

International Journal of Internet, Broadcasting and Communication Vol.15 No.2 218-226 (2023)

http://dx.doi.org/10.7236/IJIBC.2023.15.2.218

Copyright© 2023 by The Institute of Internet, Broadcasting and Communication. This is an Open Access article distributed under the terms

of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0)

Cost Estimation and Validation based on Natural Language Requirement

Specifications

So Young Moon, R. Young Chul Kim*

Visiting Professor, Department of Software and Communication Engineering, Hongik University,

Korea
E-mail: whit2@hongik.ac.kr

Professor, Department of Software and Communication Engineering, Hongik University, Korea

E-mail: bob@hongik.ac.kr

Abstract

In Korea, we still use function point based cost estimations for software size and cost of a project. The

current problem is that we make difficultly calculating function points with requirements and also have less

accurate. That is, it is difficult for non-experts to analyze requirements and calculate function point values

with them, and even experts often derive different function points. In addition, all stakeholders strongly make

the validity and accuracy of the function point values of the project before /after the development is completed.

There are methods for performing function point analysis using source code [1][2][3][4] and some

researchers [5][6][7] attempt empirical verification of function points about the estimated cost. There is no

research on automatic cost validation with source code after the final development is completed. In this paper,

we propose automatically how to calculate Function Points based on natural language requirements before

development and prove FP calculation based on the final source code after development. We expect validation

by comparing the function scores calculated by forward engineering and reverse engineering methods.

Keywords: Function Point, Software Cost Estimation, Software Cost Estimation based Requirement, Software Cost

Validation Reverse Engineering, Reverse Engineering, Natural Language Requirement Analysis

1. Introduction

The existing cost estimations are calculated based on various cost estimation models depending on the ability

and experience of experts, and among the cost estimation models. Specially, Allen J. Albrecht's Function Point

(function point) of IBM is most often used. Function points are often used to predict like software size, schedule,

cost, and effort. However, function point measurements produce different results depending on the abilities of

experienced experts and those with less experience [3] [8]. In addition, there is a research report that a 30%

difference occurred for the same product in the same organization [9]. Therefore, in this paper, an automatic

calculation is attempted to increase the consistency of function point calculation. To this end, we propose

IJIBC 23-2-25

Manuscript Received: April. 10, 2023 / Revised: April. 13, 2023 / Accepted: April. 15, 2023

Corresponding Author: bob@hongik.ac.kr

Tel: +82-44-860-2477, Fax: +82-44-865-2460

Professor, Department of Software and Communication Engineering, Hongik University, Korea

mailto:bob@hongik.ac.kr

International Journal of Internet, Broadcasting and Communication Vol.15 No.2 218-226 (2023) 219

equirements-based “cost estimation” and code-based “cost validation”. In previous papers, morphological

analysis was performed using Python NLTK[10]. Our proposed method is to define natural language

requirements, analyze requirements using Stanford Parser, and calculate function points by storing the

information in a database. Through this, we estimate costs based on natural language requirements, and make

Code-based “cost validation” which develops a Java-based code analyzer to analyze function points and

calculates function points based on reverse engineering through the code analyzer.

 This paper is mentioned as follows. Chapter 2 describes Abbott's textual analysis method and Stanford

parser as natural language analysis methods. Chapter 3 describes the requirements-based cost estimation

method. Chapter 4 describes the reverse engineering-based cost verification method. Finally, in Section 5,

conclusions and future research are mentioned.

2. Related Work

2.1 Natural Language Analysis Method

We adapt the Abbott’s Textual Analysis technique [13] into requirement engineering, which is a very good

way to show developers how to identify candidate classes from use cases, domain and problem descriptions,

glossaries, legacy models, and even legacy code. Its textual analysis doesn’t show that the developers identify

code a particular scenario or use case. This can often result in "classes" that are named after the use case or

scenario. We develop or reuse classes or modules of code that underlie individual use cases. It is important to

identify nouns and verbs with the textual analysis performed on text created by the users of the system. We

can adapt Abbott’s Textual Analysis to perform to identify the candidate system components in Table 1.

