
XXX-X-XXXX-XXXX-X/XX/$XX.00 © 20XX IEEE 

Integrated Construction with Plug&Play Mechanism  

based on Metamodel for Development Process 
 

Woo Sung Jang 

Dept. of Software and Communication 

Engineering 

Hongik University 

Seoul, Korea 

uriel200@hongik.ac.kr 

So Young Moon 

Dept. of Software and Communication 

Engineering 

Hongik University 

Seoul, Korea 

whit2@hongik.ac.kr 

R. Young Chul Kim 

Dept. of Software and Communication 

Engineering 

Hongik University 

Seoul, Korea 
bob@hongik.ac.kr  

Abstract— The software development environment of SMEs 

may not mature in the development process. This can lead to 

failure in software quality management and asset management. 

To solve this problem, we study software visualization. Software 

visualization visualizes the software development process and 

visualizes the overall workflow within the company. However, 

in an existing software visualization environment, once a tool is 

selected, it is difficult to change the tool. Software visualization 

proposes an easy plug&play environment for process 

visualization to solve this problem. This method supports easy 

changes in issue tracking systems, continuous integration tools, 

and toolchain tools in a visualization environment. 

Keywords—Software Visualization, Process Visualization, 

Metamodel, Issue Tracking System, Continuous Integration, 

Metamodel Transformation 

I. INTRODUCTION 

Recently, the importance of software quality has 

been increasing. Large companies use excellent 

software quality management processes. However, 

SMEs struggle with software quality management due 

to high costs and a lack of skilled human resources [1,2]. 

It can be solved in a software visualization [3]. Visualize 

business and development processes within the 

enterprise using open source tools purchased from the 

enterprise. However, it is difficult to change the tool in 

an existing visualization environment once the tool is 

selected. As a result, the existing visualization 

environment is an environment that relies on tools. 

We propose an easy plug&play environment for 

process visualization among software visualization 

environments. It is a method that supports easy 

changes in Issue Tracking System (ITS), Continuous 

Integration (CI) tools, and Toolchain tools, which are 

tools used in process visualization environments. In 

addition, when adding a new tool, the user only needs 

to add a metamodel file and a transformation rule file 

of a new tool to the transformation engine. 

The plan of this paper is as follows. Chapter 2 

refers to the related research. Chapter 3 refers to the 

design of process visualization plug&play environment 

based on metamodel. Chapter 4 refers to the case study. 

Chapter 5 refers to the conclusions and future studies. 

II. RELATED STUDY 

A. Software Visualization 

Software visualization [3] focuses on visualization 

of all tasks related to software, visualization of software 

structures, and automatic generation of documents. 

This method provides 1) tracking from requirements to 

tests. 2) The relationship between requirements, design, 

and development source codes is identified during 

development. 3) Software quality scores are 

quantitatively measured. 4) Development documents 

are automatically generated. As a result, software 

visualization reduces the burden of human resources 

and cost and increases software quality. 

The structure of software visualization consists of 

Process Visualization, Architecture Visualization, and 

Automatic Documentation, as shown in Figure 1. 

Process Visualization visualizes the software 

development process. First, information from ITS and 

information from CI is delivered to Toolchain. 

Toolchain delivers the software structure diagram 

generated from the received data and the quantitatively 

measured software score to the Dashboard. The 

Dashboard outputs the received strategic scores and 

graphs on the screen. Finally, the Dashboard collects 

and expresses various information. 

Architecture Visualization visualizes the structure 

of software. Architecture Visualization may be 

included within Process Visualization. It analyzes the 

source code, politically measures the analyzed source 

code to generate scores, and graphically expresses the 

structure of the source code. 

Automatic Documentation automatically 

documents works that have occurred during software 

development. 

Each visualization method does not depend on a 

specific tool. The software visualization environment 

should be established by analyzing and understanding 

the culture of target SMEs. 



 

Fig. 1. Software Visualization 

III. DESIGN OF PROCESS VISUALIZATION PLUG&PLAY 

ENVIRONMENT BASED ON METAMODEL 

A. Design of Process Visualization Plug&Play 

Environment 

We propose a plug&play environment for Process 

Visualization in software visualization. Figure 2 below 

is the design of the Process Visualization plug&play 

Environment. Furthermore, it explains plug&play 

process in detail of Toolchain. 

(a) Process Visualization 

Figure 2-(a) shows Process Visualization in 

Software Visualization. ITS tools used in practice 

include Redmine[4] and Jira[5]. CI tools include Jenkins 

[6], Buddy[7], etc. Companies select one of the various 

tools and apply it to a visualization environment. 

Toolchain tool is one of the components of Architecture 

Visualization. The source code structure is analyzed 

and quantitatively measured to calculate the software 

quality score. The dashboard should collect, calculate, 

and output information desired by the administrator 

from ITS, CI, Toolchain, etc. 

