Integrated Construction with Plug&Play Mechanism
based on Metamodel for Development Process

Woo Sung Jang
Dept. of Software and Communication

So Young Moon
Dept. of Software and Communication

R. Young Chul Kim
Dept. of Software and Communication

Engineering Engineering Engineering
Hongik University Hongik University Hongik University
Seoul, Korea Seoul, Korea Seoul, Korea

uriel200@hongik.ac.kr

Abstract— The software development environment of SMEs
may not mature in the development process. This can lead to
failure in software quality management and asset management.
To solve this problem, we study software visualization. Software
visualization visualizes the software development process and
visualizes the overall workflow within the company. However,
in an existing software visualization environment, once a tool is
selected, it is difficult to change the tool. Software visualization
proposes an easy plug&play environment for process
visualization to solve this problem. This method supports easy
changes in issue tracking systems, continuous integration tools,
and toolchain tools in a visualization environment.

Keywords—Software Visualization, Process Visualization,
Metamodel, Issue Tracking System, Continuous Integration,
Metamodel Transformation

l. INTRODUCTION

Recently, the importance of software quality has
been use excellent
software quality management processes. However,
SMEs struggle with software quality management due
to high costs and a lack of skilled human resources [1,2].

It can be solved in a software visualization [3]. Visualize

increasing. Large companies

business and development processes within the
enterprise using open source tools purchased from the
enterprise. However, it is difficult to change the tool in
an existing visualization environment once the tool is
selected. As a result, the existing visualization
environment is an environment that relies on tools.

We propose an easy plug&play environment for
process visualization among software visualization
environments. It is a method that supports easy
changes in Issue Tracking System (ITS), Continuous
Integration (CI) tools, and Toolchain tools, which are
tools used in process visualization environments. In
addition, when adding a new tool, the user only needs
to add a metamodel file and a transformation rule file
of a new tool to the transformation engine.

The plan of this paper is as follows. Chapter 2
refers to the related research. Chapter 3 refers to the
design of process visualization plug&play environment
based on metamodel. Chapter 4 refers to the case study.
Chapter 5 refers to the conclusions and future studies.

XXX -X-XXXK-XXXX-XIXXI$XXK.00 © 20X X |EEE

whit2@hongik.ac.kr

bob@hongik.ac.kr

Il. RELATED STUDY

A. Software Visualization

Software visualization [3] focuses on visualization
of all tasks related to software, visualization of software
structures, and automatic generation of documents.
This method provides 1) tracking from requirements to
tests. 2) The relationship between requirements, design,
and development source codes is identified during
development. 3) Software quality scores are
quantitatively measured. 4) Development documents
are automatically generated. As a result, software
visualization reduces the burden of human resources
and cost and increases software quality.

The structure of software visualization consists of
Process Visualization, Architecture Visualization, and
Automatic Documentation, as shown in Figure 1.

Process Visualization visualizes the software
development process. First, information from ITS and
information from CI is delivered to Toolchain.
Toolchain delivers the software structure diagram
generated from the received data and the quantitatively
measured software score to the Dashboard. The
Dashboard outputs the received strategic scores and
graphs on the screen. Finally, the Dashboard collects
and expresses various information.

Architecture Visualization visualizes the structure
of software.
included within Process Visualization. It analyzes the
source code, politically measures the analyzed source
code to generate scores, and graphically expresses the

Architecture Visualization may be

structure of the source code.
Automatic Documentation
documents works that have occurred during software

automatically

development.

Each visualization method does not depend on a
specific tool. The software visualization environment
should be established by analyzing and understanding
the culture of target SMEs.

Process Visualization

[
Issue Tracking
System |

Architecture Visualization
Software Work Product J

Toolch New Views
oelchain of Preduct

Architecture Visualization

4

Environment

Dashboard

Continuous

Integration
Environment

Toolchain
Software Work - -
Product Parser, Information View
Semantic Analyzer Base Composer

Automatic Documentation

Document
Template
Translation
Rule

New Views of
Product

Process Asset Library
Software Work . Project Organizational
Product [Management][Support
&c‘txt—][Acquisition]

Develcpment q

Fig. 1. Software Visualization

Software
Document
Product

I1l. DESIGN OF PROCESS VISUALIZATION PLUG&PLAY
ENVIRONMENT BASED ON METAMODEL

A. Design of Process Visualization Plug&Play
Environment
We propose a plugé&play environment for Process
Visualization in software visualization. Figure 2 below
is the design of the Process Visualization plug&play
Environment. Furthermore, it explains plug&play
process in detail of Toolchain.