Table 1. Abbott's Textual Analysis

Part of Speech Component Example Part of Speech Component Example

Proper noun Object Richard Dué Stative Verb Invariance are owned

Common noun Class toy Modal Verb Data Semantics must be

Doing Verb Method buy Precondition

Being Verb Classification is an PostCondition

Having Verb Composition has an Adjective Attribute unsuitable

Intransitive

Verb
Exception Event depend Transitive Verb Method enter

2.2 Stanford Parser

The Stanford NLP Group makes Natural Language Processing available to everyone. We adapt this

approach to identify morphology analysis (such as nouns and verbs) of requirement sentence, which solve

major computational linguistics problems, that is, applications with human language technology needs. These

packages are widely used in industry, academia, and government. In this tree, we identify verb (VB) for

mapping methods (be-verb, do_verb, have_verb, and general_verb) of the abbot’s textual definition.

220 Cost Estimation and Validation based on Natural Language Requirement Specifications

Figure 1. Language Analysis about Requirement

3. Cost Estimation based on Natural Language based Requirements

Estimating costs with requirements has been a lot of work. However, it is difficult to assure that these

estimated costs are appropriate and accurate costs and sizes of the project. Currently, experts predict its size

and cost compared to similar systems based on experience [11]. Predicting the scale of requirements is the first

step in software development and an important task associated with cost, scheduling, and delivery.

However, in cost prediction, there are significant differences in size prediction between inexperienced and

experienced groups [12]. If development costs are calculated differently depending on experience and

knowledge, despite the same requirements, trust will be lost in the position of paying or receiving costs. In

addition, it is difficult to predict and verify the cost for natural language-based requirements. Therefore, we

propose cost prediction and verification automation based on natural language requirements.

This procedure to calculate Cost estimation for a project processe as follows:

1) Define functional requirements based on the customer’s needs

2) Adapt the abbott’s textual analysis into requirement sentence

3) Identify morphemes with requirement sentence based on Morphological analysis

4) Construct DB tables and store extracted data information into them

5) Extract Information of Function Point Factors in DB tables

6) Calculate Function Points

3.1 Functional Requirements (FR) Definition

We use some requirement specifications of the car dealer’s integration management system.

Table 2. Functional Requirements

FR1. The function of customer modification can update car_type and phone_number from the

customertable.

FR2. The function of customer registration can insert customer_name, phone_number, car_type and

car_number to the customertable.

FR3. The function of sale delete can delete customer_name, car_number, car_type, and phone_number

from the saletable.

International Journal of Internet, Broadcasting and Communication Vol.15 No.2 218-226 (2023) 221

3.2 Abbott’s Textual Analysis

Abbott [13] used heuristic methods to map parts of speech to identify objects, attributes, and associations in

the requirements specification for natural language analysis. In this paper, the method is modified to define

requirements-defined conversion rules for function scores. Table 2 shows the rules for converting customer

requirements into requirements for functional scores.

Table 3. Abbott's Textual Analysis

Part of speech Function Component Examples

Noun(Subject) Function Name customer registration

Verb

External Output(EO)

External Input(EI)

External Query(EQ)

export, calculate

insert

select

Noun(Object) Data Element Type(DET) customer_name

Preposition(in, to)+Noun Record Element Type(RET) to te customertable

Preposition(on) + noun External Interface File(EIF) on external MPVMS

In a sentence, the subject noun is designated by the functional name. The verb is designated as a transaction

function types (EI, EO, EQ). The rest of the nouns that are not the subject nouns are designated as Data Element

Types (DET). The Nouns used with prepositions (in, to) are designated as Record Element Types (RET).

Nouns used with prepositions (on) are designated as External Interface Files (EIF). The Designated DETs and

RETs are used as data function types.

3.3 Morphological analysis with Stanford Parser

 Figure 2 is the result of analyzing functional requirements using morphological analysis. The verb ‘delete’

was branched from VP (Verb Phrase) to VB (Verb), and in this case, ‘delete’ corresponds to the EQ of the

function point.