(b) Plug&Play Environment of Tools for Process 

Visualization 

Figure 2-(b) describes in detail the automatic 

plug&play process of ITS, CI, and Toolchain tools in 

Figure 2-(a). Data source is information stored in ITS, 

CI, and Toolchain. Data Target is information output on 

the dashboard. The Independent CI Model, the 

Independent ITS Model, and the Independent 

Toolchain Model store information on tools. For 

example, the Independent ITS Model consists of the 

Redmine Model and the Jira Model. The Redmine 

Model stores project information of the Redmine tool, 

and the Jira Model stores project information of the Jira 

tool. The Specialized CI Model, Specialized ITS Model, 

and Specialized Toolchain Model store the integrated 

information of each tool. For example, the Specialized 

ITS Model can store all information from Independent 

ITS Models (Redmine Model, Jira Model, etc.). Adapter 

is a rule that automatically transforms the Independent 

Model into a Specialized Model. The adapter performs 

model transformation by referring to the Data Catalog. 

Data Catalog stores Metamodels of Independent 

Models and Specialized Models. 

(c) Plug&Play Environment for Toolchain 

Figure 2-(c) describes the plug&play process of 

Toolchain in detail in Figure 2-(b). Bad Smell[8] 

measures a bad smell in the source code. If the user uses 

Bad Smell Toolchain, Bad Smell Toolchain measures the 

bad smell score from the source code stored in the Data 

Source and stores it in the Bad Smell Toolchain Model. 

Moreover, the stored model is automatically 

transformed into a Specialized Toolchain Model by the 

Bad Small Transformation Rule. The Data Target loads 

the transformed model. 

(d) Bad Smell Metamodel Transformation Rule 

Figure 2-(d) is the detailed flow of the Bad Smell 

Metamodel Transformation Rule in Figure 2-(c). The 

Transformation Engine reads files stored in the Bad 

Smell Toolchain Model. And run Bad Smell 

Transformation Language. Bad Smell Transformation 

Language automatically transforms the Bad Smell 

Toolchain Model into a Specialized Toolchain Model by 

referring to two metamodel information. Finally, the 

Transformation Engine stores the automatically 

transformed model as an XML Metadata Interchange 

(XMI) file. 

B. Bad Smell Toolchain Metamodel 

Figure 3 is the Bad Smell Toolchain Metamodel. It 

stores the meta-structure of the Bad Small Toolchain 

Model. Badsmell includes several BSclass. BSClass 

includes several BSmethods. In the source code, class 

information is stored in the name of the BSclass. The 

bad smell of the class is stored in the type of BSclass. In 

the source code, method information is stored in the 

name of the BSmethod. The bad smell of the method is 

stored in the type of BSmethod. 

C. Specialized Toolchain Metamodel 

Figure 4 is the Specialized Toolchain Metamodel. 

It stores the meta-structure of the Specialized Toolchain 

Model. Classes stores class information and method 

information in the source code. Connections stores the 

relationship between the class and the method in the 

source code. Scores store quality scores of classes, 

methods, and relationships. 



 

Fig. 2. Design of Process Visualization Plug&Play Environment 



 

Fig. 3. Bad Smell Toolchain Metamodel 

 

 

Fig. 4. Specialized Toolchain Metamodel 

D. Metamodel Transformation Engine 

Figure 5 shows the Bad Smell Transformation 

Language algorithm executed by Metamodel 

Transformation Engine. The Bad Smell Tolchain 

Metamodel components are automatically transformed 

into the Specialized Toolchain Metamodel components. 

For example, the src of Badsmell is automatically 

transformed to the src of Toolchain. This algorithm is 

implemented through Atlas Transformation Language 

(ATL)[9]. 

 

Fig. 5. Transformation Rule between Bad Smell 

Toolchain Metamodel and Specialized Toolchain 

Metamodel 



E.  Bad Smell Toolchain Model 

The Bad Smell Toolchain Model stores the bad 

odor score of the source code. The model is stored as an 

XMI file. Table 1 is an example of the XMI code of the 

Bad Smell Toolchain Model. 

