
International Journal of Internet, Broadcasting and Communication Vol.15 No.4 134-141 (2023)

http://dx.doi.org/10.7236/IJIBC.2023.15.4.134

Copyright© 2023 by The Institute of Internet, Broadcasting and Communication. This is an Open Access article distributed under the terms of

the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0)

Robot Software Framework using Robot Operation System(ROS2) based on

Behavior Tree

Sangho Lee1, Hyejin Chang2, Seulgi Jeon3, Janghwan Kim4,e R. Young Chul Kim5*

1M.S student, Software Engineering Laboratory, Hongik University,

1,2,3Director, Dept. of Applied Technology Research, Rastech,
4PhD. Candidate, Dept. of Computer Engineering, Mokpo National University

5*Professor, Dept. Software and Communications Engineering, Hongik University,

E-mail: { 1project, 2hjchang, 3jseulgi}@rastech.co.kr,
4janghwan.kim@g.hongik.ac.kr, 5*bob@ hongik.ac.kr

Abstract

As robotic technology expands into various fields, robots need to execute some complicated tasks in diverse

environments. However, the previous robotic software solutions were limited to independent systems. We can

not adapt to diverse functionalities and environments. This makes it hard to provide rapid and effective services

and leads to costs and losses in the development process. To overcome these problems, we propose a robot

software framework with behavior trees based on ROS2. This framework simplifies complex robot behaviors

through behavior trees and makes it easy to modify, extend, and reuse robot behaviors. Furthermore, ROS2

standardizes connections between software modules, enhances the robot's flexibility, and enables independent

development and testing of software. Our framework aims to provide a foundation for high-quality robot

service provision by supporting the modularity, reusability, independent development, and testing required by

intelligent robots that need to provide services in various environments.

Keywords: Robot Software Framework, ROS2, Behavior Tree

1. Introduction

 Modern robot technology is expanding from traditional manufacturing to various fields such as home,

medical care, education, and agriculture. As the tasks and environments performed by robots are diversified,

the functions that robots must perform are also becoming more complex. These tasks are operated by complex

interworking and designing various software modules such as sensor fusion algorithm, dynamic object

detection algorithm, and robot control algorithm. Therefore, robots should be able to dynamically combine

software modules for different environments, adjust their behavior as needed, or learn new behavior.

However, most robot software solutions are currently organized in an independent system depending on the

IJIBC 23-4-15

Manuscript Received: September. 14, 2023 / Revised: September. 19, 2023 / Accepted: September. 23, 2023

Corresponding Author: bob@hongik.ac.kr

Tel: +82-44-860-2477, Fax: +82-44-865-0460

Professor, Department of Software and Communications Engineering, Hongik University, Korea

International Journal of Internet, Broadcasting and Communication Vol.15 No.4 134-141 (2023) 135

robot, making it difficult to replace or connect different software modules, making it difficult for one robot to

use a different system of software modules or for multiple robots to share and use one software module. This

reduces the robot's adaptability to various functions and environments, preventing rapid and effective service

provision. In addition, in the existing traditional robot software system, software modularity and reusability

depend greatly on the developer's ability. This requires advanced and skilled developers to modify, expand

and replace software modules, resulting in a complex and expensive development process.

 To solve this problem, we propose a robot software framework using a ROS2 (Robot operation system)-

based Behavior Tree. The behavior tree is a tool that allows the robot's complex behavior to be decomposed

into several simple behaviors and structured, making it easy to modify, expand, and reuse the robot's behavior.

In addition, ROS2 standardizes connections between modules to increase robot flexibility and enable

independent development and testing of software. The proposed framework seeks to provide a foundation for

providing high-quality robot services by supporting the modularization, reuse, independent development, and

testing required for intelligent robots that need to provide services in various environments.

2. Related Works

Figure 1. Software Framework using a ROS2-based Behavior Tree

A behavior tree is a theory originating in the field of game development that classifies complex behaviors

into smaller sub-behaviors. Behavior trees greatly improve the flexibility and reuse of software and are very

useful for designing and implementing tasks for complex systems, which have been demonstrated by several

studies.

