
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Applied Practice on the Guide Code Generation
based on Model Driven Development for
Developing Huge Systems on Distribute

Environments

Sejun Jung
Software Engineering Laboratory

Hongik University
Sejong, Korea

bvcx79@hongik.ac.kr

 So Young Moon
Software Engineering Laboratory

Hongik University
Sejong, Korea

whit2@hongik.ac.kr

R. Youngchul Kim
Software Engineering Laboratory

Hongik University
Sejong, Korea

bob@hongik.ac.kr

Abstract— Defining complex and multifunctional

software requires a lot of requirements and design. In

particular, the more complicated functions have, the

more use case scenarios are created. Implementation

and verification based on these requirements and design

documents require a high understanding of design and

requirements. Therefore, costs are incurred even before

development begins. This research proposes a

metamodel that integrates design documents. The

structure of the metamodel makes it possible to trace

related design elements. It also uses the metamodel to

generate guide code automatically. The guide code helps

developers understand the design and makes

development more straightforward. This is expected to

reduce the cost of development.

Keywords—Metamodel, Automatic Code Generation, Usecase
Specification, Unified Modeling Language, Class Diagram

I. INTRODUCTION

The scale and importance of smartphone
applications, autonomous driving software, satellite
software, and weapons software continue to grow.
To define complex and many functions software,
many requirements and design documents are
required. In particular, software with many
functions and complexities has design elements
such as many systems, use cases, actors, and
objects. This software increases the number and
interaction of modules, and the size of the module
itself increases. As a result, it becomes difficult to
understand the module and implement it by
reflecting on the design. This study proposes a
metamodel that integrates high-level design and
UML. Related design elements can be traced
through the structure of the proposed metamodel.
Moreover, this study automatically generates the
guide code based on the class diagram and the use
case specification stored in the metamodel. The
guide code consists of class structure, comments,
and functions. This guide code reduces the time

required for module analysis and makes
development more straightforward.

II. RELATED RESEARCH

It is difficult for software to trace the
relationship to the outputs of each step that arise
from the requirements. Tracking output typically
identifies relationships through ID. A study creates
a traceability matrix using a database to effectively
visualize Id-based output tracking [1]. This study
transforms the design into a metamodel, identifies
it through id, and traces it through the structure.
The metamodel is a model for defining a model.
Metamodel uses Model to Model technology to treat
similar but platform-dependent models as a single
model. As a study using metamodel, some studies
change the AST of different programming
languages to the same metamodel ASTM [2] or
change the smartphone UI model of other platforms
to the same UI metamodel and automatically
produce it [3]. In addition, there is a study to create
test cases from natural language by defining a
cause-effect model and a semantic sentence model
as metamodel [4]. This study proposes a
metamodel that integrates the high-level
requirements and the UML model and suggests
tracing design elements. The guide code is
completed by generating detailed code and
comments using the information of the high-level
design model connected to the low-level design
model.

III. USECASE SPECIFICATION MODELING

UML, requirements, and use case specification
elements are defined as models to trace the outputs
generated from the requirements. Figure 1 shows
the core models and structures used to produce
guide codes.

Fig. 1. Meta Model for Generate Guid Code

Design elements are viewed as objects without
distinction between high-level and low-level
designs. Furthermore, related design elements are
identified through id and connected. All design
elements can be recognized and connected as
Objects. It is possible to trace design elements
related to different design models derived from one
design model. Finally, the design model of the class
diagram is used to guide code production. Then,
comments and requirements are created through
the design information of the Object that is the basis
of the class. The Method creates comments with the
information of the underlying Object and makes the
inside of the Method with the defined design
information inside the Object.

IV. CASE STUDY

This paper is an example of applying the
proposed technology to the monitoring system. This
monitoring system has three system modules. First,
there is SMS (Server Management System), where
the administrator manages the server as a whole.
Second, GUIS (Graphic User Interface System)
shows the server status when SMS runs. Finally,
the CS (Control System) is run from the GUIS. CS
communicates and controls the input/output of
server users and manages server data. Each system
has various functions. Figure 2 is a use case
diagram and a class diagram of the Server Manage
System.

Fig. 2. Server Manage System – Admin, Use case Diagram

In the use case diagram in Figure 2, eight use cases
result in 8 use case scenarios. The class diagram
has the structure most similar to the source code.
Although the class diagram has a structure similar
to the source code, there is a problem that eight
scenario documents need to be understood to
implement the ServerManager class. Figure 3 is a
part of the Java guide code of the ServerManager
class generated by inputting the use case
specification and UML design information using the
method proposed in this study.

Fig. 3. Part of the ServerManager class guid code

Figure 3 is a part of the guide code of the

automatically generated Server Manager class.

Server Manager class is a class diagram designed

based on Server Management System. Therefore,

the ID and system requirements of the Server

Management System are generated as JavaDocs

from lines 3 to 11. Method serverOn in line 22 is

defined in the class diagram based on Use Case

UC01. The loadFile method in line 42 is a method

of the class diagram depicted based on the event

flow diagram of UC01. The relevant model

information is imported, and the content description

is generated with JavaDoc.

V. CONCLUSION

The method proposed in this study was applied
to the monitoring system. Through this method, it
was possible to see the design information through
the structure of the source code and proceed with
the implementation. It is expected that this will help
understand complex systems and reduce the cost of
documentation and development. Also, the inside of
the guide code's method and comments are
implemented based on the Use Case specification.
Therefore, if the class structure can be

automatically generated through Use case diagrams
and scenarios, it is possible to create guide codes
with only high-level design. Therefore, to produce
guide codes with only high-level design, we plan to
conduct semantic analysis studies of use case
specifications and improve models [4]. In addition,
more detailed guide code generation is possible,
and guide code generation can be expected from an
unrefined specification file.

ACKNOWLEDGMENT

The research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education
(2021R1I1A305040711) and the Basic Science Research
Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of
Education(2021R1I1A1A01044060) and the BK21 FOUR
(Fostering Outstanding Universities for Research) funded by
the Ministry of Education (MOE, Korea) (F21YY8102068).

REFERENCES

[1] Jin Hyub Lee, Kidu Kim, Bo Kyung Park, and R Young Chul Kim.

"Example of Implementation of Requirements Tracking Based on the
Traceability Matrix Mechanism." Proceedings of the Korean Society of
Information Sciences 2018.6 (2018): 488-489.

[2] Hyun Seung Son,R Young Chul Kim. "xCodeParser based on Abstract
Syntax Tree Metamodel (ASTM) for SW Visualization"
INFORMATION -YAMAGUCHI- : 963-968.K. Elissa, “Title of paper
if known,” unpublished.

[3] Hyunseung Son, Wooyeol Kim, and Youngcheol Kim. "A method of
applying model transformation for the configuration of heterogeneous
smartphone app development environments." Journal of the
Information Science Society: The Practice of Computing and Letters
20.4 (2014): 238-242.

[4] Jang, Woo Sung, Se Jun Jung, and R. Kim. "Design of Sentence
Semantic Model for Cause-Effect Graph Automatic Generation from
Natural Language Oriented Informal Requirement Specifications."
Annual Conference on Human and Language Technology. Human and
Language Technology, 2020.

