
Citation: Jang, W.S.; Kim, R.Y.C.

Automatic Cause–Effect Graph Tool

with Informal Korean Requirement

Specifications. Appl. Sci. 2022, 12,

9310. https://doi.org/10.3390/

app12189310

Academic Editor: Valentino Santucci

Received: 1 August 2022

Accepted: 13 September 2022

Published: 16 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Automatic Cause–Effect Graph Tool with Informal Korean
Requirement Specifications
Woo Sung Jang and R. Young Chul Kim *

Software Engineering Laboratory, Department of Software and Communication Engineering, Hongik University,
Sejong 30016, Korea
* Correspondence: bob@hongik.ac.kr; Tel.: +82-44-860-2477

Abstract: In requirement engineering, it is a very important issue to generate test cases with natural
language automatically. However, no test case tools deal with informal Korean requirement specifica-
tions. In the Korean military software system and airspace industrial area, it is strongly suggested
to automatically make just 30% of all possible test cases with requirements. Unlike the previous
approaches, we adapted Gary E. Mogyorodi’s cause-effect graphing approach and the model-driven
architecture (MDA) approach for automatic test case generation with natural language. In order
to generate test cases with informal Korean requirement specifications, we propose an automatic
cause–effect tool as an intermediate model for (1) simplifying complicated requirements; (2) modeling
the C3Tree (that is, condition and result); (3) identifying incomplete requirements; (4) constructing
causes, effects, and relationships; and (5) integrating with two units (that is, similar causes or effects)
to remove redundant requirements. We evaluated the accuracy of two generated cause–effect graphs
in two ways. With our approach, we can also remove requirement redundancy.

Keywords: Korean natural language analysis; automatic test case generation; model-driven architecture
(MDA); cause–effect graph; C3Tree model; requirement redundancy; requirement similarity

1. Introduction

In the current requirement engineering area, it is very difficult to deal with natural
language requirements. However, stakeholders easily understand requirements that are
written in natural language. This natural language requirement has some problems, such
as inconsistency, inaccuracy, and ambiguity. In order to deal with this problem, some
researchers use formal methods such as Z specification and mathematic logic to convert
natural language requirements. Therefore, we focused on natural language requirements,
especially Korean requirements.

In software organizations, tests are performed using white box and black box ap-
proaches, using various test tools to develop high-quality software and considering test
time and costs [1].

Many researchers researched test case generations via Z specification, UML models
(use case, sequence, object, state, and activity diagram), or code. Few researchers researched
test case generation with natural language. In requirement engineering, until now, no
one has worked on informal Korean requirements because it is very difficult to analyze
Korean sentences semantically. In order to solve these difficulties, we adapted requirement
engineering with a natural language approach. In the near future, we will propose an
automatic test case generation method from informal Korean requirements.

As an intimate model for generating test cases, we proposed a cause–effect graph in
Korean language requirements [2,3] without requirement redundancy.

Therefore, we considered how to deal with removing requirement redundancy on
cause–effect generation as the intimate model for test case generation.

In order to solve requirement redundancy, we adapted requirement engineering with
Jaccard’s similarity mechanism to identify the redundancy of requirement specifications.

Appl. Sci. 2022, 12, 9310. https://doi.org/10.3390/app12189310 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12189310
https://doi.org/10.3390/app12189310
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2147-5713
https://doi.org/10.3390/app12189310
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12189310?type=check_update&version=2

Appl. Sci. 2022, 12, 9310 2 of 16

In this paper, we proposed our cause–effect generation method in informal Korean
requirements specifications with the tool environment for the cause–effect graph genera-
tion method, which improves our automatic approach as follows: (1) simplify informal
Korean requirements, (2) construct a C3Tree model for the simplification process of Korean
sentences [3], (3) identify the similarity between nodes of C3Tree model, and (4) gener-
ate cause–effect graph with C3Tree models. Additionally, for accuracy, we evaluated the
manual and automatic cause–effect graph generations with two examples.

This paper is structured as follows: Section 2 refers to related studies. Section 3 explores
the automatic generation of the cause–effect graph from informal Korean requirements.
Section 4 discusses the evaluation of the Korean requirement analyzer for the cause–effect
graph (called KRA-CE). Finally, the conclusion is presented.

2. Related Studies

In requirement-based testing, most researchers considered a formal language, UML,
or natural language for requirement specification. However, we have difficulty dealing
with natural language-based requirements. Farooq [4] also mentioned natural language
requirements with ambiguity, lack of consistency, inaccuracy, and incomplete information.
Alder [5] focused on a semi-formal mechanism for specifying the English language descrip-
tion of the function. Myers suggests the cause–effect graph in specifying the functional
behavior of a program and formalization based on mathematical logic. We found it unwise
to use this cause–effect graph to represent the large English language descriptions.

The existing tools should manually draw the cause–effect graph without analyzing
requirements. It provides various functions for entering and managing detailed information.
We compared current representative cause–effect graph tools as follows:

Hongik MDA-based embedded software component development methodology
(HiMEM) [6] is a tool that supports the generation of test cases from use case descrip-
tions. We suggest the process of generating test cases from the use case specifications
without requirement specifications, which generates a cause–effect graph from each use
case diagram/sequence diagram. This tool also uses various UML diagrams. Bender-
RBT [7] supports manually drawing the cause–effect graph, which automatically generates
test cases via decision tables. Without requirement specifications, this tool needs to be
manually input. That is, this tool does not analyze its requirements. Berk Bekiroglu’s
cause–effect graph testing tool [8] also automatically generates a test case via a decision
table with a manual cause–effect graph. It provides input and management functions for
node logic, type, test process observation, and true/false state description. This tool does
not analyze its requirements.

Gary E. Mogyorodi noted that 100% coverage could be satisfied with the minimum
number of test cases [9] if a test case is generated with his cause–effect graph at the top
of Figure 1. In the middle of Figure 1, our previous approach generates a cause–effect
graph from each use case and sequence diagram [10,11], which does not use requirement
specifications. At the bottom of Figure 1, we mentioned how to generate a cause–effect
graph with natural language. This method generates a cause–effect graph via a C3Tree
model from informal Korean requirements [3].

Our proposed Korean requirement analyzer for cause–effect graph (KRA-CE) automat-
ically generates cause–effect graph from informal requirements specifications. By providing
web-based UIs, we will potentially work with other web-based tools. Table 1 shows the
difference between KRA-CE and the existing tools. O is Yes. X is no.

Most previous researchers do not work automatically to generate test cases from
requirement specifications written in diverse natural languages. Our research focuses on
automatically generating test cases with Korean requirement specifications. IBM researchers
focus on recognizing and splitting conditional sentences for the automation of business
process management, which identifies the causes and effects of English sentences based on
a deep learning approach [12]. However, they have difficulty analyzing complex sentences.

Appl. Sci. 2022, 12, 9310 3 of 16Appl. Sci. 2022, 12, 9310 3 of 16

Figure 1. Automatic cause–effect design mechanism for test cases.

Our proposed Korean requirement analyzer for cause–effect graph (KRA-CE) auto-

matically generates cause–effect graph from informal requirements specifications. By

providing web-based UIs, we will potentially work with other web-based tools. Table 1

shows the difference between KRA-CE and the existing tools. O is Yes. X is no.

Table 1. The comparison with the existing tools.

HiMEM

[6]

Bender

RBT

[7]

Berk

Bekiroglu’s

Tool [8]

KRA-CE

[3]

Automatic test case generation based on

cause–effect graph .
O O O O

Automatic cause–effect generation with re-

quirements
X X X O

Support for design methods with cause–ef-

fect graph
O O O X

Support various OS environments X X X O

Modify a GUI-based cause–effect graph X O X X

Directly input informal requirement specifi-

cations
X X X O

Simplify complex requirements X X X O

Represent clauses of requirements on nodes X X X O

Extract the incomplete requirements sentence X X X O

Most previous researchers do not work automatically to generate test cases from re-

quirement specifications written in diverse natural languages. Our research focuses on

automatically generating test cases with Korean requirement specifications. IBM research-

ers focus on recognizing and splitting conditional sentences for the automation of busi-

ness process management, which identifies the causes and effects of English sentences

based on a deep learning approach [12]. However, they have difficulty analyzing complex

sentences.

