Code Generations from Natural Language
Specification with Naming Traceability

HONGIK UNIVERSITY
SOFTWARE ENGINEERING LAB
JANGHWAN KIM

ADVISOR: Prof. ROBERT YOUNG CHUL KIM

Hongik University Software Engineerin

CONTENTS

I. RESEARCH BACKGROUND
Il. RELATED WORKS
I. FILLMORE’S SEMANTIC ANALYSIS
Il. ABBOTT’S TEXTUAL ANALYSIS
lll. CODE GENERATION APPROACH WITH NATURAL LANGUAGE

IV. CONCLUSION

Hongik University Software Engineering

. RESEARCH BACKGROUND

Hongik University Software Engineering LAB

|. RESEARCH BACKGROUND —Issue 1

How to automatically generate code with Al? . sg for Al vs Al for SE
« Recently, there are many researches to generate
‘ \ codes through Al techniques from requirements.
» Most researches try to generate code directly
ments from requirements. However, these approaches

can’t explain how nor what 1s going on the
Intermediate steps between the requirements and
\ generating code.
» S0, we think that these types of approaches need
a step-by-step process to generate code from

ments _

> This paper started from a research to identify
each steps of development process to improve
these problems.

\

Applying A.l approach in each stage

Hongik University Software Engineering LAB

RESEARCH BACKGROUND — Issue 2

SW Requirement and Design

> \
y

Increase of importance

Software Project

Software Industry
Promotion Act

Separate order

Design Implementation

Hongik University Software Engineer

Previously, when a SW development project
got contracted, one company takes full charge
of the project through entire SW lifecycle,
Including SW requirements analysis, SW
design, SW implementation and SW testing.

Recently, Software Industry Promotion Act
was passed.

This is the law that makes the software project
a separate order between SW design and
Implementation.

Therefore, the importance of the SW
Requirement and Design increases
Immediately.

|. RESEARCH BACKGROUND - Issue 3

» |ssues of SW Requirement

1. The software project scale continues to grow. - The complexity of SW requirement increases.

- SW design complexity also increases. > SW Code complexity also increases.

| 2. Most of the requirement specification are using between informal method and formal method

| 3. Requirements are constantly changed according to custom needs

|4. Natural language-based Requirements includes vagueness.

\ —

= Custom needs is still unclear. J}-
= We focus on Requirements based on Natural Language.

= |t requires to research about a process of each steps how to generate code from Requirements.

Hongik University Software Engineering LAB

Il. RELATED WORKS

Hongik University Software Engineering LAB

Fillmore’s
Semantic

Analysis

* Fillmore’s semantic
analysis starts from his
case grammar approach.

* Fillmore defined the
roles of main verb-based

nouns in his paper.

Hongik University Software Engineering LAB

THEME

Agent

Instrument
al

Dative

Objective

Factitive

Locative

MEANING

a subject that is perceived to cause an action represented by a
verb.

an object that becomes the cause of an action or a state which
a verb represents.

a person or an animal affected by a state, or an action
represented by a verb.

an object that is affected by an action or a state which a verb
expresses.

a person or an animal that exists as a result of an action and a
condition of a verb.

a state that a verb represents or where an action occurs.

Il. RELATED WORKS

Improved
Fillmore’s Case-grammar

* In Park’s Study, Fillmore’s Case grammar was
Improved to fit the Requirement Engineering

(Based on Linguistic)

(Based on UML)

Fillmore's Case
Grammar

Refined Fillmore's
Case Grammar

Agent

Actor

Instrumental

Counter-Actor

Dative

Object

Objective

Theme

Factitive

Result

Locative

Source

Instrument

Experience

Experiencer

Goal

Beneficiary

Theme

Hongik University Software Engineering LAB

approach, especially for Unified Modeling
Language(UML)

In his paper, Agent, the subject of the sentence,
IS Improved into Actor and Count-actor
Interacting with it.

Also, in addition to the 6 cases that Fillmore
Initially claimed, more than 20 cases that were
continuously developed were developed. He
Improved those cases into requirements
engineering to facilitate the high-level design
through UML from the requirements.

Abbott’s Textual Analysis

Part of speech

Model component

Proper noun

Object

Improper noun Class

Doing verb Operation
Being verb Inheritance
Having verb Aggregation

Modal verb

Constraints

Adjective

Attribute

Hongik University Software Engineering LA

* Abbott’s textual analysis approach is suitable
method for identifying key acting of the
requirement.

* His approach works with modeling from
language components such as part of speech
to model components.

* Figure on the left shows the mapping Part of
speech to component of the high-level design
model for requirement analysis.

e We will describe more detail in the later
presentation

lll. Code Generations from Natural Language Specification
with Naming Traceability

Hongik University Software Engineering LAB

lll. Steps of Code Generations from Natural Language Requirement

Step 1 Step 2 Step 3

Determining the
.| roles of element that
is associated with

Extraction of verbs
and identification of

Extracting the verbs
associated with the

A
Vv

a main verb i elements
the main verb
Step 5 Step 4
Extracting the association
Visual Modeling of | between verbs and |
Use Case elements based on

semantic analysis

Step 1 is to extract verb from the requirement and identify main verb

Step 2 is to determine a role of elements that is associated with the main verb.

Step 3 is to extract other verbs that are associated with elements.

