong, Sahana Srinivasan, Andy Kweon, Jong Yoon Lim, and Ho Seok Ahn

Cyclic Data Flow Modeling for IEC 61850 Sampled Values using Raspberry Pi / 44
Sung-Ho Hwang

3D Point Cloud Addressing Structure using Voxel Index / 49
Tae-Won Jung, In-Seon Kim and Kye-Dong Jung

Substantiation for Location Image Classification Model using Projective Template Matching and Convolutional Neural
Network / 51
Jinwook Jang and Dongwook Lee

Implementation of Timestamp Change Tool for An Anti-Forensics / 54
Gyu-Sang Cho

Latent Profile Analysis According to the Subject Selection Criteria of General High School Students / 56
Eun-Mi, Kim

Education Program to Prevent Digital Drama through Artificial Intelligence / 57
Eunsun Choi, Yuri Hwang, Yuijin Jung, Doik Hyun, and Namje Park

Teaching Core Principles of SVM for Elementary Learners by Subject-Convergent Education / 59
Yuri Hwang, Eunsun Choi, Yujin Jung, and Namje Park

The Effect of Xiaohongshu Service Quality on Loyalty through Emotional Response of Users / 61
Xu Jie and Sin-Bok Lee

Design Validation Practices on Design Extraction of
Solidity’s Smart Contract Code based on Reverse Engineering

!Chansol Park, “Jungeun Park, *Seohee Hong, *Jiyun Kim, *Janghwan Kim, “Bokyung Park,
’Soyoung Moon, *Hyun Seung Son, °R. Young Chul Kim
123,43, 7‘9Depz‘. of Software and Communication Engineering, Hongik University, South Korea
SDept. of Computer Education, Chinju National University of Education, South Korea
8Depz‘. of Computer Engineering, Mokpo National University, South Korea
'chansol53, %je2998, *tjgm1708, *b789014} @mail.hongik.ac.kr,
{*janghwan, ‘msy, *bob} @selab@hongik.ac kr,
Sparkse@cue.ac.kr, *hson@mokpo.ac.kr

Abstract

As interest in cryptocurrencies increases, the blockchain technology market is rapidly expanding. In the
meantime, as we enter the second-generation blockchain era, our interest and research on smart contracts
and Decentralized applications are progressing together. In 2020, with the enactment of the Sofiware
Promotion Act in Korea, we must separate and order the requirements, design, and implementation for a
project. At this moment, we need to make technical research on whether development has been carried out
according to the original requirements-based design is required or not. To solve this problem, we propose
an extraction method of requirement-based smart contract design restoration based on reverse engineering.
Through this, it is expected to validate the reliability of the second-generation blockchain software will
increase and help fast and efficient development.

Keywords: Solidity Visualization, Reverse Engineering, Design Restoration, Block Chain, Ethereum

1. Introduction

Recently, the blockchain market is rapidly expanding due to the crypto currency. With the advent of the
Ethereum blockchain environment, the blockchain Paradigm has shifted to a second-generation blockchain
that creates and uses Decentralized Applications(dApp), unlike other blockchains that focus on functions as a
cryptocurrency [1]. The dApp is a digital application that automatically executes pre-written code when the
conditions of a smart contract are satisfied. Solidity is used as a representative programming language to
implement smart contract [2]. Solidity is a Turing-complete programming language that allows you to write
smart contracts in the Ethereum environment [3].

In 2020, the Software Promotion Act was enacted for separate ordering of design and implementation [4].
Therefore, to reduce the difference between the design and implementation analyzed from the requirements,
it is necessary to verify whether the implemented software is developed according to the requirements-based
design. In academia, research has been conducted to apply various verification techniques that reduce the
difference between design and implementation in existing software. As such research and attempts are
continuing in the existing object-oriented software, but research is hardly conducted about the
blockchain-based dApp.

We propose method about an extraction method of requirement-based smart contract design restoration
based on reverse engineering in the Ethereum environment. Through this, it is expected that errors that may
occur during separate orders for between software development and design can be reduced. In Chapter 2, as
related studies, research on reverse engineering-based object-oriented software design restoration and smart

J.J. Kang et al. (Eds.): ISAAC 2021, AACL 17, pp. 26-31, 2021
© The Institute of Internet, Broadcasting and Communication 2021

Design Validation Practices on Design Extraction of Solidity’s Smart Contract Code based on Reverse Engineering 27

contracts with dApp in the Ethereum environment are discussed. Chapter 3 introduces the proposed method
that is how to extract the design from the source code through reverse engineering for the smart contract that
runs in the Ethereum environment. And then, we will remark conclusion with future research in chapter 4.