(a) Process Visualization

Figure 2-(a) shows Process Visualization in
Software Visualization. ITS tools used in practice
include Redmine[4] and Jira[5]. CI tools include Jenkins
[6], Buddy[7], etc. Companies select one of the various
tools and apply it to a visualization environment.
Toolchain tool is one of the components of Architecture
Visualization. The source code structure is analyzed
and quantitatively measured to calculate the software
quality score. The dashboard should collect, calculate,
and output information desired by the administrator
from ITS, CI, Toolchain, etc.

(b) Plugé&Play Environment of Tools for Process
Visualization

Figure 2-(b) describes in detail the automatic
plug&play process of ITS, CI, and Toolchain tools in
Figure 2-(a). Data source is information stored in ITS,
CI, and Toolchain. Data Target is information output on
the dashboard. The Independent CI Model, the
Independent ITS Model, and the Independent
Toolchain Model store information on tools. For
example, the Independent ITS Model consists of the
Redmine Model and the Jira Model. The Redmine
Model stores project information of the Redmine tool,
and the Jira Model stores project information of the Jira
tool. The Specialized CI Model, Specialized ITS Model,
and Specialized Toolchain Model store the integrated

information of each tool. For example, the Specialized
ITS Model can store all information from Independent
ITS Models (Redmine Model, Jira Model, etc.). Adapter
is a rule that automatically transforms the Independent
Model into a Specialized Model. The adapter performs
model transformation by referring to the Data Catalog.
Data Catalog stores Metamodels of Independent
Models and Specialized Models.

(c) Plug&Play Environment for Toolchain

Figure 2-(c) describes the plug&play process of
Toolchain in detail in Figure 2-(b). Bad Smell[8]
measures a bad smell in the source code. If the user uses
Bad Smell Toolchain, Bad Smell Toolchain measures the
bad smell score from the source code stored in the Data
Source and stores it in the Bad Smell Toolchain Model.
Moreover, the stored model is
transformed into a Specialized Toolchain Model by the
Bad Small Transformation Rule. The Data Target loads
the transformed model.

automatically

(d) Bad Smell Metamodel Transformation Rule

Figure 2-(d) is the detailed flow of the Bad Smell
Metamodel Transformation Rule in Figure 2-(c). The
Transformation Engine reads files stored in the Bad
Smell Toolchain Model. And run Bad Smell
Transformation Language. Bad Smell Transformation
Language automatically transforms the Bad Smell
Toolchain Model into a Specialized Toolchain Model by
referring to two metamodel information. Finally, the
Transformation Engine stores the automatically
transformed model as an XML Metadata Interchange

(XMI) file.
B. Bad Smell Toolchain Metamodel

Figure 3 is the Bad Smell Toolchain Metamodel. It
stores the meta-structure of the Bad Small Toolchain
Model. Badsmell includes several BSclass. BSClass
includes several BSmethods. In the source code, class
information is stored in the name of the BSclass. The
bad smell of the class is stored in the type of BSclass. In
the source code, method information is stored in the
name of the BSmethod. The bad smell of the method is
stored in the type of BSmethod.

C. Specialized Toolchain Metamodel

Figure 4 is the Specialized Toolchain Metamodel.
It stores the meta-structure of the Specialized Toolchain
Model. Classes stores class information and method
information in the source code. Connections stores the
relationship between the class and the method in the
source code. Scores store quality scores of classes,
methods, and relationships.

(a) Process Visualization ITS = Issue Tracking System
Cl = Continuous Integration

ITS Architecture Visualization |
N Environment
Software . New Views
________________________________ Cl Woaork ProductH Toolchain Hof Product Dashboard
Environment

(b) Plug&Play Environment of Tools for Process Visualization

lssue Tracking System Continuous Integration Toolchain
(mantis, trac, redmine, (Jenkins, buddy, (coupling, cohesion, Bad
jira, ...) buildbot, ...) Smell, Reusability, ...)