Figure 2. Morphological Analysis of the Functional Requirement

3.4 DB table construction with extracted data information

Functional requirement FC-02-02 contains “The function of customer modification can update car_type and

phone_number from the customertable.”. The FP_DATA table is a table for storing content corresponding to

a data function of a function point. Project ID (P0001), function requirement ID (FC_02_02), data (car_type,

phone_number), entity (customizable), and type (ILF) are stored in the FP_DATA table from function

requirements (FC-02-02). The FP_FUNCTION_NAME table is a table for separately managing only the

222 Cost Estimation and Validation based on Natural Language Requirement Specifications

names of functions, and stores the project ID (P0001), function requirement ID (FC-02-02), and function name

(customer_modification). The FP_TRANSACTIONS table stores the project ID (P0001), function ID (FC-02-

02), transaction classification verb (update), and transaction type (EI) corresponding to the transaction function

of the Function Point. Figure 3 is an example of a process of extracting information from functional

requirements and storing it in a DB.

Figure 3. DB tables of Requirements

3.5 Information Extraction of Function Point Factors in DB table

The information stored in the FP_DATA table is later used to calculate the complexity of Internal Logic

Files according to the number of ILF and DETs, and the complexity of External Information Files according

to the number of EIF and DETs. Figure 4 is contents stored in the FP_DATA table. Information corresponding

to EIF or ILF is stored in the FP_DATA table. Figure 4 is contents of the FP_DET table for searching for the

DET of each function. Project ID P0001's functional requirements ID FC_0008 stores data_from, date_to, date,

export_total_price, func_calculation1, total_price, func_calculation2, revenge, func_calculation3 as DETs.

And salable and stocktable are stored as table names.

Figure 4. Function Point DB Table

Figure 4 is contents of the FP_FUNCTION_NAMES table for managing only function names. Functional

requirements ID FC_0008 of project ID P0001 store earn_spend corresponding to the function name.

International Journal of Internet, Broadcasting and Communication Vol.15 No.2 218-226 (2023) 223

6) Function Point Calculation

Figure 5 is contents of the FP_TRANSACTIONS table that contains the contents of the transaction function.

Functional requirements ID FC_0001 use the verb update, and the transaction function type is EI (External

Input). Functional requirement ID FC_0009 uses the verb export, and the transaction function type is EO

(External Output). Functional requirement ID FC_0015 uses the verb select, and the transaction function type

is EQ (External Query). Figure 57 is the content of the FP_RESULT table, which stores the results for data

functions and transaction functions by function ID using the function score complexity formula. The data

function score is 7+7+7 = 21, and the transaction function score is 3+3+3+3+3+3+5+5+4+3+4+4+3+3=52.

Therefore, DFP + TFP = 73. If the original requirement was from FC_0001 to FC_0012, the data function

score is 7+7+7 = 21, and the transaction function score is 3+3+3+3+3+3+3+3+5+4+4+3=42. DFP + TFP = 63.

Figure 5. FP_TRANSACTIONS and FP_RESULT DB Table

4. Cost Validation based on Reverse Engineering

Public institutions do not trust the accuracy of software cost estimates. In the past, large companies did not

ask for additional costs or recalculate costs in unconditional acceptance, even if requirements changed due to

software development. In this situation, small and medium-sized companies continue to accept changes in

requirements, affecting software quality and increasing the burden on companies. To solve this problem, we

propose an automatic software cost validation method. Among the cost estimation models, Albrecht's function

point is the most used [14] [15]. In general, function points are used to estimate the size, schedule, and cost of

requirements or projects through requirements analysis. In the case of Korea, more development time is

required than the initial requirements, and more costs are added due to underestimation of software

development costs or acceptance of excessive changes in requirements. However, the proposed approach is

essential because no one discusses whether the initial cost estimate was appropriate. Therefore, verifying

whether the function point is calculated based on the implemented source code and whether it is valid when

compared with the actual cost is essential. We propose an automated approach for verifying cost prediction

based on reverse engineering.