3. Automatic Generation for Cause–Effect Graph from Informal Korean Requirements

3.1. Automatic Generation Process for Cause–Effect Graph from Korean Requirements on Our

Informal Korean-Based Requirement Analyzer

Figure 2 shows the cause–effect graph generation process using informal Korean re-

quirements. The detailed process is as follows.

Figure 1. Automatic cause–effect design mechanism for test cases.

Table 1. The comparison with the existing tools.

HiMEM
[6]

Bender
RBT
[7]

Berk
Bekiroglu’s

Tool [8]

KRA-CE
[3]

Automatic test case generation based on
cause–effect graph O O O O

Automatic cause–effect generation with
requirements X X X O

Support for design methods with
cause–effect graph O O O X

Support various OS environments X X X O

Modify a GUI-based cause–effect graph X O X X

Directly input informal
requirement specifications X X X O

Simplify complex requirements X X X O

Represent clauses of requirements on nodes X X X O

Extract the incomplete
requirements sentence X X X O

3. Automatic Generation for Cause–Effect Graph from Informal Korean Requirements
3.1. Automatic Generation Process for Cause–Effect Graph from Korean Requirements on Our
Informal Korean-Based Requirement Analyzer

Figure 2 shows the cause–effect graph generation process using informal Korean
requirements. The detailed process is as follows.

Step 0. Input Informal Korean Requirements

In order to explain this, we used a simple sample of Korean language requirements in
Table 2.

Table 2. A requirement sentence.

Korean

Appl. Sci. 2022, 12, 9310 4 of 16

Figure 2. The cause–effect graph generation process based on informal Korean requirement specifi-
cations.

Step 0. Input Informal Korean Requirements
In order to explain this, we used a simple sample of Korean language requirements

in Table 2.

Table 2. A requirement sentence.

Korean

A가 입력되고 B가 입력되면 C가 출력된다.

English If the input A is entered and the input B is entered, then the output C is printed.

Step 1. Identify Morpheme
In order to identify morphemes in requirement sentences, we used the open-source

morpheme analyzer MeCab-ko [13]. This analyzer slices a requirement sentence into small
units, that is, morphemes.

English If the input A is entered and the input B is entered, then the output C is printed.

Step 1. Identify Morpheme

In order to identify morphemes in requirement sentences, we used the open-source
morpheme analyzer MeCab-ko [13]. This analyzer slices a requirement sentence into small
units, that is, morphemes.

Appl. Sci. 2022, 12, 9310 4 of 16Appl. Sci. 2022, 12, 9310 4 of 16

Figure 2. The cause–effect graph generation process based on informal Korean requirement specifi-

cations.

Step 0. Input Informal Korean Requirements

In order to explain this, we used a simple sample of Korean language requirements

in Table 2.

Table 2. A requirement sentence.

Korean A가 입력되고 B가 입력되면 C가 출력된다.

English If the input A is entered and the input B is entered, then the output C is printed.

Step 1. Identify Morpheme

In order to identify morphemes in requirement sentences, we used the open-source

morpheme analyzer MeCab-ko [13]. This analyzer slices a requirement sentence into small

units, that is, morphemes.

Figure 3 shows the identified morphemes of the sentence in Table 2.

Figure 2. The cause–effect graph generation process based on informal Korean requirement specifications.

Figure 3 shows the identified morphemes of the sentence in Table 2.
Appl. Sci. 2022, 12, 9310 5 of 16

Figure 3. Analyzed morphemes of the sentence.

Step 2. Simplify Complex Requirement Sentences

In this step, we identified “Cause” and “Effect” nodes and also constructed “Iden-

tity”, “NOT”, “AND”, and “OR” relationships between “Cause” and “Effect” nodes in

natural Korean sentences. Then, it automatically generates a cause–effect graph that con-

tains the “Cause” node in the condition clause and the “Effect” node in the result clause

of a natural language sentence. The “AND” or “OR” relationship exists between a con-

junction clause and the following clause nested from each “Cause” and “Effect” node. It

can also contain the “NOT” relationship in the condition and result clauses.

In order to analyze the morpheme in a sentence, we used a morpheme analyzer to

identify the “Condition”, “Result”, “Conjunction”, and “Following” types of the clauses

in the sentence included with the analyzed morphemes.

In order to explain four cases for identifying the inner structure of a requirement

sentence, we use other samples of requirements as follows:

● Identify the positive and negative condition relationships;

When the tool identifies the sentence’s conditional and the result clauses, the clauses

are classified as positive or negative. For example, the root node contains a complex sen-

tence as the original requirement sentence. A parent node represents a sliced sentence

from the original sentence. The terminal nodes contain the simple sentences in the red

rectangle boxes. This original sentence contains a positive condition relationship. Figure

4 shows the positive conditional relationship of the sentence.

Figure 4. Positive condition relationship.

● Identify the AND or the OR conjunction relationships;

When the tool identifies the conjunction clauses and the following clauses in the sen-

tence, the conjunction clauses are classified as AND type or OR type. This original sen-

tence contains the AND relationship. This shows to simplify a complex sentence with the

AND relationship. Figure 5 shows the AND conjunction relationship of the sentence.

Figure 3. Analyzed morphemes of the sentence.

Step 2. Simplify Complex Requirement Sentences

In this step, we identified “Cause” and “Effect” nodes and also constructed “Identity”,
“NOT”, “AND”, and “OR” relationships between “Cause” and “Effect” nodes in natural
Korean sentences. Then, it automatically generates a cause–effect graph that contains the
“Cause” node in the condition clause and the “Effect” node in the result clause of a natural

Appl. Sci. 2022, 12, 9310 5 of 16

language sentence. The “AND” or “OR” relationship exists between a conjunction clause
and the following clause nested from each “Cause” and “Effect” node. It can also contain
the “NOT” relationship in the condition and result clauses.

In order to analyze the morpheme in a sentence, we used a morpheme analyzer to
identify the “Condition”, “Result”, “Conjunction”, and “Following” types of the clauses in
the sentence included with the analyzed morphemes.

In order to explain four cases for identifying the inner structure of a requirement
sentence, we use other samples of requirements as follows:

• Identify the positive and negative condition relationships;

When the tool identifies the sentence’s conditional and the result clauses, the clauses
are classified as positive or negative. For example, the root node contains a complex
sentence as the original requirement sentence. A parent node represents a sliced sentence
from the original sentence. The terminal nodes contain the simple sentences in the red
rectangle boxes. This original sentence contains a positive condition relationship. Figure 4
shows the positive conditional relationship of the sentence.

Appl. Sci. 2022, 12, 9310 5 of 16

Figure 3. Analyzed morphemes of the sentence.

Step 2. Simplify Complex Requirement Sentences

In this step, we identified “Cause” and “Effect” nodes and also constructed “Iden-

tity”, “NOT”, “AND”, and “OR” relationships between “Cause” and “Effect” nodes in

natural Korean sentences. Then, it automatically generates a cause–effect graph that con-

tains the “Cause” node in the condition clause and the “Effect” node in the result clause

of a natural language sentence. The “AND” or “OR” relationship exists between a con-

junction clause and the following clause nested from each “Cause” and “Effect” node. It

can also contain the “NOT” relationship in the condition and result clauses.

In order to analyze the morpheme in a sentence, we used a morpheme analyzer to

identify the “Condition”, “Result”, “Conjunction”, and “Following” types of the clauses

in the sentence included with the analyzed morphemes.

In order to explain four cases for identifying the inner structure of a requirement

sentence, we use other samples of requirements as follows:

● Identify the positive and negative condition relationships;

When the tool identifies the sentence’s conditional and the result clauses, the clauses

are classified as positive or negative. For example, the root node contains a complex sen-

tence as the original requirement sentence. A parent node represents a sliced sentence

from the original sentence. The terminal nodes contain the simple sentences in the red

rectangle boxes. This original sentence contains a positive condition relationship. Figure

4 shows the positive conditional relationship of the sentence.