5 sz g | TR ation | Refers Targe
i Etc;umrccedd L - ! ! Meta r'::e |
Confopms to C-:'.f-qr's o | Data CataIOg
- : (Meta models)
Source Transfermati Target
Model on Engine Model ; =
Iilf a
Adapter Specialized
Independent » (Transformati peclalize
Cl Model onRule) | .| CIModel
p——
ata Adapter : -
< Extract Independent N (Transfl::)rmaﬂ Spemahzed Data Target
ource del | d
Ichai ITS Model onRule) |l ITS Mode| (Integrate
(Toolchain, i ; Service)
ITS, CI) —
Independent Adapter Specialized
Toolchain » (Transformati » Toolchain
Madel | onRule) |l Model

(c) Plug&Play Environment for Toolchain

- C++ Quality
Crv Qua_llty Metamodel
Toolchain f .
Model Transformati
on Rule
bili Reusability ialized
Bad Smell, |~ Extract F_{reusiahl ity | Metamodel S_Fecllahlz_e Integrated
Reusability, Or\iocd:Im Transformati Or\iocd:Im Toolchain
C++Quality on Rule Ccore
Bad Smell
_Eéadlsl:m?ll Metamodel
Or\f; Cd alln Transformati
ode on Rule

(d) Bad Smell Metamodel Transformation Rule

Bad Smell Refers to Bad Smell Refers to Specialized
Toolchain - Transformation > Toolchain
Metamaodel Language Metamaodel

- A

Conforms to Conforms to

Executes

Bad Smell Transformation Writes Specialized
Toolchain . Toolchain
Model Engme Model

Fig. 2. Design of Process Visualization Plug&Play Environment

Metamodel

Bad Smell Tolchain

Metamodel components are automatically transformed

executed by
The

Figure 5 shows the Bad Smell Transformation
algorithm

into the Specialized Toolchain Metamodel components.
For example, the src of Badsmell is automatically
transformed to the src of Toolchain. This algorithm is

D. Metamodel Transformation Engine
Transformation Engine.

Language

Badsmell
I [1..#] bsclass
BSclass

src:String
time:String

name:String
type:String

)
&
mc [epowelsy uteya|oo] pazijeads (q) |9powela |y uleyd|oo] |[Pws peg (e)
&
L .. m . m . m m . . o
- uonaauuo)Iehiey poysin1ebiel sse|Da9bie} _ uLISBWeu POUISIN:PUS sse|)pue
o a1025diysuoneay m._oum_uofm_z_ [3i03sssen] POUROIN POUISN RIS SSBID- MBS Buis:adfy =
= uonajuonpoyie iy uonIBUUODSSe|D) A —
m T potaw [,71] T - | poyswsg |
©] powewsq "1 |
z Slgnodpien Buusaweu | | w
= _mc_:m”wab _ _ HIs- |
m al02 SSBD uond>suuod
= E T : BulS:adAL
2 R EH E:I_o werssues (0] [Buns owed
=
N, [ssepse _
I
< R
Wo $31035 sasse|d SuoIIP3UUDD) k
o sau00s :% sassep 1] | suopaauLo3 (1] H
.hr Buligawi
= ﬁ Buuig:aus
e}
L — [1wspeg |
c uISAWI 1
v ,nﬂ_ BuLIS:IS
g = DUHIS00AT
)
ey n uley3|oo|
g <
.- N
uolpauuoyiehiey poy1a1ebiel sse|D10bie) Buiysaweu poYIBApUS S5 puUs
= aioosdiysuonejay 2103SpPoYIa N 21025556 poyaIN POYIBINELS SSED-HES
38 f I I ﬁ U013129UU0DPOYIBIA uoIIBUUODSSE|D)
m ¢ powyaw [_
S 4 1
=
- 3|gnog:anjea -
m = Buns:adA bus:aweu
m o m 21035 sse2 uol128Uu0d
M m o m Euuw_..d_ﬁ =P L :H :ozum::nuT..o_O,
LR o
£|S . [
T
il = =
Mg W [
= %. e $31035 s3s5E|D SUOI1I3UUOD)
wn - v
m ;WJ fe] mm._oH:;, sass :.; w:o:umczou_:%
[553
0 .
™
k=) Buigawny
LL buls:ois
buisedfy
uleyd|oo|

Fig. 5. Transformation Rule between Bad Smell
Toolchain Metamodel and Specialized Toolchain

Metamodel

Fig. 4. Specialized Toolchain Metamodel

E. Bad Smell Toolchain Model

The Bad Smell Toolchain Model stores the bad
odor score of the source code. The model is stored as an
XMI file. Table 1 is an example of the XMI code of the
Bad Smell Toolchain Model.

