
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Best Practices on Improving Gas Consumption
through Simplifying Quality Complexity of Solidity

code for Smart Contracts in Distributed Network
Environments

Janghwan Kim
Software Engineering Laboratory

Hongik University
Sejong, Korea

lentoconstante@g.hongik.ac.kr

 Chan Sol Park
Software Engineering Laboratory

Hongik University
Sejong, Korea

chansol53@mail.hongik.ac.kr

R. Youngchul Kim
Software Engineering Laboratory

Hongik University
Sejong, Korea

bob@hongik.ac.kr

So Young Moon
Software Engineering Laboratory

Hongik University
Sejong, Korea

whit2@hongik.ac.kr

Abstract— Recently, power consumption is exponentially
increasing due to the huge execution of smart contracts on
distributed networks. Every time a smart contract with complex
code is executed, performance is degraded, and cost is high. To
solve this problem, we propose making the Code complexity
simplification for spending low power consumption. Through this,
we expect to improve the quality of the code running in the
distributed network environment.

Therefore, we propose a method to reduce the relationship
between code complexity and gas consumption.

Keywords—Ethereum, Code Visualization, OOP Quality
Metrics, C.K Metrics

I. INTRODUCTION

With the emergence of Non-fungible Token (NFT)
through the development of blockchain technology, the use
of distributed network-based applications is increasing day
by day. NFT refers to the only token on a distributed
network that differentiates itself from other copies by
inserting unique codes into digital assets[1]. As the value of
scarcity increases due to the development of these functions,
the purchasing power of works to which NFT technology is
applied is also rising. For this reason, the use of distributed
network platforms for registered NFT transactions is also
increasing as content creators use the smart contract
function that supports NFT to digital assets to issue the
digital assets as NFT. This tells that smart contact usage
running on the blockchain network also increases. However,
the Solidity language, which implements smart contracts on
the Ethereum platform, has a lot of research on security
aspects, but research is still insufficient in terms of
performance and efficiency.

Depending on the type of smart contract and the degree
of execution, the amount of resources consumed when the
code on the smart contract is executed varies, and the gas
cost is paid to the node that provided the resource[2].
Therefore, it is also necessary to study the performance and

efficiency of the executed source code because the cost is
involved when the smart contract is executed in a distributed
environment.

In this paper, we propose a method to reduce gas
consumption by reducing the source code complexity
through comparing the complexity relationship between the
amount of gas consumed in a distributed network and
Object-Oriented Programing(OOP) based Quality metrics.
Through this study, it is expected to reduce the complexity
of the source code to reduce resource usage when executing
smart contracts in a distributed network and to perform the
same function at a lower cost.

Chapter 2 refers to research on object-oriented software
visualization and research on Ethereum yellow paper as
related studies. Chapter 3 discusses the relationship between
object-oriented quality indicators and gas output, and
Chapter 4 discusses conclusions and future research.

II. RELATE WORKS

A. Ethereum Yellow paper

Ethereum Yellow Paper is an Ethereum design manual
produced by Gavin Wood. He explains the principles of the
Ethereum virtual environment in this document. In this
study, the design of the Ethereum platform, possible
implementation problems, and possible obstacles are
discussed[3].

In the Ethereum network, gas is a cryptocurrency that
rewards contributors according to their contribution to
execution in return for the resources that will be used to run
the source code. The table below summarizes the gas cost
for bytecode.

Table 1. Fee Schedule of Smart Contract Operation[3]
Operation Gas Description Fee Name
ADD/SUB 3 Arithmetic operation Gverylow

AND/OR/XO
R

3 Bitwise logic operation Gverylow

Operation Gas Description Fee Name
… … … …

MUL/DIV 5 Arithmetic operation Glow

CREATE 32000
Create a new account

using CREATE
Gcreate

CALL 25000
Create a new account

using CALL
Gnewaccount

III. DESIGN

The complexity and gas consumption are calculated
quantitatively through object-oriented quality indicators and
gas consumption calculators. Solidity is a contract-oriented
language and its properties are similar to object-oriented
programming [4]. Accordingly, based on the object-
oriented quality index of the Solidity code, the complexity
and gas consumption of the source code are analyzed to
show the correlation between the two.

Figure 1 shows the method of extracting the relationship
between object-oriented quality indicators and gas
consumption of Solidity code. The C.K matrix is used as an
object-oriented complexity quality metrics. We calculate
the complexity by analyzing the AST structure of the source
code using the software visualization technique. According
to Solidity Yellow Paper, the gas consumption is measured
through the opcode operator[3]. The relationship between
the complexity quality index and gas consumption of object-
oriented programs is found through the Pearson correlation
coefficient.

Table 2. Correlation Result Between
OOP Complexity and Gas Consumption

Quality

Indicator
Pearson Coefficient P-value

DIT 0.719 0.00
NOA 0.731 0.00
NOD 0.731 0.00

Avg. McCC 0.726 0.00
Avg. NOS 0.743 0.00
Avg. NOI 0.791 0.00

Table 2 and Figure 2 shows the correlation graph result
between Object oriented programming complexity and gas
consumption. As we shown on Table 2, there is a result of
measuring a total of 21 indicators, 14 of the 21 object-
oriented quality indicators had a Pearson correlation
coefficient of 0.5 or higher, and 6 of these indicators were
0.7 or higher.

These six quality indicators (McCC: McCabe
Cyclomatic Complexity, DIT: Depth of inheritance tree,
NOA: number of ancestors, NOD: number of descendants,
NOS: number of statements, NOI: number of outgoing
invocations) indicate that they are closely related to gas
output. Therefore, when the Pearson correlation coefficient
is close to 1, the two indicators are strongly related. Also,
the p-value is less than 0.001, so the result is a significant.

IV. CONCLUSION

In this paper, we measure the relationship between the
amount of gas consumed in a distributed network and the
complexity between the OOP-based quality metric.
However, there is a limit to applying all quality indicators
to the Solidity language in a limited environment. In the
future, we will conduct research on reducing the gas
consumption of contracts with the same function.

ACKNOWLEDGMENT

The research was supported by Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education
(2021R1I1A305040711) and the Basic Science Research
Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of
Education(2021R1I1A1A01044060) and the BK21 FOUR
(Fostering Outstanding Universities for Research) funded
by the Ministry of Education (MOE, Korea)
(No.2021R1I1A305040711).

Reference
[1] Ante, Lennart. "Non-fungible token (NFT) markets on the Ethereum

blockchain: Temporal development, cointegration and
interrelations." Available at SSRN 3904683 (2021).

[2] Baird, Kirk, et al. "The economics of smart contracts." arXiv preprint
arXiv:1910.11143 (2019).

[3] Wood, Gavin. "Ethereum: A secure decentralised generalised
transaction ledger." Ethereum project yellow paper 151.2014 (2014):
1-32.

[4] Hegedűs, P. Towards Analyzing the Complexity Landscape of
Solidity Based Ethereum Smart Contracts. Technologies 2019, 7, 6.
https://doi.org/10.3390/technologies7010006

Figure 1. Solidity Complexity Relationship Analysis Process

 Figure 2. Correlation Graph Result between
OOP Complexity and Gas Consumption