1) Cost Validation Code Analyzer

A code analyzer parses the source code. The result of syntactic analysis is expressed as an abstract syntax

tree (AST) and syntax tree [16]. In AST, variable definitions, loop statements, and conditional statements

are all classified as statements. The For-Statement is represented by a node called For-Statement. The

abstract syntax tree is extracted through the Java parser, and the code is analyzed to review the elements

inside the code in the form of a tree. Internal nodes include packages, compilation units, binary classes,

224 Cost Estimation and Validation based on Natural Language Requirement Specifications

types, methods, and fields. Therefore, AST structure analysis is required for function point extraction. Figure

6 is a diagram of a Java-based abstract syntax tree.

Figure 6. Abstract Syntax Tree for JAVA

Classes are classified from TypeDeclaration to BodyDeclaration to FieldDeclaration and

MethodDeclaration. FieldDeclaration includes information about class variables, and Modifier has public,

private, and protected accessor information. ‘Type’ has information on whether it is a basic data type provided

by Java or a class data type. VariableDeclaration includes Name with variable name information and Initializer

information with variable initialization value Similarly, MethodDeclaration has information about Modifier

and Name, Return_Type has method return type information, and Parameters has method parameter

information. If you look closely here, Body is composed of Statements, and Statements are composed of

VariableStatement, ExpressionStatement, ForStatement, IfStatement, WhileStatement, SwitchStatement, and

TryStatement. To analyze Java sentences, you need to implement code by analyzing the structures in Figure 6

and extracting them individually. In this paper, a code analyzer was developed to find attribute object binding,

local object binding, parameter object binding, return object binding, inheritance binding, and interface binding

between classes. Static analyzers of commercial tools or open-source SW do not include a function to extract

function points. Therefore, for cost validation, a cost validation code analyzer was developed by finding the

code corresponding to the function point in the source code and conducting a type of analysis.

2) Validation Result

Table 4 is the result of deriving function points based on reverse engineering. The sum of data function

points is 21 points, the sum of transaction function points is 58 points, and the total function point is 79 points.

In the results predicted based on requirements, there were no requirements for EI_wearDel (stock_delete,

FC_0016) and EQ_wearSearch (stock_search, FC_0017). The difference in function points is due to the

addition of two requirements. Also, as mentioned in Section 5.2, if the cost is predicted even when the initial

requirements were from FC_0001 to FC_0012, the function score is 63 points.

Table 4. Reverse engineering-based function points

Method Name Data Function Point Transaction Function Point

EI_customerReg 7 3
EI_customerDelete 0 3
EQ_customerSearch 0 4
EQ_login 0 3
EI_CustomerMod 0 3

International Journal of Internet, Broadcasting and Communication Vol.15 No.2 218-226 (2023) 225

EI_sellReg 7 3
EI_sellMod 0 3
EI_sellDel 0 3
EQ_sellSearch 0 3
EI_wearReg 7 3
EI_wearMod 0 3
EI_wearDel 0 3
EQ_wearSearch 0 3
EO_exportExcelWear 0 4
EO_earnSpend 0 5
EO_exportExcelSell 0 4
EO_exportExcelEarnSpend 0 5
Total 21 58

Cost validation for requirements-based development cost and reverse engineering-based development cost

compares the two values and calculates whether they are included in the error range.

As a result of the calculation by substituting the value into formula (1) for case I, C is 7.59% in (3), so it is

included within the tolerance range of (4). If included within this range, there is no additional request for cost.

Conversely, if the cost calculated based on the code is lower than the cost predicted based on the requirements,

it can be checked whether requirements have been changed or deleted, or there are requirements that have not

been implemented. The following is a comparison for Case II.

As a result of calculating by substituting the value into formula (1) for case II, in (3), C is 20.25%, which is

outside the tolerance range of (4). As it is outside this scope, the proposed method provides a basis for

requesting additional costs.

5. Conclusion

In this paper, we propose a requirement framework of forward/reverse engineering-based cost estimation

and validation for requirements before/after software development. Using the proposed mechanism, first, it is

possible to avoid uncertainty in requirements and increase clarity. Second, since cost estimation can be made

based on requirements, we can solve problems to calculate differently depending on the knowledge of experts.

