

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Applied Practice on Code Visualization for
Guaranteeing the Quality of Augmented Reality

Software

Janghwan Kim
Software Engineering Laboratory

Hongik University
Sejong, Korea

janghwan.kim@g.hongik.ac.kr

So Young Moon
Software Engineering Laboratory

Hongik University
Sejong, Korea

whit2@hongik.ac.kr

R. Young Chul Kim
Software Engineering Laboratory

Hongik University
Sejong, Korea

bob@hongik.ac.kr

Abstract—Recently, the demand for safety inspection and
repair of large facilities such as bridges and buildings has
increased nationwide. However, it is difficult for Safety
Inspectors to check these large facilities, due to access
limitations for safety inspections and long execution times for
maintenance and repair. To solve these problems, new
technologies such as virtual reality and augmented reality are
needed. For virtual reality (AR) software for a safety inspection,
we suggest measuring the quality of their software with our code
visualization approach.

Keywords— Augmented Reality Software, Code Visualization,
Software Quality Metrics, Code Complexity

I. INTRODUCTION

 Since the boom of the Industrial Revolution, the world has
been rapidly developing, necessitating various infrastructures
to support such development. As time passes, the deterioration
of social overhead capital(SOC) requires safety inspection,
maintenance, and repair of SOC such as buildings, roads, ports,
railways, and bridges. Especially in Korea, the need for SOC
maintenance is increasing, as evidenced by the tragedy caused
by the lack or lack of maintenance over the past 30 years[1].
However, despite these needs, the SOC maintenance business
is highly risky, requiring high costs for personnel recruitment.
Therefore, people tend to avoid high-risk sites[2].

To overcome these problems, non-face-to-face, non-
destructive, and non-contact methodologies are being
developed through interdisciplinary research. One of these
non-contact methodologies is using Virtual Reality(VR) or
Augmented Reality(AR) software[3]. This method uses a
Head Mounted Display (HMD) device to load and compare
original blueprints and scanned images of SOC collected in
various ways on the device’s screen and compare them to use
for maintenance and inspection. Since this method is used in
the HMD device, a method that uses fewer software resources
and can produce the same performance is essential for long-
term use. In this paper, we propose a method of visualizing the
inside of VR/AR software to increase software quality by
extracting information from the source code so that software
resources can be used as efficiently as possible.

 Chapter 2 remarks on code visualization as a related study.
Chapter 3 remarks on code visualization for VR/AR software
structures proposed in this paper. In Section 4, conclusions
and future research are mentioned.

II. RELATED WORKS

A. Software Code Visualization[4]

Software visualization is proposed to overcome the
invisibility of software. Because software is made up of codes
by nature, it is difficult to know how the code works inside,
and what relationships exist between codes. Therefore, the
existing software code visualization grasps the structure of the
corresponding source code through static analysis of the
source code. At this time, the quality of the source code is
measured through the relationship of components inside the
source code, such as the calling relationship of functions in the
source code, the inheritance depth of a class, and the like.
There are various quality indicators, such as coupling,
cohesion, and complexity in the source code.

Figure 1 shows the code visualization toolchain of the
existing Java-based source code. Then, the user inputs the
source code to a static analyzer to extract the Abstract Syntax
Tree(AST) of the source code. The extracted AST is sent to
the Quality Metrics Table to calculate the quality metric
desired by the user. The calculated quality index visualizes the
inside of the source code in various forms, such as graphs and
tables, using Visualizer.

B. Software Quality Metrics[5]

To visualize the software, it is very important to show the
inside of the code in a form that can visualize the structure to
understand the internal structure of the code. Structured code
information is calculated according to the desired quality
metrics to visualize source code information. The quality
index used at this time is a scale that allows the user to get to
know the information inside the code, such as the degree of
complexity of the source code, the degree of coupling between
modules, the degree of cohesion between modules, the
relationship between modules, and the call relationship

Fig 1. SW Code Visualization Process Diagram

between functions. Existing quality metrics have been
dominated by procedure-oriented mechanisms, but as object-
oriented programs grow, metrics for object-oriented software
quality are also being studied[6].

Object-oriented software quality indicators are also being
developed based on these procedure-oriented quality metrics,
and Chidamber & Kemerer (C.K.) Metrics is a representative
example. C.K. Metrics can calculate coupling, cohesion, and
complexity between objects by using the depth of objects and
the relationship between objects as a module.

III. VR/AR SOFTWARE CODE VISUALIZATION

A. AR Software Structure based on C#

C++ and C# are the main languages for programming
VR/AR Software. Among them, C++ and C# are the main
languages for programming VR/AR Software. Among them,
C++ is a language that, while nearly 40 years old, is a
traditionally powerful object-oriented programming language
that builds various software such as games, systems, and
computer vision based on Unreal Engine.