 Behavior tree-related research has been actively studied in addition to the structure of the basic behavior

tree, such as how to optimize the behavior tree through genetic algorithms. With the recent acceleration of

artificial intelligence research, studies on the convergence of reinforcement learning and behavior trees are

being conducted [1-5]. Kartasev [1] proposes a behavior tree with deep Q-Network (DQN) and Proximal Policy

Optimization (PPO). Big problems were classified hierarchically through the action tree, hierarchically

136 Robot Software Framework using Robot Operation System(ROS2) based on Behavior Tree

classified sub-problems were solved through reinforcement learning, and their performance was verified. As

the robotics field develops, the behavior tree is recognized as a very useful tool for robot behavior

establishment and management, and various studies are underway [6-12]. Michele and Ogren [6] mention a

comprehensive introduction to the behavior tree and how to apply it in the robotics and artificial intelligence

fields. Alejandro, et al [7] mention an integrated behavior tree framework for robot control, which can integrate

multiple robot control architectures and easily add new control architectures [7]. Jeong [8] proposes an efficient

framework using the behavior tree, focusing on the robot's autonomous driving system [8]. The behavior tree-

based autonomous driving framework has shown that it is possible to control multiple robots by

communicating through a Data Distribution Service (DDS) between multiple robots to exchange data.

3. Behavior tree based on Robot Software Framework Implementation

This paper proposes a method to ensure the common use, reusability, portability, and scalability of robotic

software. That is, we propose a software system that can reuse the components of the robot software module

like Lego blocks and assemble them to define the robot's task. In addition, in this text, we build a whole-electric

robot software development platform that ranges from robot software development to simulation, testing, and

distribution.

3.1 Development and Operational Environment

It was developed in the ROS2 environment using Ubuntu 22.04 as the basic operating system. This is to

utilize the flexibility and scalability provided by ROS2, and various libraries and tools linked to ROS2. The

programming languages used are C++ 14 or later and Python 3.8 or later, both of which are well compatible

with ROS2. Taking advantage of each language, C++ was used for low-level robot control that required high

computational speed, while Python was used to define high-level robot behavior.

3.2 Behavior Tree-based Robotic Software Framework

We mention our robot software framework consisting of the Behavior Tree, Presentive Server, Task Layer,

Component Layer, and Hardware Abstraction Layer, and the overall structure is shown in Figure 1.

3.2.1 Behavior Tree

The behavior tree is a key element of the robot development framework that defines and manages the tasks

of robots. Each node of the behavior tree is represented by an XML file, and the behavior tree consists of a

terminal node representing condition check or action performance and a control node representing repetition,

sequential performance, etc. Creating XML files based on previously developed nodes and sub-action trees

can define tasks for robots, and Figure 2 shows an example of a ROS2-based behavior tree structure.

International Journal of Internet, Broadcasting and Communication Vol.15 No.4 134-141 (2023) 137

Figure 2. A ROS2-based behavior tree structure

3.2.2 Robot Representative Server

 The robot representative server is the representative server of the robot and is responsible for all services

outside the robot and outside the robot. It is implemented as a web server that supports WebSocket, and can

be accessed by robots using ID/password and SSL/TLS from the outside. The conceptual diagram of the

representative server is shown in Figure 3.

Figure 3. Representative Server Conceptual Diagram

3.2.3 Task Layer

 The Task Layer is a software module that controls the robot at the top level. In the Task Layer, the Task

Executor performs an action tree edited by the Task Editor using the Component Life Cycle Manager according

to commands received by the Task Manager through the Message Handler. For example, functions such as

emergency suspension that are not expressed as tasks are handled by calling components directly without going

through Task Manager. Figure 4 shows the conceptual diagram of the Task Editor and defines the task in XML

form.

138 Robot Software Framework using Robot Operation System(ROS2) based on Behavior Tree

Figure 4. Task Editor Conceptual Diagram

3.2.4 Component Layer

The component layer is a layer in which leaf nodes such as conditions and actions that make up the action

tree are developed, stored, and performed. The component is implemented as a C++ or Python component that

supports the dynamic loading of ROS2 and has high reuse.

3.2.5 Hardware Abstraction Layer

 Hardware Abstraction Layer (HAL) is a layer that allows hardware elements such as ultrasonic sensors,

drive motors, Lidar sensors, cameras, and microphones to be treated like ROS2 nodes. This layer provides

HAL nodes for devices directly connected to the PC and microcontroller boards connected to multiple sensors.

4. A Case Study for Humanoid Robot

Figure 5. Humanoid Robot

International Journal of Internet, Broadcasting and Communication Vol.15 No.4 134-141 (2023) 139

 The robot software framework using the proposed ROS2-based behavior tree is applied to a humanoid-type

guidance service robot developed by Las Tech Co., Ltd. to evaluate the framework performance. Figure 5

shows the shape of a humanoid robot and plays a role in providing commentary and guidance services to

visitors in public relations and exhibition halls. The main task of a robot is defined as follows.