2. Related works

2.1 Extracting Use Case Design Mechanisms on Reverse Engineering

Extracting software designs through reverse engineering has been continuously studied in the field of
software engineering. This study proposes design extraction according to the relationship between classes in
object diagram and sequence diagram through programming for target code analysis[5]. In addition, this
study focused on design restoration from an object-oriented perspective and studied coupling graphs, class
diagrams, and sequence diagrams together.

input

Source | Analyze
Code | ——> [Java Parser]
l Extract

Visualization
Top-Down
Structure AST Class Diagram
(Abstract Sytax Tree) Sequence Diagram

lStored T

| |
Datalist Using]
PlantUML

Figure 1. Schematic Diagram of Object-Oriented Software Visualization Tool Chain

Figure 1 is a schematic diagram of the software visualization toolchain. Existing research uses a tool
called Source Navigator to analyze the source code and uses SQLite to store the data in the DB. This study
focused on software that are written in Java programming language and studied design extraction. Unlike the
analysis methods of existing studies, Java parser, a Java static analysis tool, is used instead of Source
Navigator, an open-source tool that requires query statement optimization to extract essential information.
By using the Java parser, the AST of the source code is extracted, and the extracted data is stored in an object,
not in the DB, so that fast and efficient analysis is possible. In addition, instead of GraphViz as a
visualization tool, PlantUML, an open-source extensible tool based on GraphViz, was used to make
visualization more convenient.

2.2 Extracting Use Case Design Mechanisms on Reverse Engineering [6]

The smart contract is a technology that has not been actively used until the release of the Ethereum
platform due to security vulnerabilities and technical limitations [7]. However, it became the starting point of
implementing contract automation by overcoming the limitations through Ethereum. Typically, smart
contracts are not only used for cryptocurrency transactions, but are also actively applied to fields such as
trade, finance, and real estate [8].

A decentralized application (dApp) generally consists of a smart contract recorded on a distributed ledger
and a program executed through agreement of the contract [9]. Figure 2 describes a simplified diagram of the
dApp operation process. As shown in Figure 2, the user manipulates the dApp through the user interface.

28 Chansol Park, Jungeun Park, Seohee Hong, Jiyun Kim, Janghwan Kim, Bokyung Park, Soyoung Moon, Hyun Seung Son, R. Young Chul Kim

This calls the necessary functions through the remote procedure call(RPC) method from the smart contract
recorded in the blockchain network [10]. The value of state variable that is changed in this process is
recorded in a new block through a transaction.

| Block Chain Network |

Byte code

—- Transaction

Ethereum
Virtual Machine

RPC
(Remote Procedure Call)

JAVA, Java Script,
[Web3JS]—— PHP Python —[User]

Fiqure 2. Schematic Diagram of dApp Operation Process

3. Design Extraction of Smart Contract Code based on Reverse Engineering

This describes a blockchain-based software visualization toolchain in the Ethereum environment that can
analyze solidity codes into class diagrams, sequence diagrams, and use case diagrams. Figure 3 is a structural
diagram regards the blockchain-based software visualization process that we mentioned above. First, the .sol
file written in the Solidity language is entered into the tool-chain as an input. Then, the AST for the source
code is extracted through the Solidity Static Binaries Compiler which is provided by official solidity web
repository. The extracted AST is saved in .json format, and the AST of the source code is stored in an object
in memory using the Solidity AST.JSON Parser which we developed for this tool-chain. Finally, the
toolchain retrieves the necessary information for each diagram from the stored data and then, it draws each
diagram by executing PlantUML, a visualization tool. In this paper, we draw class diagrams, sequence
diagrams, and use case diagrams to restore the high-level design.

|
Our Approach . . 0
I PP (DeS|gn Restoration Application :
Source code || [Solidity Data 6 I N N : |
(.sol) Compiler Class | Class
: Analyzer ~ || Diagram
| \ J |
| AST Collector (\ :
: AST(json) for Solidity Sequence | | Visualizer L,| Sequence
I Analyzer | | Diagram
| \) |
| — |
: White : Target & Result Usecase | | || Usecase
| Analyzer PlantUML I'l Diagram
| Gray : Open_source tool g)L) |1
I_ Blue : Our tool . J :