Figure 4. Positive condition relationship.

● Identify the AND or the OR conjunction relationships;

When the tool identifies the conjunction clauses and the following clauses in the sen-

tence, the conjunction clauses are classified as AND type or OR type. This original sen-

tence contains the AND relationship. This shows to simplify a complex sentence with the

AND relationship. Figure 5 shows the AND conjunction relationship of the sentence.

Figure 4. Positive condition relationship.

• Identify the AND or the OR conjunction relationships;

When the tool identifies the conjunction clauses and the following clauses in the
sentence, the conjunction clauses are classified as AND type or OR type. This original
sentence contains the AND relationship. This shows to simplify a complex sentence with
the AND relationship. Figure 5 shows the AND conjunction relationship of the sentence.

Appl. Sci. 2022, 12, 9310 6 of 16

Figure 5. AND conjunction relationship.

● Normalize corpus;

The tool changes passive sentences into active sentences and restores the subject from

the sentence. Figure 6 shows an example of changing a passive sentence into an active

sentence.

Figure 6. Corpus normalization.

● Identify the order of different clauses in a complex requirement sentence.

The condition cause and the conjunction cause are not identified in order. Sometimes

we find two causes: (1) the condition cause may be placed first, or (2) sometimes the con-

junction cause may be identified first. We emulated some patterns for the clause identifi-

cation sequence in Table 3. For example, if the sentences in the fourth pattern are defined

in the order of condition cause -> conjunction cause, then we identified the conjunction

cause and the condition causes in this order.

Table 3. Identification order of clause patterns in a complex sentence.

 Formula Order of Identification Formula Order of Identification

1 ∑(𝐶𝐹𝑛)

∞

𝑛=1

 CF identification 4 ∑(𝐶𝑅𝑛 + 𝐶𝐹𝑛)

∞

𝑛=1

CF identification

after CR identification

2 ∑(𝐶𝑅𝑛)

∞

𝑛=1

 CR identification 5 ∑(𝐶𝐹𝑛)

∞

𝑛=1

+ 𝐶𝑅 + ∑(𝐶𝐹𝑛)

∞

𝑛=1

CF identification

after CR identification

3 ∑(𝐶𝐹𝑛 + 𝐶𝑅𝑛)

∞

𝑛=1

CR identification after CF

identification
6 ∑(𝐶𝑅𝑛)

∞

𝑛=1

+ 𝐶𝐹 + ∑(𝐶𝑅𝑛)

∞

𝑛=1

CR identification

after CF identification

CF = conjunction clause and following clause, CR = conditional clause and result clause. n = the

number of clauses

An example of the first pattern in Table 3 is shown in the equation below. If two CFs

are identified, the two clauses have AND|OR relations.

This is the first pattern example:

Figure 5. AND conjunction relationship.

• Normalize corpus;

Appl. Sci. 2022, 12, 9310 6 of 16

The tool changes passive sentences into active sentences and restores the subject
from the sentence. Figure 6 shows an example of changing a passive sentence into an
active sentence.

Appl. Sci. 2022, 12, 9310 6 of 16

Figure 5. AND conjunction relationship.

● Normalize corpus;

The tool changes passive sentences into active sentences and restores the subject from

the sentence. Figure 6 shows an example of changing a passive sentence into an active

sentence.

Figure 6. Corpus normalization.

● Identify the order of different clauses in a complex requirement sentence.

The condition cause and the conjunction cause are not identified in order. Sometimes

we find two causes: (1) the condition cause may be placed first, or (2) sometimes the con-

junction cause may be identified first. We emulated some patterns for the clause identifi-

cation sequence in Table 3. For example, if the sentences in the fourth pattern are defined

in the order of condition cause -> conjunction cause, then we identified the conjunction

cause and the condition causes in this order.

Table 3. Identification order of clause patterns in a complex sentence.

 Formula Order of Identification Formula Order of Identification

1 ∑(𝐶𝐹𝑛)

∞

𝑛=1

 CF identification 4 ∑(𝐶𝑅𝑛 + 𝐶𝐹𝑛)

∞

𝑛=1

CF identification

after CR identification

2 ∑(𝐶𝑅𝑛)

∞

𝑛=1

 CR identification 5 ∑(𝐶𝐹𝑛)

∞

𝑛=1

+ 𝐶𝑅 + ∑(𝐶𝐹𝑛)

∞

𝑛=1

CF identification

after CR identification

3 ∑(𝐶𝐹𝑛 + 𝐶𝑅𝑛)

∞

𝑛=1

CR identification after CF

identification
6 ∑(𝐶𝑅𝑛)

∞

𝑛=1

+ 𝐶𝐹 + ∑(𝐶𝑅𝑛)

∞

𝑛=1

CR identification

after CF identification

CF = conjunction clause and following clause, CR = conditional clause and result clause. n = the

number of clauses

An example of the first pattern in Table 3 is shown in the equation below. If two CFs

are identified, the two clauses have AND|OR relations.

This is the first pattern example:

Figure 6. Corpus normalization.

• Identify the order of different clauses in a complex requirement sentence.

The condition cause and the conjunction cause are not identified in order. Sometimes
we find two causes: (1) the condition cause may be placed first, or (2) sometimes the
conjunction cause may be identified first. We emulated some patterns for the clause
identification sequence in Table 3. For example, if the sentences in the fourth pattern
are defined in the order of condition cause -> conjunction cause, then we identified the
conjunction cause and the condition causes in this order.

Table 3. Identification order of clause patterns in a complex sentence.

Formula Order of Identification Formula Order of Identification

1
∞
∑

n=1
(CFn) CF identification 4

∞
∑

n=1
(CRn + CFn)

CF identification
after CR identification

2
∞
∑

n=1
(CRn) CR identification 5

∞
∑

n=1
(CFn) + CR +

∞
∑

n=1
(CFn)

CF identification
after CR identification

3
∞
∑

n=1
(CFn + CRn)

CR identification after
CF identification 6

∞
∑

n=1
(CRn) + CF +

∞
∑

n=1
(CRn)

CR identification
after CF identification

CF = conjunction clause and following clause, CR = conditional clause and result clause. n = the number of clauses.

An example of the first pattern in Table 3 is shown in the equation below. If two CFs
are identified, the two clauses have AND|OR relations.

This is the first pattern example:

2

∑
n=1

(CFn) = CF1 + CF2 = CF1 {AND|OR|NOT} CF2 (1)

With KRA-CE, we sliced a complex sentence into morphemes and identified the
connective ending (EC) in morphemes. In Korean, the EC is a morpheme that separates
clauses. The sentence is sliced into three clauses, C1, C2, and C3. Since this sentence
corresponds to the third pattern in Table 3, and it is identified in the order of C1->C2->C3.
Figure 7 shows the identification of three simple clauses (the order of C1->C2->C3) in a
complex sentence.

Step 3. Generate Condition/Conjunction/Clause Tree (C3Tree) Model

The KRA-CE tool constructs the C3Tree model as an intermediate model between a
complex sentence and simplified sentences, that is, the process of slicing complex sentences
into simplified sentences similar to a tree style. A <<Sentence>> node contains a complex
original sentence. The <<Complex-Clause>> node includes several <<Cause>> nodes,
which contain simplified sentences.

Appl. Sci. 2022, 12, 9310 7 of 16

Appl. Sci. 2022, 12, 9310 7 of 16

∑(𝑪𝑭𝒏)

2

𝒏=𝟏

= 𝑪𝑭𝟏 + 𝑪𝑭𝟐 = 𝑪𝑭𝟏 {AND|OR|NOT} 𝑪𝑭𝟐 (1)

With KRA-CE, we sliced a complex sentence into morphemes and identified the con-

nective ending (EC) in morphemes. In Korean, the EC is a morpheme that separates

clauses. The sentence is sliced into three clauses, C1, C2, and C3. Since this sentence cor-

responds to the third pattern in Table 3, and it is identified in the order of C1->C2->C3.

Figure 7 shows the identification of three simple clauses (the order of C1->C2->C3) in a

complex sentence.

Figure 7. Three clauses’ Identification (this order of C1->C2->C3) in the sentence.