Third, requirements satisfaction with process activities and byproducts can be tracked in all aspects of forward

engineering/reverse engineering, improving the quality of the software. Fourth, "cost estimation" can be

automatically proved through reverse engineering-based code visualization.

226 Cost Estimation and Validation based on Natural Language Requirement Specifications

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation

of Korea(NRF) funded by the Ministry of Education(2021R1I1A1A01044060, 2021R1I1A3050407) in 2023.

References

[1] Paulo Jose Azevedo Vianna Ferreira, Marcio de Oliveira Barros, “Traceability between Function Point and Source

Code”, The 6th International Workshop on Traceability in Emerging Forms of Software Engineering, pp.10-16,

2011

DOI: https://doi.org/10.1145/1987856.1987860

[2] Steven Klusener, “Source Code Based Function Point Analysis for Enhancement Projects”, International

Conference on Software Maintenance, 2003

DOI: https://doi.org/10.1109/ICSM.2003.1235445

[3] Heon Ki Lee, "Automatic Measurement of Function Points from Java Applications", SEMCMI2015, 2015

[4] Vinh T. Ho, Alain Abran, “A Framework for Automatic Function Point Counting From Source Code”,

International Workshop on Software Measurement, pp.248-255, 1999

[5] Tharwon Arnuphaptrairong, “Early Stage Software Effort Estimation Using Function Point Analysis: An Empirical

Validation”, international Journal of Design, Analysis and Tools for Integrated Circuits and Systems, Vol. 4, No. 1,

pp.15-21, 2013

[6] G. Antoniol, R. Fiutem, C. Lokan, “Object-Oriented Function Points: An Empirical Validation”, Empirical

Software Engineering, vol.8, pp.225-254, 2003

[7] Chris F, Kemerer, “An Empirical Validation of Software Cost Estimation Models”, Communication of the ACM,

Volume 30, Number 5, pp.416-429, 1987

DOI: https://doi.org/10.1145/22899.22906

[8] T. Edagawa, T. Akaike, "Function point measurement from Web application source code basedon screen

transitions and database accesses", The Journal of Systems and Software, pp.976-984, 2011

DOI: https://doi.org/10.1016/j.jss.2011.01.029

[9] G.C. Low, D.R. Jeffery, "Function Points in the estimation and evaluation of the software process", IEEE

Transactions on Software Engineering, Vol. 16, Issue.1, pp.64-71, 1990

DOI: https://doi.org/10.1109/32.44364

[10] So Young Moon, “Requirement framework for cost estimation and automatic validation based on forward/reverse

engineering”, Hongik University, 2019

[11] Wansik Kim, “Expert judgement as an estimating method”, Information and Software Technology, Volume 38,

Issue 2, 1996, Pages 67-75, 1996

DOI: https://doi.org/10.1016/0950-5849(95)01045-9

[12] J. H. Hayes, A. Dekhtyar, and S. K. Soundaram, "Advancing candidate link generation for requirements tracing:

The study of methods", IEEE Trans. Soft. Eng., vol. 32, No. 1, pp.4-19, Jan. 2006

DOI: https://doi.org/10.1109/TSE.2006.3

[13] Bernd Brugge, Allen H. Dutoit, Object-Oriented Software Engineering Using UML, Patterns, and Java, Prentice

Hall, 2010

[14] Allan J. Albrecht, John E. Gaffney, “Software Function, Source Lines of Code, and Development Effort

Prediction: A Software Science Validation”, IEEE Transactions of Software Engineering, Vol. SE-9, No.6, 1983D

DOI: https://doi.org/10.1109/TSE.1983.235271

[15] A. J. Albrecht, "Measuring Application Development Productivity", Proceedings of the Joint SHARE, GUIDE,

and IBM Application Development Symposium, Monterey, California, IBM Corporation, pp.83–92, 1979

[16] Kenneth C. Louden, "Compiler Construction Principles and Practice (1st ed.)", Course Technology, 1997

https://doi.org/10.1145/1987856.1987860
https://doi.org/10.1016/j.jss.2011.01.029

	표지
	img20230615_18140958
	img20230615_18161264
	img20230615_18175558

	20230218-2
	뒤표지