Figure 3. High-level Design Extraction Process for Blockchain based Application

3.1 AST Collector for Solidity

Design Validation Practices on Design Extraction of Solidity’s Smart Contract Code based on Reverse Engineering 29

AST Collector for Solidity is a tool that stores AST information extracted with Solidity Complier as
objects in memory. AST information consists of nodes such as SourceUnit, PragmaDirective,
ContractDefinition, and VariableDeclaration. When AST Collector receives .sol files as an input, a
SourceUnit node is created for each .sol file. The PragmaDirective node is a child node of the SourceUnit
node and has compiler version that extract AST. The ContractDefinition node contains all information about
the Contract and is created as Contracts are declared. Contract nodes include nodes corresponding to state
variables, functions, structures, modifiers, events, and enum structures declared in the contract. For example,
if a state variable A is declared in a contract, a VariableDeclaration node is created as a branch of the
Contract node. Then, information such as name, data type, and declaration method are stored for the state
variable A.

3.2 High-level Design Restoring Application

High-level Design Restoration Application processes data according to each diagram to draw each UML
diagram from the AST information stored in the object. After that, it draws the UML diagram through the
PlantUML which is a visualizer. The following is a summary of the extraction methods for each diagram.

3.2.1 Class Diagram for Solidity

In blockchain software written by Solidity language, the structure called ‘Contract’ is very similar to
‘Class’ in object-oriented design. However, we will use word ‘Contract diagram’ for the class diagram in this
environment because it is used as the name of the contract instead of the class. The contract diagram includes
the contract components (state variable, struct, enum, function, constructor, event, modifier, Visibility, State
Mutability, etc.), which are data structures of software in the Ethereum environment. A state variable is a
variable declared in a contract but is not declared in a function. A struct is a integrated data type that consists
of variables that are different data types. An enum is a list of predefined constant values. A function is a set
of program code designed to perform a special task. A constructor is a function that is executed when the
contract is created. Only one constructor can be used per contract. An event is an action or event that can be
detected and handled by a program. A modifier is a structure associated with a function that always executes
before the target function to change the function's behavior. Visibility limits the access scope of functions
like access modifiers in Java or C++. A State Mutability is a type of qualifier that affects the operation of a
function and is used to clarify the role of a function. Therefore, it is possible to intuitively grasp the
relationship and structure between contracts through the contract diagram. Figure 3 is an example contract

@ Ariiat @ @ Manager
[constantimanagerRight: bool = true
animalCharactenstics: struct={ State: spum = { Working, Breaking, Leaving }
hasWing: bool state: State
;‘;’;g'-iﬁfr;:}”"f =#=numFood: unit = 0
b — = = =¥=>grade: ManageManager
animall: animalCharactenstics > - ? ?
<#>popularty: int = 0 (2 <==working(). State
<#=|payable|buyFood{unit): bool, unit
<@>cry(string): string @ @ManagerManageManager)
<f>move(bool, unit, unit). unit {event}isHapy(message: string)
<¥»|payablelfeed(Manager). bool “onlyOwnerowner. string)

Figure 4. Example of Contract Diagram

diagram.

The contract diagram is divided into three main parts. Area @ is displayed as general, abstract, and

interface according to the name of the contract and the type of the contract. In area (), state variables, struct,

30 Chansol Park, Jungeun Park, Seohee Hong, Jiyun Kim, Janghwan Kim, Bokyung Park, Soyoung Moon, Hyun Seung Son, R. Young Chul Kim

and enumeration types are displayed. Area 3 displays functions, constructors, events, and modifiers. State

variables are indicated in orange as 'variable name: data type'. Struct are colored in gray and indicated as

‘struct name: struct = {content}’. Enumeration types are expressed in purple as ‘enum type name: enum =
{content}’. Functions are indicated in yellow and marked as ‘function name (parameter: data type): return
type’. Constructors are indicated by ' in light blue. Events are marked with ‘ {event}’ in blue. Modifiers are
indicated by using ‘@’ in red. Visibility is indicated in pink with + for public, # for internal, - for private,
and * for external. State Mutability is indicated by ‘[]’ sign in green, and there are four types such as,
constant, view, pure, and payable. The representation of the relationship between each contract is the same as
in the existing class diagram for object-oriented structure. Table 1 shows a summary of notation that express
unique elements to Solidity that do not correspond to the existing class diagram.