Step 3. Generate Condition/Conjunction/Clause Tree (C3Tree) Model

The KRA-CE tool constructs the C3Tree model as an intermediate model between a

complex sentence and simplified sentences, that is, the process of slicing complex sen-

tences into simplified sentences similar to a tree style. A <<Sentence>> node contains a

complex original sentence. The <<Complex-Clause>> node includes several <<Cause>>

nodes, which contain simplified sentences.

A root node represents an original requirement sentence. The parent nodes are sliced

with the root node, and they have child nodes. A child node is a sliced sentence, and a

single parent node can have multiple child nodes. The left child node of the condition-

positive relationship (COND-P) is the cause sentence, the right child node of COND-P is

the result sentence, the left node of the condition-negative relationship (COND-N) is the

cause sentence, and the node to the right of COND-N is the negative result sentence. If all

child nodes of the Conjunction-AND Relationship (CONJ-AND) are valid, then the parent

node is valid. If any of the child nodes of the Conjunction-OR Relationship (CONJ-OR)

are true, then the parent node is valid [3].

The top node is an original sentence as the root node. The bottom nodes are the sim-

plified sentences as the leaf or terminal nodes. In order to explain it well, we added Eng-

lish comments on the node. Figure 8 shows a C3Tree model for slicing a complex sentence

into simplified sentences in a tree style.

Figure 8. C3Tree model for representing sample sentences.

Figure 7. Three clauses’ Identification (this order of C1->C2->C3) in the sentence.

A root node represents an original requirement sentence. The parent nodes are sliced
with the root node, and they have child nodes. A child node is a sliced sentence, and a
single parent node can have multiple child nodes. The left child node of the condition-
positive relationship (COND-P) is the cause sentence, the right child node of COND-P is
the result sentence, the left node of the condition-negative relationship (COND-N) is the
cause sentence, and the node to the right of COND-N is the negative result sentence. If all
child nodes of the Conjunction-AND Relationship (CONJ-AND) are valid, then the parent
node is valid. If any of the child nodes of the Conjunction-OR Relationship (CONJ-OR) are
true, then the parent node is valid [3].

The top node is an original sentence as the root node. The bottom nodes are the
simplified sentences as the leaf or terminal nodes. In order to explain it well, we added
English comments on the node. Figure 8 shows a C3Tree model for slicing a complex
sentence into simplified sentences in a tree style.

Appl. Sci. 2022, 12, 9310 7 of 16

∑(𝑪𝑭𝒏)

2

𝒏=𝟏

= 𝑪𝑭𝟏 + 𝑪𝑭𝟐 = 𝑪𝑭𝟏 {AND|OR|NOT} 𝑪𝑭𝟐 (1)

With KRA-CE, we sliced a complex sentence into morphemes and identified the con-

nective ending (EC) in morphemes. In Korean, the EC is a morpheme that separates

clauses. The sentence is sliced into three clauses, C1, C2, and C3. Since this sentence cor-

responds to the third pattern in Table 3, and it is identified in the order of C1->C2->C3.

Figure 7 shows the identification of three simple clauses (the order of C1->C2->C3) in a

complex sentence.

Figure 7. Three clauses’ Identification (this order of C1->C2->C3) in the sentence.

Step 3. Generate Condition/Conjunction/Clause Tree (C3Tree) Model

The KRA-CE tool constructs the C3Tree model as an intermediate model between a

complex sentence and simplified sentences, that is, the process of slicing complex sen-

tences into simplified sentences similar to a tree style. A <<Sentence>> node contains a

complex original sentence. The <<Complex-Clause>> node includes several <<Cause>>

nodes, which contain simplified sentences.

A root node represents an original requirement sentence. The parent nodes are sliced

with the root node, and they have child nodes. A child node is a sliced sentence, and a

single parent node can have multiple child nodes. The left child node of the condition-

positive relationship (COND-P) is the cause sentence, the right child node of COND-P is

the result sentence, the left node of the condition-negative relationship (COND-N) is the

cause sentence, and the node to the right of COND-N is the negative result sentence. If all

child nodes of the Conjunction-AND Relationship (CONJ-AND) are valid, then the parent

node is valid. If any of the child nodes of the Conjunction-OR Relationship (CONJ-OR)

are true, then the parent node is valid [3].

The top node is an original sentence as the root node. The bottom nodes are the sim-

plified sentences as the leaf or terminal nodes. In order to explain it well, we added Eng-

lish comments on the node. Figure 8 shows a C3Tree model for slicing a complex sentence

into simplified sentences in a tree style.

Figure 8. C3Tree model for representing sample sentences. Figure 8. C3Tree model for representing sample sentences.

Step 4. Unify with Two Similar Nodes in C3Tree Models

Our previous method [3] generated the cause–effect graph via the C3Tree model from
the Korean requirements. The problem does not consider redundant requirements, which
means keeping redundant test cases. In order to solve this problem, we identified the
similarities of nodes in the C3Tree model with the Jaccard mechanism [14] and then unified
two similar nodes into one node.

In Step 4 of Figure 2, we mentioned the detailed process as follows: (1) identify
the leaf nodes (that is, simple sentences) in the C3Tree model of a requirement sentence;
(2) define all possible pairs of leaf nodes, that is, pair combinations of all identified nodes;
(3) measure the Jaccard similarity of all possible pairs (the J means Jaccard similarity);
(4) measure the pair set with theta roles if the similarity is greater than or equal to 0.8 (the T
means theta role); (5) unify similar nodes into one if all theta roles between nodes are the
same. Therefore, we removed the redundant nodes. As a result, all C3Tree models can be
converted into one unified C3Tree model.

Appl. Sci. 2022, 12, 9310 8 of 16

Figure 9 is a simple example of Step 4 in Figure 2. We demonstrated generating two
C3Tree models from two Korean requirements and then compared the Jaccard similarity
and theta role of leaf nodes in two C3Tree models. A detailed description is given below.

Appl. Sci. 2022, 12, 9310 8 of 16

Step 4. Unify with Two Similar Nodes in C3Tree Models

Our previous method [3] generated the cause–effect graph via the C3Tree model

from the Korean requirements. The problem does not consider redundant requirements,

which means keeping redundant test cases. In order to solve this problem, we identified

the similarities of nodes in the C3Tree model with the Jaccard mechanism [14] and then

unified two similar nodes into one node.

In Step 4 of Figure 2, we mentioned the detailed process as follows: (1) identify the

leaf nodes (that is, simple sentences) in the C3Tree model of a requirement sentence; (2)

define all possible pairs of leaf nodes, that is, pair combinations of all identified nodes; (3)

measure the Jaccard similarity of all possible pairs (the J means Jaccard similarity); (4)

measure the pair set with theta roles if the similarity is greater than or equal to 0.8 (the T

means theta role); (5) unify similar nodes into one if all theta roles between nodes are the

same. Therefore, we removed the redundant nodes. As a result, all C3Tree models can be

converted into one unified C3Tree model.

Figure 9 is a simple example of Step 4 in Figure 2. We demonstrated generating two

C3Tree models from two Korean requirements and then compared the Jaccard similarity

and theta role of leaf nodes in two C3Tree models. A detailed description is given below.

Figure 9. The similar identification with the Jaccard similarity and theta-role.

· Similarity Measurement with Jaccard mechanisms

We adapted requirement engineering with the similarity mechanism to identify the

redundancy of requirement specifications.

Figure 9. The similar identification with the Jaccard similarity and theta-role.

· Similarity Measurement with Jaccard mechanisms
We adapted requirement engineering with the similarity mechanism to identify the

redundancy of requirement specifications.
For our adaption, we may assign that A in the original formula may be a set of

morphemes within an informal Korean requirement sentence, R1, and B may also be a set
of morphemes within another requirement sentence, R2.

This is the original Jaccard similarity formula:

J(A, B) =
A ∩ B
A ∪ B

=
A ∩ B

|A|+ |B| − |A ∩ B| (2)

In requirement engineering, we measured the similarity between two pair sets, that is,
the sets of the morphemes of the <<Clause>> nodes in the C3Tree models of requirement
sentences R1 and R2. The similarity measurement process is as follows: (1) identify the
morphemes of all <<Clause>> nodes and (2) compare all <<Clause>> node morphemes. In
this case, the case marker morpheme (only Korean morpheme) was removed because it
does not have any meaning in our approach.