Table 1. XMI Code of Bad Smell Toolchain Model
XMI Code

<?xml version="1.0" encoding="UTF-8"?>

<bs:badsmell xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:bs="http://tc/1.0" src="1_badsmell jpg" time="2021/11/17-
13:35:33">

</classes>

<scores>

</scores>

</tc:Toolchain>

</class>

<class name="Main">
<method name="Main'"/>
<method name="Main_main"/>

</class>

<score target="//@class.0" type="Large Class" value="" />

<score target="//@class.1" type="Data Class" value="" />

IV. CASE STUDY

Figure 6 shows the implementation results of

<bsclass name="A1" type="">
<bsmethod name="A1" type="Large Class" />
<bsmethod name="A1l_run" type="" />
<bsmethod name="A1l_runA2" type="" />

</bsclass>

plug&play Environment for Toolchain in Process

Visualization plugé&play Environment. Users can select
one of Bad Smell, Reusability, and Quality (C++ Quality)
and upload the source code to measure the source

code's score.

<bsclass name="A2" type="Data Class">
<bsmethod name="A2" type="" />
<bsmethod name="A2_run" type="" />

</bsclass>

<bsclass name="Main" type="">
<bsmethod name="Main" type="" />
<bsmethod name="Main_main" type="" />

</bsclass>

</bs:badsmell>

F. Specialized Toolchain Model

The Specialized Toolchain Model can store
information on all Toolchain models. Table 2 is an
example of the XMI code of the Specialized Toolchain
Model automatically transformed from the XMI code of
Table 1.

Table 2. XMI Code of Specialized Toolchain Model
XMI Code

<tc:Toolchain xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:tc="http://tc/1.0" type="badsmell" src="1_badsmelljpg"
time="2021/11/17-13:35:33">

<connections>

"

<connection xmi:startclass="" endclass=""/>
</connections>
<classes>
<class name="A1">
<method name="A1"/>
<method name="A1_run"/>
<method name="A1_runA2"/>
</class>
<class name="A2">

<method name="A2"/>

<method name="A2_run"/>

Source code

Bad smell Reusability Quality

Fig. 6. Implementation of Plugé&Play Environment
for Toolchain

Figure 7 is the result of measuring the Bad Smell

score of the source code. Bad Smell scores of classes and
methods are displayed on the dashboard.

Bad smell Analysis Result

Bad smell class diagram

Al

)
A}

Bad smell score chart

class name | class badsmell | method name method badsmell

fa1 Large Class A1 _run

AT_runA2
A2
{A2_run
Main

[Main_main

a2 Data Class

Main

Fig. 7. Printed Bad Smell Score in the Dashboard

V. CONCLUSIONS

We propose an environment for free plug&play of
tools in Process Visualization. Software Visualization
uses a variety of tools to visualize organizational
structures and processes. However, it is difficult to
change once you select a tool. Our study supports easy
plug&play of tools in a software visualization
environment. As a case study, three toolchain models
were transformed into specialized toolchain models
and output to the dashboard. If the user wants to add a
new Toolchain Model, the user can only perform the
model transformation by adding a new model's
metamodel (XMI file) and model transformation rules
(ATL file). At this time, the source code of the engine is
not changed.

In the future, we will study the plug&play
environment for Architecture Visualization and
Automatic Documentation.

ACKNOWLEDGMENT

The research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education
(2021R111A305040711) and the Basic Science Research
Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of
Education(2021R111A1A01044060) and the BK21 FOUR
(Fostering Outstanding Universities for Research) funded by
the Ministry of Education (MOE, Korea) (F21YY8102068).

REFERENCES

[1] B.K.Park, H.E. Kwon, H.S. Son, Y.S. Kim, S.E. Lee, R.Y.C. Kim, "A
Case Study on Improving SW Quality through Software Visualization",
Korean Institute of Information Scientists and Engineers, Vol.41,
No.11, pp.935-942, Nov 2014.

[2] NIPA Software Engineering Center, “SW Development Quality
Management Manual”, Dec 2013.

[3] W.S. Jang, J.H. Kim, R.Y.C. Kim, "Best Practice on Software
Traceability Environment based on PaaS Cloud Service", The
International Journal of Advanced Smart Convergence(lJASC), Vol.9,
No.4, pp.149-155, 2020.

[4] Redmine, https://www.redmine.org/, December 2021.

[5] Jira, https://www.atlassian.com/software/jira, December 2021.

[6] Jenkins, https://www.jenkins.io/, December 2021.

[7]1 Buddy, https://buddy.works/, December 2021.

[8] J.H.Park, H.S. Son, R..Y.C. Kim, "Developing an Automatic Tool for
Visualizing Source Code against Bad Smell Patterns”, Global
Conference on Engineering and Applied Science, 2017.

[9] ATL, https://www.eclipse.org/atl/, December 2021.