Table 1. New Expressions to Contract Diagram

Category Notation Category Notation
constant [constant] public +
State view [view] . internal #
. Visibility .
Mutability pure [pure] private -
payable [payable] external *
Struct Struct name: struct = {...} Constructor A
Enum Enum name: enum = {...} Event (event)
Modifier @

3.2.2 Sequence Diagram for Solidity

Sequence diagrams show the interactions between contracts, allowing you to intuitively understand the
flow of messages between contracts. After we find the connection between functions by analyzing the call
relationship between functions, the list of connected functions is called case. Then, the flow of each case is
expressed as a sequence diagram. Figure 4 is an example of a blockchain-based sequence diagram. The flow
is understood by expressing the name of the function that calls the message between the contract lifelines.

Sequence 1 Sequence 2
Animal Manager Animal
| | |
Loyl ' 1 move()

| 2 buyFood() .:|

| ::l 1 2 feed()

I 3 working() ' :;
Animal Manager Animal

Figure 5. Example of Sequence Diagram for Solidity

Design Validation Practices on Design Extraction of Solidity’s Smart Contract Code based on Reverse Engineering 31

3.2.3 Use Case Diagram for Solidity

Use case diagrams represent the interactions between users and systems, making software intuitively
understandable. We try to help to compare the design and development results by analyzing the written code
as a use case diagram. Figure 5 is an example of a blockchain-based use case diagram. Actors are
represented as contractors for contract agreement, and cases are represented by functions analyzed through
sequence diagrams.

DApp

(el
— -—________ :

Actor 1 Actor 2

Figure 6. Example of Use case Diagram for Solidity

4. Conclusion

Our works is about a design extraction based on reverse engineering of smart contract code that is written
in Solidity language. We restore the high-level design from the source code that is written in Solidity, a
contract-oriented language, through an object-oriented approach using reverse engineering. This language is
like an object-oriented language, but research on this topic is still insufficient. In the future, we plan to
restore the design and requirements by tracing from the source code to the requirements based on the design
and study the Solidity Static Analyzer.

5. Acknowledgement

The research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (2021R111A305040711) and the BK21
FOUR (Fostering Outstanding Universities for Research) funded by the Ministry of Education (MOE, Korea)
(N0.2021R1T1A305040711).

6. References

[1] K. Kim, "The Impact of Blockchain Technology on the Music Industry." International journal of advanced smart
convergence Aug. 1™ (2019) pp: 196-203.B. Sklar, Digital Communications, Prentice Hall, pp. 187, 1998.

[2] D.Lee, W. Ji, H. Kim. "Survey on trends in smart contract-compatible programming languages." Korean
Information Science Association Academic Presentation Paper Collection (2018) pp: 1490-1492.

[3] Jansen, Marc, et al. "Do smart contract languages need to be Turing complete?." International Congress on
Blockchain and Applications. Springer, Cham, 2019.

[4] ZDNET Korea, Enforcement of the revised SW Promotion Act ‘- "Open a new SW culture",
https://zdnet.co.kr/view/?n0=20201210061826

[5] H.Kwon, and R. Kim. "Extracting Use Case Design Mechanisms via Programming based on Reverse
Engineering." International Journal of Applied Engineering Research 10.90: 2015.

[6] S.Jung, et al. "Automatic UML Design Extraction with Software Visualization based on Reverse Engineering."
International Journal of Advanced Smart Convergence 10.3 (2021) pp: 89-96.

[7] C.Roh, I. Lee. "Smart Contract-based Electronic Voting System in Blockchain." Proceedings of the Korea
Information Processing Society Conference. Korea Information Processing Society 26.1 (2019) pp: 190-191.

[8] H.T. Choi. "The legal issues and tasks of smart contracts." Law and policy research 21.1 (2021): 381-408.

[9] WANG, Shuai, et al. "An overview of smart contract: architecture, applications, and future trends." 2018 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2018. p. 108-113.

[10] Svenson, C. "Blockchain: Using cryptocurrency with java." Java Magazine, January/February (2017): 36-46.