Appl. Sci. 2022, 12, 9310 9 of 16

In the Jaccard Similarity part of Figure 9, we identified similar nodes in two C3Tree
models. The <<Clause>> nodes in the red boxes have three different morphemes, and
two morphemes are the same. However, the three morphemes have no direct meaning.
For example, the JKS and JKO are case marker morphemes. In Korean, the subject and
object are not determined by the position in the sentence. The subject is a noun modified by
JKS.KS. A noun modified by JKO is an object. The JKS and JKO determine the role of nouns
and have no direct meaning. The XSV determines the active/manual role of the verb, and
the EF means the end of a sentence. As a result, the morphemes with no direct meaning are
excluded from the measurement item.

Our tool calculates this score of similarity. If this score is more than 0.8, we decide to
have two causes/effects similar, then unify them.

Figure 10 shows the union, intersection, and similarity of Figure 9.

Appl. Sci. 2022, 12, 9310 9 of 16

For our adaption, we may assign that A in the original formula may be a set of mor-

phemes within an informal Korean requirement sentence, R1, and B may also be a set of

morphemes within another requirement sentence, R2.

This is the original Jaccard similarity formula:

𝐽(𝐴, 𝐵) =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
=

𝐴 ∩ 𝐵

|𝐴| + |𝐵| − |𝐴 ∩ 𝐵|
 (2)

In requirement engineering, we measured the similarity between two pair sets, that

is, the sets of the morphemes of the <<Clause>> nodes in the C3Tree models of require-

ment sentences R1 and R2. The similarity measurement process is as follows: (1) identify

the morphemes of all <<Clause>> nodes and (2) compare all <<Clause>> node morphemes.

In this case, the case marker morpheme (only Korean morpheme) was removed because

it does not have any meaning in our approach.

In the Jaccard Similarity part of Figure 9, we identified similar nodes in two C3Tree

models. The <<Clause>> nodes in the red boxes have three different morphemes, and two

morphemes are the same. However, the three morphemes have no direct meaning. For

example, the JKS and JKO are case marker morphemes. In Korean, the subject and object

are not determined by the position in the sentence. The subject is a noun modified by

JKS.KS. A noun modified by JKO is an object. The JKS and JKO determine the role of

nouns and have no direct meaning. The XSV determines the active/manual role of the

verb, and the EF means the end of a sentence. As a result, the morphemes with no direct

meaning are excluded from the measurement item.

Our tool calculates this score of similarity. If this score is more than 0.8, we decide to

have two causes/effects similar, then unify them.

Figure 10 shows the union, intersection, and similarity of Figure 9.

Figure 10. Union and intersection of morphemes.

· Theta-role comparison

Even if the score of the Jaccard similarity is high, the meaning between sentences may

be different. In order to solve this problem, we identified and combined clauses with over-

lapping meanings using the theta-role [15]. A theta-role refers to a participant’s role (or

semantic argument) in a semantic structure related to a predicate. The predicate may be a

verb, an adjective, or a noun. Table 4 shows the list of theta-roles [15]. It is a part of the

theta-roles in Sejong’s Electronic Dictionary.

Analyze theta-role in Electronics and Telecommunications Research Institute(ETRI)’s

Exobrain library [15]. The theta role part in Figure 9 compares the theta role of leaf nodes

in the C3Tree model with a Jaccard similarity of 0.8 or higher. When comparing the pair

combination of two leaf nodes, two nodes have the same theta role.

Figure 10. Union and intersection of morphemes.

· Theta-role comparison
Even if the score of the Jaccard similarity is high, the meaning between sentences

may be different. In order to solve this problem, we identified and combined clauses with
overlapping meanings using the theta-role [15]. A theta-role refers to a participant’s role
(or semantic argument) in a semantic structure related to a predicate. The predicate may be
a verb, an adjective, or a noun. Table 4 shows the list of theta-roles [15]. It is a part of the
theta-roles in Sejong’s Electronic Dictionary.

Table 4. Parts of Theta-role in Sejong’s Electronic Dictionary [15].

Theta-Role Description

Agent An object that causes an action with the intention expressed by the predicate.

Experience The entity that recognizes an action or a state, not causing action with the intention.

Patient The person or thing that undergoes the action.

Theme An object that is the most central in the theta-role discussion. This is influenced by actions or processes, not
controlling them.

Goal The entity on activity that is directed

Source The entity that starts a change when a predicate includes the identity of a person, a quality of a thing.

Instrument The entity indicates either a physical or abstract starting point when a verb includes a meaning related to
moving or changing.

Analyze theta-role in Electronics and Telecommunications Research Institute(ETRI)’s
Exobrain library [15]. The theta role part in Figure 9 compares the theta role of leaf nodes
in the C3Tree model with a Jaccard similarity of 0.8 or higher. When comparing the pair
combination of two leaf nodes, two nodes have the same theta role.

Step 5. Transform C3Tree Model to Cause–Effect Graph

Appl. Sci. 2022, 12, 9310 10 of 16

The C3Tree model is transformed into a cause–effect graph. The C3Tree model’s
terminal nodes are transformed into the cause–effect graph’s nodes. The link of the C3Tree
model is transformed into the relation of the cause–effect graph.

Figure 11 shows two Korean requirements to generate a cause–effect graph. The
C3Tree model has six leaf nodes and two similar nodes. Therefore we unified two similar
leaf nodes into one node. As a result, the five nodes of cause–effect graph are generated.

Appl. Sci. 2022, 12, 9310 10 of 16

Table 4. Parts of Theta-role in Sejong’s Electronic Dictionary [15].

Theta-Role Description

Agent An object that causes an action with the intention expressed by the predicate.

Experience The entity that recognizes an action or a state, not causing action with the intention.

Patient The person or thing that undergoes the action.

Theme
An object that is the most central in the theta-role discussion. This is influenced by actions or processes, not

controlling them.

Goal The entity on activity that is directed

Source The entity that starts a change when a predicate includes the identity of a person, a quality of a thing.

Instrument
The entity indicates either a physical or abstract starting point when a verb includes a meaning related to

moving or changing.

Step 5. Transform C3Tree Model to Cause–Effect Graph

The C3Tree model is transformed into a cause–effect graph. The C3Tree model’s ter-

minal nodes are transformed into the cause–effect graph’s nodes. The link of the C3Tree

model is transformed into the relation of the cause–effect graph.

Figure 11 shows two Korean requirements to generate a cause–effect graph. The

C3Tree model has six leaf nodes and two similar nodes. Therefore we unified two similar

leaf nodes into one node. As a result, the five nodes of cause–effect graph are generated.

Figure 11. Cause–effect graph generation from C3Tree model of two requirement sentences R1 and

R2.
Figure 11. Cause–effect graph generation from C3Tree model of two requirement sentences R1
and R2.

3.2. A Cae Study with Our KRA-CE Analyzer

Figure 12 shows the implementation environment of KRA-CE. We used the Ubuntu
Operation system and Mecab-ko or KoNLP as Korean morpheme analyzers. Chart.js is
a web-based graphing library, Apache PHP is a web server, Python is a development
environment for executing a morpheme analyzer, and JDK is a development environment
for the execution of the toolchain. The KRA-CE is developed using Java.

Appl. Sci. 2022, 12, 9310 11 of 16

Appl. Sci. 2022, 12, 9310 11 of 16

3.2. A Cae Study with Our KRA-CE Analyzer

Figure 12 shows the implementation environment of KRA-CE. We used the Ubuntu

Operation system and Mecab-ko or KoNLP as Korean morpheme analyzers. Chart.js is a

web-based graphing library, Apache PHP is a web server, Python is a development envi-

ronment for executing a morpheme analyzer, and JDK is a development environment for

the execution of the toolchain. The KRA-CE is developed using Java.

Figure 12. The Environment of KRA-CE.