On the other hand, C# is an object-oriented programming
language that is very similar to Java and is a language created
by combining the strengths of C++ and Java. Therefore,
although its characteristics are similar to Java, it includes
features of C++ because it is a language based on C++. Also,
APIs and frameworks implementing AR or VR software are
written in C#.

B. Static Code Analysis for AR Software

Abstract Syntax Tree (AST) is information extracted from
the syntax analysis stage during code compilation. We
visualize the source code information extracted from this step
as a tree. The AST of C# code is mainly composed of
ClassDeclaration, MethodDeclaration, FieldDeclaration, and
PropertyDeclaration. ClassDeclaration contains information
inside the class. ClassDeclaration includes all the main
information of the class, such as Fields, Methods, and
Constructors. The field information is represented by
FieldDeclaration, method information is represented by
MethodDeclaration, and constructor information is
represented by ConstructorDeclaration, etc.

Figure 2 shows that the code information of the sample
code at the bottom left is extracted into AST by Syntax
Visualizer. At the top, there is ConstructorDeclaration, the
parent of all nodes, and keywords for declaring Constructors
are shown in green boxes, and nodes containing information
such as parameters and blocks are shown in blue boxes. In this
way, if the internal information of the code, such as local

variable information and method information, will be
extracted in the form of a tree, then, it is possible to parse
through the upper node or lower node by the tree. For example,
the information between ‘{}’ is extracted in token units under
the block node information. The ExpressionStatement node
extracts the code information of the line in the form of a tree
through the field name, identifier node, assignment
expression(=), and StringLiteralExpression. The information
extracted in this way is stored in a database, and the quality of
the software is expressed through the combination and
calculation of information through quality metrics.

IV. CONCLUSION

This paper applies a method of analyzing and structuring
C# based AR software and visualizing the inside of the
software through code written through code quality metrics.
Since the research on AR software and C# code is in the
beginning stage, there is limited information on the quality
metrics of AR software. But in the future, we plan to develop
a tool to automatically analyze the C# language and extract
code information to visualize the source code. Through this, it
is expected that the quality of VR/AR software can be
visualized, identified, and improved through code refactoring.

ACKNOWLEDGMENT

This work was supported by the Ministry of Education and
the Korea Research Foundation (F21YY8102068) and a grant
(RS-2022-00155579) of the Disaster-Safety Industry
Technology Commercialization R&D Program, funded by the
Ministry of Interior and Safety (MOIS, Korea) and the
government (Ministry of Education) with the support of the
Korea Research Foundation (No. 2021R1I1A3050407, No.
2021R1I1A1A01044060) in 2022.

REFERENCES
[1] T. Kim, M. Seo, S. Kim. “A study on facility maintenance information

configuration and advanced technology utilization plan.” Journal of
Korean Information Science Society, (2015) pp 25-27.

[2] S. Kim, B. Koo "A Path Generation Method Considering the Work
Behavior of Operators for an Intelligent Excavator." Journal of The
Korean Society of Civil Engineers 30.4D (2010): 433-442.

[3] Bień, Jan, Marek Salamak. "The management of bridge structures
challenges and possibilities." Archives of Civil Engineering (2022): 5-
35.

[4] J, Kim. "A Study of Enhancing Software Visualization and Pre-
Processing of Code Pattern Learning Model." Master's thesis Hongik
University Graduate School, 2022. Seoul

[5] Ince, Darrel. "Software metrics: introduction." Information and
Software Technology 32.4 (1990): 297-303.

[6] J. Lee, J. Park, E. Byun, H. Son, C. Seo, R. Kim, Plug-in Diverse
Parsers Within Code Visualization System with Redefining the
Coupling and Cohesion in the Object-Oriented Paradigm. KIPS
Transactions on Software and Data Engineering, (2017) 6(5), 229-234.

Fig 2. Source Code Analysis Result for AR Software(C#)

	img20230206_14345086
	A Study on Generation of Heterogeneous Request Codes from QR Codes in Bridge Facilities based on Metamodel
	A survey on Prediction and Analysis Models of Repair Cost of AI-Based Bridges(finalPaper)
	Applied Practice on Code Visualization for Guaranteeing the Quality of Augmented Reality Software(finalPaper)
	Best practies on Inspecting A Large bridge facility with Augmented Reality(AR) Mechanism(finalPaper)
	DB Indexing mechanism for Building Information Modeling(BIM) Objects(finalPaper)
	Designing the Normalized Database Table for Storing Information of Safety Inspection on CHEONGDAM Bridges with Augmented Reality_(finalPaper)