Step 4 is to mark up an association between those verbs and other elements
« Step 5 is to visualize use case

Hongik University Software Engineering

Code Generations from Natural Language Requirement

The smart door lock system consists of parts, such as panel, bolt,
Oatapase, and Controiler. Inere are two input devices, such as Pangl
and camera (Eye Scanner) to scan iris information. The smart door
lock system must have three main cases: lock, unlock, and wam.
»An ye"scanner(0) shodld scan(M) an iris data from the User. The *
Jris data will be sentto the database. The panel(0) also can receive
snput from the user and then sends(M) the input to the controller.]
“The controller(0) would be able to check(M) input data withthe »
wdlatabase. The database can check(M) the input from the controller’
“with data in the table. If the input matches up with registered datap

U P R SR R

san event happens. And then, the controller checks in info database
w0 check up if the input matches up with data. If the input does not
Inatch up with the data, then increase the error number by 1. If the
s2rror number hits 3, then it sends the error message backto the
:r:nntruller. Then, the device(0) wams(M) with displayingthe error
wnessage. And then, the smart door lock device(0) locks(M) the bolt.
2By the way, the smart door lock system can lock(M) the door by

essmqluck button.
EEEN

Hongik University Software Engineering LAB

* \We applied our approach to Smart

Door lock System example.

First, we mark up by functioning of
the example.

* Then, we applied Abbott’s textual

analysis for the requirements by the
sentences after dividing parts by the
category.

lll. Structure Analysis of Natural Language Requirement

* We use Stanford parser
| to parser the
el requirements
] = O * This parser structurally
@ [[[B @ @ &8 0 breaks the sentence into
word units.
the J @ @ I k] device | ln:arnsH @ B - .
| | Extractng | | « VBZ is the main verb
= (] — of the requirement.
ves (] Then we find the ‘NN’

o B B & and extract the subject

of the verb that actually
e performs the main verb.

Hongik University Software Engineering LAB

If the input does not match up with the data, then increase the error number by 1. If the error number

hits 3, then it sends the error message back to the controller. Then, Ehe de-.ricelgarﬁ]with displayin
the error message for user. And then, the smart door lock device locks the; bolt. By the way, Ithe smartl

I“, Generati ng Use Case oor lock system canthe door by pressing lock button. -
« \We analyzed the structure of each -
requirement sentence by parsing it @) (] _,
: A [ne] C
as we mentioned above. IS I oot -3 i s S
« Based on the analyzed results, NN, — * E”f‘ ':_"__
VBZ, and other elements were i o &

found in each requirement

sentence and presented in diagram
form as shown at the bottom of
the figure on the right.

 Looking at these diagrams, we can

find that the same names exist in Bl e p— Nk
the form of nouns in the diagrams. ... S e SO :
* The result of mapping the same e o i
nouns together is shown in the - L - g ——. l:
form of a use case diagram. S
>@}fh|}
W Intruder

Hongik University Software Engineering LAB

Icnntm!!erlﬂ {Ecn rnizesth event happens. And then, the [D]
J-e-ekedk up if the input matches up with data.

1 1 If the input does not m,atch ug with the data, thendincreage(M) the error
III' Generatlng Seq uence Dlagram number by 1. [fthe error number hits 3, then it sends the error message
back to the[controlle](0). The O)warnis(M) with displaying the
error message. And then, tife Smart door lock devick(0)TodES(M) the bolt.

» A sequence diagram is created through Abbott's By theway, the smartdoor logicsysiethcan ock(P) thedoor by pressing
textual analysis results and semantic analysis s | =
results. ; @

 Green box will be the objects and then, verbs - | |
becomes sequences. T | “ . =&

(5}

» We generate code guideline from Sequence ! _[@ T‘“J o o 5 o= [

0,

(2}

diagram and Use case diagram. .Ei;,i "

public class |DoorLockSystem | public class { — I R
Object event; | p—- I
{ 1 . b J Y -
D=ra]l mPane] p“blic void Scan() {} I Panel EyeScanner |H:unlmller| | Inlonﬂl!
I

J#*call other ohject’s
Attribute

Function®/ - ventf)

Controller.recognize(); i Geanlly. 7
Object event ; } e
public DoorLockSystem() { public 51355 Check()
Panel = new Panel(); Object event; ———

1
1
1
|
1
1
lacki) I
1
|
1
1
1
1

I
|
I
:
-— I:-':I-; ;"“ - public void unlock() {} ! vamrel)
} public void lock() {} I k
public void¢Tock(P {...} public veid warn() {} -
public voidCunlock() {...} ! Cantraller
ublic void¢Wwarn{ D {.... 1
I:]}- ddarnip {-} public void recognize() {} |
} " IsDoorClosed(]
Hongik University Software Engineering LAB L e 1 i

VI. CLUSION

Hongik University Software Engineering LAB

V. Conclusion

/? \ * This paper describes each steps
Require IN starting from natural language
ments

requirements and provides
guidelines for generating codes.

\ e « This method go through the process
from natural language-based
[— — = = =— N requirements so that it can be source

that can be applied by Al techniques.

ments
Al 5 * In the future, we plan to apply Al
techniques to the results of each steps

In the process.

Al

Applying A.l approach in each stage

Hongik University Software Engineering LAB