The executing procedure of our KRA-CE tool is as follows:

① Identification of morpheme: identify morphemes in sentences;

② Simplification of complex requirements: (1) slice the requirement sentence into clause

units and (2) identify a conditional clause, a result clause, and a conjunction clause

with AND role/OR role [16,17]; (3) convert the sliced clauses into simplified sen-

tences; (4) convert a passive sentence into an active sentence [18,19];

③ Generation of C3Tree model: simplify complex sentences;

④ Unification of similar nodes in the C3Tree model: (1) identify similar nodes among

terminal nodes of all C3Tree models and (2) combine similar nodes into one;

⑤ Transformation C3Tree model to cause–effect graph: (1) transform the <<Clause>> of

the C3Tree model into a node of the cause–effect graph and (2) transform the link of

the C3Tree model into the relationship of the cause–effect graph;

⑥ In the near future, we will work on the KRA-Test Case Generation as follows: (1)

transform the cause–effect graph to the decision table; (2) transform the decision table

to the test case; (3) transform the test case to the test script.

Figure 13 shows input requirements on the UI menu. The black box at the top of

Figure 13 is the program’s menu. The Save button saves the entered requirement sentence.

The Reset button restores the modified requirements to the original requirements.

Figure 13. Input Korean requirements on UI menu.

Figure 14 shows the generated C3Tree model as the output of ①, ②, ③, and ④ in

Figure 12. The model is saved as a file consisting of XMI code. The saved XMI code is

drawn on the screen through Chart.js. The model’s XMI code is output in the middle of

the screen in Figure 14. If the XMI code is changed, the structure of the model is changed.

Figure 12. The Environment of KRA-CE.

The executing procedure of our KRA-CE tool is as follows:
1© Identification of morpheme: identify morphemes in sentences;
2© Simplification of complex requirements: (1) slice the requirement sentence into clause

units and (2) identify a conditional clause, a result clause, and a conjunction clause
with AND role/OR role [16,17]; (3) convert the sliced clauses into simplified sentences;
(4) convert a passive sentence into an active sentence [18,19];

3© Generation of C3Tree model: simplify complex sentences;
4© Unification of similar nodes in the C3Tree model: (1) identify similar nodes among

terminal nodes of all C3Tree models and (2) combine similar nodes into one;
5© Transformation C3Tree model to cause–effect graph: (1) transform the <<Clause>> of

the C3Tree model into a node of the cause–effect graph and (2) transform the link of
the C3Tree model into the relationship of the cause–effect graph;

6© In the near future, we will work on the KRA-Test Case Generation as follows: (1) trans-
form the cause–effect graph to the decision table; (2) transform the decision table to
the test case; (3) transform the test case to the test script.

Figure 13 shows input requirements on the UI menu. The black box at the top of
Figure 13 is the program’s menu. The Save button saves the entered requirement sentence.
The Reset button restores the modified requirements to the original requirements.

Appl. Sci. 2022, 12, 9310 11 of 16

3.2. A Cae Study with Our KRA-CE Analyzer

Figure 12 shows the implementation environment of KRA-CE. We used the Ubuntu

Operation system and Mecab-ko or KoNLP as Korean morpheme analyzers. Chart.js is a

web-based graphing library, Apache PHP is a web server, Python is a development envi-

ronment for executing a morpheme analyzer, and JDK is a development environment for

the execution of the toolchain. The KRA-CE is developed using Java.

Figure 12. The Environment of KRA-CE.

The executing procedure of our KRA-CE tool is as follows:

① Identification of morpheme: identify morphemes in sentences;

② Simplification of complex requirements: (1) slice the requirement sentence into clause

units and (2) identify a conditional clause, a result clause, and a conjunction clause

with AND role/OR role [16,17]; (3) convert the sliced clauses into simplified sen-

tences; (4) convert a passive sentence into an active sentence [18,19];

③ Generation of C3Tree model: simplify complex sentences;

④ Unification of similar nodes in the C3Tree model: (1) identify similar nodes among

terminal nodes of all C3Tree models and (2) combine similar nodes into one;

⑤ Transformation C3Tree model to cause–effect graph: (1) transform the <<Clause>> of

the C3Tree model into a node of the cause–effect graph and (2) transform the link of

the C3Tree model into the relationship of the cause–effect graph;

⑥ In the near future, we will work on the KRA-Test Case Generation as follows: (1)

transform the cause–effect graph to the decision table; (2) transform the decision table

to the test case; (3) transform the test case to the test script.

Figure 13 shows input requirements on the UI menu. The black box at the top of

Figure 13 is the program’s menu. The Save button saves the entered requirement sentence.

The Reset button restores the modified requirements to the original requirements.

Figure 13. Input Korean requirements on UI menu.

Figure 14 shows the generated C3Tree model as the output of ①, ②, ③, and ④ in

Figure 12. The model is saved as a file consisting of XMI code. The saved XMI code is

drawn on the screen through Chart.js. The model’s XMI code is output in the middle of

the screen in Figure 14. If the XMI code is changed, the structure of the model is changed.

Figure 13. Input Korean requirements on UI menu.

Figure 14 shows the generated C3Tree model as the output of 1©, 2©, 3©, and 4© in
Figure 12. The model is saved as a file consisting of XMI code. The saved XMI code is
drawn on the screen through Chart.js. The model’s XMI code is output in the middle of the
screen in Figure 14. If the XMI code is changed, the structure of the model is changed.

Figure 15 is the generated cause–effect graph as the output of 5© in Figure 12. It is
stored as XMI code similar to the C3Tree model. If the XMI code is changed, the structure
of the model is changed.

Appl. Sci. 2022, 12, 9310 12 of 16Appl. Sci. 2022, 12, 9310 12 of 16

Figure 14. The automatic C3Tree model generation.

Figure 15 is the generated cause–effect graph as the output of ⑤ in Figure 12. It is

stored as XMI code similar to the C3Tree model. If the XMI code is changed, the structure

of the model is changed.

Figure 15. The automatic cause–effect graph generation.

4. Discussion

In order to prove the correctness of our automatic cause–effect generation, we eval-

uated two cases with five requirements. One manually makes the cause–effect graph. An-

other automatically generates the cause–effect graph with the KRA-CE. Table 5 is a list of

example requirements.

Figure 14. The automatic C3Tree model generation.

Appl. Sci. 2022, 12, 9310 12 of 16

Figure 14. The automatic C3Tree model generation.

Figure 15 is the generated cause–effect graph as the output of ⑤ in Figure 12. It is

stored as XMI code similar to the C3Tree model. If the XMI code is changed, the structure

of the model is changed.

Figure 15. The automatic cause–effect graph generation.

4. Discussion

In order to prove the correctness of our automatic cause–effect generation, we eval-

uated two cases with five requirements. One manually makes the cause–effect graph. An-

other automatically generates the cause–effect graph with the KRA-CE. Table 5 is a list of

example requirements.

Figure 15. The automatic cause–effect graph generation.

4. Discussion

In order to prove the correctness of our automatic cause–effect generation, we eval-
uated two cases with five requirements. One manually makes the cause–effect graph.
Another automatically generates the cause–effect graph with the KRA-CE. Table 5 is a list
of example requirements.

Appl. Sci. 2022, 12, 9310 13 of 16

Table 5. The Korean Requirements List.

Language Requirements

Korean

Appl. Sci. 2022, 12, 9310 13 of 16

Table 5. The Korean Requirements List.

Language Requirements

Korean

1. 사용자가 시스템 시작 시(N1,C1) 로그인 옵션이 수동 로그인으로 적용되어(N2,C2) 있으면 프로그램은 아이디/비밀번호를
묻는 창을 연다(N3,E1).
2. 아이디/비밀번호를 묻는 창이 열리면(N3,C3) 사용자는 아이디와 비밀번호를 입력할 수 있다(N4,E2).
3. 사용자가 아이디와 비밀번호를 입력하면(N4,C4) 프로그램은 서버를 통해 아이디/비밀번호를 검증한다(N5,E3).
4. 사용자가 로그인 옵션 미선택 시(N6,C5) 자동 로그인 옵션이 선택된다(N7,E4).
5. 자동 로그인 옵션 선택 시(N7,C6) 옵션 정보가 쿠키 파일로 저장된다(N8,E5).