Table 1. XMI Code of Bad Smell Toolchain Model 

XMI Code 

<?xml version="1.0" encoding="UTF-8"?> 

<bs:badsmell xmi:version="2.0" 

xmlns:xmi="http://www.omg.org/XMI" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns:bs="http://tc/1.0" src="1_badsmell.jpg" time="2021/11/17-

13:35:33"> 

  <bsclass name="A1" type=""> 

    <bsmethod name="A1" type="Large Class" /> 

    <bsmethod name="A1_run" type="" /> 

    <bsmethod name="A1_runA2" type="" /> 

  </bsclass> 

  <bsclass name="A2" type="Data Class"> 

    <bsmethod name="A2" type="" /> 

    <bsmethod name="A2_run" type="" /> 

  </bsclass> 

  <bsclass name="Main" type=""> 

    <bsmethod name="Main" type="" /> 

    <bsmethod name="Main_main" type="" /> 

  </bsclass> 

</bs:badsmell> 

F. Specialized Toolchain Model 

The Specialized Toolchain Model can store 

information on all Toolchain models. Table 2 is an 

example of the XMI code of the Specialized Toolchain 

Model automatically transformed from the XMI code of 

Table 1. 

Table 2. XMI Code of Specialized Toolchain Model 

XMI Code 

<tc:Toolchain xmi:version="2.0" 

xmlns:xmi="http://www.omg.org/XMI" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns:tc="http://tc/1.0" type="badsmell" src="1_badsmell.jpg" 

time="2021/11/17-13:35:33"> 

  <connections> 

    <connection xmi:startclass="" endclass=""/> 

  </connections> 

  <classes> 

    <class name="A1"> 

      <method name="A1"/> 

      <method name="A1_run"/> 

      <method name="A1_runA2"/> 

    </class> 

    <class name="A2"> 

      <method name="A2"/> 

      <method name="A2_run"/> 

    </class> 

    <class name="Main"> 

      <method name="Main"/> 

      <method name="Main_main"/> 

    </class> 

  </classes> 

  <scores> 

    <score target="//@class.0" type="Large Class" value="" /> 

    <score target="//@class.1" type="Data Class" value="" /> 

  </scores> 

</tc:Toolchain> 

IV. CASE STUDY 

Figure 6 shows the implementation results of 

plug&play Environment for Toolchain in Process 

Visualization plug&play Environment. Users can select 

one of Bad Smell, Reusability, and Quality (C++ Quality) 

and upload the source code to measure the source 

code's score. 

 

Fig. 6. Implementation of Plug&Play Environment 

for Toolchain 

Figure 7 is the result of measuring the Bad Smell 

score of the source code. Bad Smell scores of classes and 

methods are displayed on the dashboard. 

 

Fig. 7. Printed Bad Smell Score in the Dashboard 



V. CONCLUSIONS 

We propose an environment for free plug&play of 

tools in Process Visualization. Software Visualization 

uses a variety of tools to visualize organizational 

structures and processes. However, it is difficult to 

change once you select a tool. Our study supports easy 

plug&play of tools in a software visualization 

environment. As a case study, three toolchain models 

were transformed into specialized toolchain models 

and output to the dashboard. If the user wants to add a 

new Toolchain Model, the user can only perform the 

model transformation by adding a new model's 

metamodel (XMI file) and model transformation rules 

(ATL file). At this time, the source code of the engine is 

not changed. 

In the future, we will study the plug&play 

environment for Architecture Visualization and 

Automatic Documentation. 

ACKNOWLEDGMENT 

The research was supported by Basic Science Research 
Program through the National Research Foundation of Korea 
(NRF) funded by the Ministry of Education 
(2021R1I1A305040711) and the Basic Science Research 
Program through the National Research Foundation of 
Korea(NRF) funded by the Ministry of 
Education(2021R1I1A1A01044060) and the BK21 FOUR 
(Fostering Outstanding Universities for Research) funded by 
the Ministry of Education (MOE, Korea) (F21YY8102068). 

REFERENCES 

[1] B.K. Park, H.E. Kwon, H.S. Son, Y.S. Kim, S.E. Lee, R.Y.C. Kim, "A 
Case Study on Improving SW Quality through Software Visualization", 
Korean Institute of Information Scientists and Engineers, Vol.41, 
No.11, pp.935-942, Nov 2014. 

[2] NIPA Software Engineering Center, “SW Development Quality 
Management Manual”, Dec 2013. 

[3] W.S. Jang, J.H. Kim, R.Y.C. Kim, "Best Practice on Software 
Traceability Environment based on PaaS Cloud Service", The 
International Journal of Advanced Smart Convergence(IJASC), Vol.9, 
No.4, pp.149-155, 2020. 

[4] Redmine, https://www.redmine.org/, December 2021. 

[5] Jira, https://www.atlassian.com/software/jira, December 2021. 

[6] Jenkins, https://www.jenkins.io/, December 2021. 

[7] Buddy, https://buddy.works/, December 2021. 

[8] J.H. Park, H.S. Son, R..Y.C. Kim, "Developing an Automatic Tool for 
Visualizing Source Code against Bad Smell Patterns", Global 
Conference on Engineering and Applied Science, 2017. 

[9] ATL, https://www.eclipse.org/atl/, December 2021. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