- Drive autonomously at the specified waypoint, move, and stop

- Moving the charging station to charge the battery

- 14 Free Body and Arm Motion Control

- Voice output synchronized with motion

- Speech recognition for interacting with people

Sensors and various hardware elements essential for implementing the function of the robot are abstracted

through the HAL node to configure an interface to acquire sensor data in real time. Component layer is a unit

in which robots can be independently tested and developed, and it can operate effectively in complex

Figure 6. Behavior Tree Structure of Humanoid Service Robot

140 Robot Software Framework using Robot Operation System(ROS2) based on Behavior Tree

environments by developing and dynamically loading leaf nodes such as conditions and actions that make up

the action tree.

For example, the Navigation 2 component node developed for indoor and outdoor autonomous driving was

reused to implement a function to autonomously drive to a target point, and it was expanded to avoid

static/dynamic obstacles and to move around prohibited areas. As such, the main task of the robot specified

above was developed as an independent node for the component layer, and the integrated system according to

the state of the robot was organized as a behavior tree as shown in Figure 6 through the task editor.

5. Conclusions

In this paper, we introduce a sophisticated software framework that integrates behavior trees within the

context of a ROS2 environment. This framework has been meticulously crafted to support the implementation

of discrete functional components, each designed to address the diverse and specific needs of robotic systems.

The unique aspect of this approach lies in the dynamic loading of these developed components, which are

strategically used to define and execute robotic tasks utilizing the behavior tree methodology. The practicality

and effectiveness of this framework have been validated through a series of empirical experiments, notably in

the application to humanoid guidance service robots.

Our proposed framework demonstrates how robots work effectively in complex environments in the real

world based on the reuse, scalability, and efficiency of behavior trees. It is achieved through the framework's

emphasis on the reuse, scalability, and efficiency inherent in behavior trees. We anticipate that our approach

will significantly streamline the complexity and enhance the flexibility inherent in the development of robotic

systems. This is expected to address and alleviate the financial and logistical challenges often encountered in

robot development, while simultaneously elevating the overall quality of the software produced. Our future

research aims to further improve the proposed framework to improve reliability and robustness in diverse and

unpredictable environments.

References

[1] Kartasev, Mart, “Integrating Reinforcement Learning into Behavior Trees by Hierarchical Composition”, MS Thesis,

KTH R. Inst. Technol., Stockholm, 2019.

[2] YanChang, Fu, Long, Qin, Quanjun, Yin, “A Reinforcement Learning Behavior Tree Framework for game AI”,

International Conference on Economics, Social Science, Arts, Education and Management Engineering August 2016.

DOI: 10.2991/essaeme-16.2016.120

[3] Hao, Hu, et al. “Self-Adaptive Traffic Control Model with Behavior Trees and Reinforcement Learning for AGV in

Industry 4.0”, IEEE Transactions on Industrial Informatics December 2021.

DOI: 10.1109/TII.2021.3059676

[4] Lei, Li, et al. “Mixed Deep Reinforcement Learning-behavior Tree for Intelligent Agents Design”, ICAART

February 2021. DOI: 10.5220/0010316901130124

[5] Kartasev Mart, Justin Saler, Petter Orgen “Improving the Performance of Backward Chained Behavior Trees that

use Reinforcement Learning”, Arxiv Dec 2021. DOI: 10.48550/arXiv.2112.13744

[6] Colledanchise Michele, Petter Ogren “Behavior Trees in Robotics and AI: An Introduction” CRC Press 2018.

[7] Marzinotto Alejandro, et al. "Towards a unified behavior trees framework for robot control", IEEE ICRA MAY

2014. DOI: 10.1109/ICRA.2014.6907656

[8] Jeong Seungwoo, et al. "Behavior Tree-Based Task Planning for Multiple Mobile Robots using a Data Distribution

Service", IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) 2022.

International Journal of Internet, Broadcasting and Communication Vol.15 No.4 134-141 (2023) 141

DOI: 10.1109/AIM52237.2022.9863364

[9] Colledanchise Michele, Lorenzo Natale. "On the implementation of behavior trees in robotics", IEEE Robotics and

Automation Letters July 2021. DOI: 10.1109/LRA.2021.3087442

[10] Ghzouli Razan, et al. "Behavior trees in action: a study of robotics applications", Proceedings of the 13th ACM

SIGPLAN International Conference on Software Language Engineering November 2020.

DOI: 10.1145/3426425.3426942

[11] Colledanchise Michele. “Behavior trees in robotics”, Diss. KTH Royal Institute of Technology, 2017.

[12] Paxton Chris, et al. "CoSTAR: Instructing collaborative robots with behavior trees and vision", IEEE ICRA May

2017. DOI: 10.1109/ICRA.2017.7989070