English

1. When the user starts the system (N1,C1), if the login option is set to manual login (N2,C2), it opens a window asking for
ID/password (N3,E1).
2. When a window asking for an ID/password opens(N3,C3), the user can enter the ID and password (N4,E2).
3. When the user enters the ID and password (N4,C4), the program verifies the ID/password through the server (N5,E3).
4. If the user does not select a login option (N6,C5), the automatic login option is selected (N7,E4).
5. When selecting the automatic login option (N7,C6), options information is stored as a cookie file (N8,E5).

C = Cause, E = Effect, N = Node.

At the top of Figure 16, we show the comparison of the cause–effect graph drawn by
humans and KRA-CE. Eight nodes are identified and connected. Two flows are expressed
and include the AND. On the right of Figure 16, we show cause–effect graph drawn by
KRA-CE. This has the same results as the left graph.

In other cases, we use the sample requirement and cause–effect diagram in Myers’s
paper [2]. Table 6 is an example of the requirements mentioned by Glenford J. Myers [2].
On the left side of Figure 17, we show a cause–effect graph of requirements of the require-
ments written by Myers in Table 6. On the right side of Figure 17, we show the cause–
effect graph of KRA-CE automatically generated from Myers’s requirements in Table 6.

Table 6. One example of requirements by Myers [2].

 File Management
 If the character of the first column is “A” or “B” and the second column is a num-
ber, then the file is considered updated;
 If the first character is “A” or “B”, print message X12;
 If the second column is a number, print message X13.

In Figure 17, the two cause–effect graphs have similar structures. In the case of Myers,

the cause was defined as A1, A2, and A3, and the effect was defined as M1, M2, and M3.
Additionally, an E intermediate node was added to connect A1 and A2 in an OR relation-
ship. In the case of KRA-CE, A1 and A2 were expressed as one node. The rest of the nodes
have the same structure.

English

1. When the user starts the system (N1,C1), if the login option is set to manual login (N2,C2), it opens a window
asking for ID/password (N3,E1).
2. When a window asking for an ID/password opens(N3,C3), the user can enter the ID and password (N4,E2).
3. When the user enters the ID and password (N4,C4), the program verifies the ID/password through the
server (N5,E3).
4. If the user does not select a login option (N6,C5), the automatic login option is selected (N7,E4).
5. When selecting the automatic login option (N7,C6), options information is stored as a cookie file (N8,E5).

C = Cause, E = Effect, N = Node.

At the top of Figure 16, we show the comparison of the cause–effect graph drawn by
humans and KRA-CE. Eight nodes are identified and connected. Two flows are expressed
and include the AND. On the right of Figure 16, we show cause–effect graph drawn by
KRA-CE. This has the same results as the left graph.

In other cases, we use the sample requirement and cause–effect diagram in Myers’s
paper [2]. Table 6 is an example of the requirements mentioned by Glenford J. Myers [2]. On
the left side of Figure 17, we show a cause–effect graph of requirements of the requirements
written by Myers in Table 6. On the right side of Figure 17, we show the cause–effect graph
of KRA-CE automatically generated from Myers’s requirements in Table 6.

Table 6. One example of requirements by Myers [2].

Appl. Sci. 2022, 12, 9310 13 of 16

Table 5. The Korean Requirements List.

Language Requirements

Korean

1. 사용자가 시스템 시작 시(N1,C1) 로그인 옵션이 수동 로그인으로 적용되어(N2,C2) 있으면 프로그램은 아이디/비밀번호를
묻는 창을 연다(N3,E1).
2. 아이디/비밀번호를 묻는 창이 열리면(N3,C3) 사용자는 아이디와 비밀번호를 입력할 수 있다(N4,E2).
3. 사용자가 아이디와 비밀번호를 입력하면(N4,C4) 프로그램은 서버를 통해 아이디/비밀번호를 검증한다(N5,E3).
4. 사용자가 로그인 옵션 미선택 시(N6,C5) 자동 로그인 옵션이 선택된다(N7,E4).
5. 자동 로그인 옵션 선택 시(N7,C6) 옵션 정보가 쿠키 파일로 저장된다(N8,E5).

English

1. When the user starts the system (N1,C1), if the login option is set to manual login (N2,C2), it opens a window asking for
ID/password (N3,E1).
2. When a window asking for an ID/password opens(N3,C3), the user can enter the ID and password (N4,E2).
3. When the user enters the ID and password (N4,C4), the program verifies the ID/password through the server (N5,E3).
4. If the user does not select a login option (N6,C5), the automatic login option is selected (N7,E4).
5. When selecting the automatic login option (N7,C6), options information is stored as a cookie file (N8,E5).

C = Cause, E = Effect, N = Node.

At the top of Figure 16, we show the comparison of the cause–effect graph drawn by
humans and KRA-CE. Eight nodes are identified and connected. Two flows are expressed
and include the AND. On the right of Figure 16, we show cause–effect graph drawn by
KRA-CE. This has the same results as the left graph.

In other cases, we use the sample requirement and cause–effect diagram in Myers’s
paper [2]. Table 6 is an example of the requirements mentioned by Glenford J. Myers [2].
On the left side of Figure 17, we show a cause–effect graph of requirements of the require-
ments written by Myers in Table 6. On the right side of Figure 17, we show the cause–
effect graph of KRA-CE automatically generated from Myers’s requirements in Table 6.

Table 6. One example of requirements by Myers [2].

 File Management
 If the character of the first column is “A” or “B” and the second column is a num-
ber, then the file is considered updated;
 If the first character is “A” or “B”, print message X12;
 If the second column is a number, print message X13.

In Figure 17, the two cause–effect graphs have similar structures. In the case of Myers,

the cause was defined as A1, A2, and A3, and the effect was defined as M1, M2, and M3.
Additionally, an E intermediate node was added to connect A1 and A2 in an OR relation-
ship. In the case of KRA-CE, A1 and A2 were expressed as one node. The rest of the nodes
have the same structure.

File Management
� If the character of the first column is “A” or “B” and the second column is a number, then

the file is considered updated;
� If the first character is “A” or “B”, print message X12;
� If the second column is a number, print message X13.

In Figure 17, the two cause–effect graphs have similar structures. In the case of Myers,
the cause was defined as A1, A2, and A3, and the effect was defined as M1, M2, and
M3. Additionally, an E intermediate node was added to connect A1 and A2 in an OR
relationship. In the case of KRA-CE, A1 and A2 were expressed as one node. The rest of
the nodes have the same structure.

Appl. Sci. 2022, 12, 9310 14 of 16Appl. Sci. 2022, 12, 9310 14 of 16

Figure 16. Comparison of cause–effect graph drawn by humans and KRA-CE.

Figure 16. Comparison of cause–effect graph drawn by humans and KRA-CE.

Appl. Sci. 2022, 12, 9310 15 of 16Appl. Sci. 2022, 12, 9310 15 of 16

Figure 17. Comparison between Myers’s cause–effect graph and KRA-CE’s cause–effect graph [2].

5. Conclusions

In the current requirement engineering area, it is very difficult to deal with natural

language requirements. However, stakeholders easily understand requirements that are

written in natural language. This natural language requirement has diverse problems,

such as inconsistency, inaccuracy, and ambiguity. In order to solve this problem, some

researchers use formal methods such as Z specification and mathematic logic to convert

natural language requirements. However, few researchers deal with natural language re-

quirements, especially English language descriptions. We focused on Korean language-

based requirements. In order to solve requirement redundancy, we adapted requirement

engineering with Jaccard’s similarity mechanism to identify the redundancy of require-

ment specifications.

Therefore, we proposed an automatic cause–effect tool for (1) simplifying compli-

cated requirements; (2) modeling the C3Tree model (that is, condition and result); (3) iden-

tifying wrong requirements; and (4) constructing causes, effects, and relationships. In ad-

dition, there are two functions that integrate two units (that is, similar causes or effects)

into one to identify similar requirements and extract incomplete requirements for guiding

refined requirements. Furthermore, we designed the tool environment for implementing

the given method, then evaluated the accuracy of the generated cause–effect diagram with

requirements. We are extending to automatically generate test cases via decision tables

based on this cause–effect diagram.

In the near future, we will study (1) sentence analysis with AI-based learning, (2)

improvement of sentence similarity analysis, and (3) adverbial phrase processing.

Author Contributions: W.S.J. and R.Y.C.K. designed the present study and drafted the manuscript;

W.S.J. developed the present study; W.S.J. and R.Y.C.K. performed the validation and verification

of the cause–effect graph generation process, reviewed the literature, and critically revised the man-

uscript. All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by Basic Science Research Program through the National Re-

search Foundation of Korea (NRF), funded by the Ministry of Education (No. 2021R1I1A3050407,

No. 2021R1I1A1A01044060) and the BK21 FOUR (Fostering Outstanding Universities for Research)

funded by the Ministry of Education (MOE, Korea) (No. F21YY8102068).

Conflicts of Interest: The authors have no conflict of interest.

References

1. Kwon, O.S.; Hong, S.N. Effective Iterative Testing based on Log. In Proceedings of the Korea Society of Management Infor-

mation Systems Fall Conference, Seoul, Korea, 6 November 2009; 685–690.

2. Myers, G.L. The Art of Software Testing; Wiley-Interscience: London, UK, 1979.

3. Jang, W.S.; Kim, R.Y.C. Automatic Generation Mechanism of Cause-Effect Graph with Informal Requirement Specification

based on Korean Language. Appl. Sci. 2021, 11, 11775. https://doi.org/10.3390/app112411775.

Figure 17. Comparison between Myers’s cause–effect graph and KRA-CE’s cause–effect graph [2].

5. Conclusions

In the current requirement engineering area, it is very difficult to deal with natural
language requirements. However, stakeholders easily understand requirements that are
written in natural language. This natural language requirement has diverse problems,
such as inconsistency, inaccuracy, and ambiguity. In order to solve this problem, some
researchers use formal methods such as Z specification and mathematic logic to convert
natural language requirements. However, few researchers deal with natural language
requirements, especially English language descriptions. We focused on Korean language-
based requirements. In order to solve requirement redundancy, we adapted requirement
engineering with Jaccard’s similarity mechanism to identify the redundancy of require-
ment specifications.

Therefore, we proposed an automatic cause–effect tool for (1) simplifying complicated
requirements; (2) modeling the C3Tree model (that is, condition and result); (3) identifying
wrong requirements; and (4) constructing causes, effects, and relationships. In addition,
there are two functions that integrate two units (that is, similar causes or effects) into
one to identify similar requirements and extract incomplete requirements for guiding
refined requirements. Furthermore, we designed the tool environment for implementing
the given method, then evaluated the accuracy of the generated cause–effect diagram with
requirements. We are extending to automatically generate test cases via decision tables
based on this cause–effect diagram.

In the near future, we will study (1) sentence analysis with AI-based learning, (2) im-
provement of sentence similarity analysis, and (3) adverbial phrase processing.

Author Contributions: W.S.J. and R.Y.C.K. designed the present study and drafted the manuscript;
W.S.J. developed the present study; W.S.J. and R.Y.C.K. performed the validation and verification
of the cause–effect graph generation process, reviewed the literature, and critically revised the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF), funded by the Ministry of Education (No. 2021R1I1A3050407,
No. 2021R1I1A1A01044060) and the BK21 FOUR (Fostering Outstanding Universities for Research)
funded by the Ministry of Education (MOE, Korea) (No. F21YY8102068).

Conflicts of Interest: The authors have no conflict of interest.

References
1. Kwon, O.S.; Hong, S.N. Effective Iterative Testing based on Log. In Proceedings of the Korea Society of Management Information

Systems Fall Conference, Seoul, Korea, 6 November 2009; pp. 685–690.
2. Myers, G.L. The Art of Software Testing; Wiley-Interscience: London, UK, 1979.
3. Jang, W.S.; Kim, R.Y.C. Automatic Generation Mechanism of Cause-Effect Graph with Informal Requirement Specification based

on Korean Language. Appl. Sci. 2021, 11, 11775. [CrossRef]

http://doi.org/10.3390/app112411775

Appl. Sci. 2022, 12, 9310 16 of 16

4. Farooq, M.S.; Tahreem, T. Requirement-Based Automated Test Case Generation: Systematic Literature Review. VFAST Trans.
Softw. Eng. 2021, 9, 133–142.

5. Adler, M.; Gray, M.A. A Formalization of Myers Cause-Effect Graphs for Unit Testing. ACM SIGSOFT Softw. Eng. Notes 1983,
8, 24–33. [CrossRef]

6. Kim, W.Y.; Kim, R.Y.C. A Study on Modeling Heterogeneous Embedded S/W Components based on Model Driven Architecture
with Extended xUML. Korea Inf. Process. Soc. Trans. Part D 2007, 14, 83–88.

7. BenderRBT, BenderRBT. Available online: https://www.benderrbt.com (accessed on 5 April 2022).
8. Bekiroglu, B. A cause-effect graph software testing tool. Eur. J. Comput. Sci. Inf. Technol. 2017, 5, 11–24.
9. Mogyorodi, G.E. Requirements-Based Testing-Cause-Effect Graphing. Softw. Test. Serv. 2005, 1–12.
10. Son, H.S.; Kim, R.Y.C.; Park, Y.B. Test Case Generation from Cause-Effect Graph based on Model Transformation. In Proceedings

of the International Conference on Information Science & Applications (ICISA), Seoul, Korea, 6–9 May 2014; pp. 1–4.
11. Woo, S.J.; Son, H.S.; Kim, W.Y.; Kim, J.S.; Kim, R.Y.C. A Study Testcase Extraction based M&S for Pre-Testing. In Proceedings of

the Korea Conference on Software Engineering, Jeju, Korea, 22–25 November 2012; Volume 14, pp. 181–183.
12. Vo, N.P.A.; Manotas, I.; Popescu, O.; Cerniauskas, A.; Sheinin, V. Recognizing and Splitting Conditional Sentences for Automation

of Business Processes Management. In Proceedings of the International Conference on Recent Advances in Natural Language
Processing (RANLP 2021), Varna, Bulgaria, 9–10 September 2021; pp. 1490–1497.

13. Mecab-Ko-Dic. Available online: https://bitbucket.org/eunjeon/mecab-ko-dic (accessed on 5 April 2022).
14. Agresti, A. Categorical Data Analysis; John Wiley and Sons: Hoboken, NJ, USA, 1990.
15. Lim, S.J.; Kwon, M.J.; Kim, J.S.; Kim, H.K. Korean Proposition Bank Guidelines for ExoBrain. In Proceedings of the 27th Annual

Conference on Human & Cognitive Language Technology, Atlanta, GA, USA, 28–31 May 2015; pp. 250–254.
16. Ha, J.M. A Contrastive Study on Korean Conditional Connective Ending and Chinese Conditional Conjunction Expression; Kyunghee

University: Seoul, Korea, 2007.
17. Kim, K.S. A Comparative study on conjoined sentence between modern Mongolian and Korean. Korean Assoc. Mong. Stud.

2009, 151–186.
18. Cho, J.M.; Cho, Y.H.; Kim, G.C. A Corpus Formalization for Extracting the Syntactic Relations. In Proceedings of the 8th Annual

Conference on Human & Cognitive Language Technology, Daejeon, Korea, 11–12 October 1996; pp. 207–215.
19. Cho, J.M.; Kim, G.C. A Corpus Formalization for Extracting the Syntactic Relations. Korean Soc. Cogn. Sci. 1996, 7, 39–56.

http://doi.org/10.1145/1010914.1010917
https://www.benderrbt.com
https://bitbucket.org/eunjeon/mecab-ko-dic

	Introduction
	Related Studies
	Automatic Generation for Cause–Effect Graph from Informal Korean Requirements
	Automatic Generation Process for Cause–Effect Graph from Korean Requirements on Our Informal Korean-Based Requirement Analyzer
	A Cae Study with Our KRA-CE Analyzer

	Discussion
	Conclusions
	References

