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Abstract 

As various platforms and devices continue to be developed, the number of programming languages is also 

increasing. Software developed using these new technologies requires quality assessment. However, to 

measure the quality of new types of software using traditional software engineering methods, new parsers and 

quality measurement tools for new programming languages must be developed. This approach presents a 

problem as it demands significant costs and effort. In this study, we propose a complexity measurement method 

for software written in similar languages through the learning of characteristics of a specific high-level 

language, thereby measuring complexity, which is one of the quality indicators in software. We collect datasets 

through an existing rule-based visualization tool. We train a large language model using the collected dataset, 

allowing the trained model to measure quality indicators for languages with similar structures. 

 
Keywords: Software Engineering, Software Quality, Software Complexity, Artificial Intelligence, Large Language 

Models 

 

1. Introduction 

As technology advances, various devices and platforms are continuously being developed. Consequently, 

the variety of new programming languages suitable for these platforms and devices is also on the rise. Software 

designed for these new platforms and devices requires quality assessment like conventional software. To 

measure the quality of software using traditional software engineering methods, a parser for the programming 

language must be implemented to perform parsing. Subsequently, rules for quality measurement must be set 

to assess the quality. The challenge is that implementing new parsers and analysis tools requires substantial 

effort and costs. To address this issue, we propose a method for measuring the complexity of software written 

in structurally similar but different languages through the learning of characteristics of a high-level language. 

We collect quality datasets through already implemented quality measurement tools. Using the gathered 

quality datasets, we train a large language model. This trained model can measure the quality of software 

written in other structurally similar programming languages. This approach allows the measurement of 

software quality without the overhead of implementing parsers and measurement tools. 
 

2. Related works 

2.1 Code Visualization-Based Software Data Collection Toolchain 
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Figure 1. Code Visualization-Based Software Data Collection Toolchain 
 

Figure 1 shows the structure of the code visualization-based software data collection toolchain[1]. The 

toolchain analyzes the code, detects code complexity and vulnerabilities, visualizes them, and creates a dataset. 

Bad Code Collector stores complexity, code, and vulnerability information as datasets for complex code. 

Complex code is more likely to contain vulnerabilities. Therefore, only complex code is stored to reduce the 

impact of false positives detected by the tool. 
 

2.2 Identifying bad codes through supervised learning with bad code patterns 

 

 

Figure 2. Sequence for Learning CWE Items in CodeBERT model 
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Figure 2 is a flowchart illustrating how the CodeBERT model[2] learns the patterns of Bad Code to identify 

Common Weakness Enumeration (CWE)[3] entries[4]. The training process of CWE entries for the 

CodeBERT model consists of three stages: Create Dataset, Data Preprocessing, and Transfer Learning. In the 

Create Dataset stage, the Programming Mistake Detector (PMD) tool [5] is used to collect labeled data for 

CWE vulnerabilities. Vulnerabilities detected by the PMD tool are converted into CWE vulnerabilities through 

a mapping table and labeled accordingly. In the Data Preprocessing stage, code lines are tokenized, and the 

detection status of a single CWE entry to be learned by the model is labeled. The transfer-learned CodeBERT 

model identifies CWE vulnerabilities in code lines. 

 

3. High level language complexity measurement large language model 

 

 

Figure 3. Sequence for Learning Complexity in CodeBERT model 
 

To train the complexity of high level languages, CodeBERT is used as a large language model. Figure 3 

represents the flowchart of training high-level language complexity to a large language model. The stages for 

training are divided into Create Dataset, Data Preprocessing, and Transfer Learning. 

In the Create Dataset stage, JSON-format data collected using code visualization-based software data 
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collection tool is transformed into a dataset consisting of source code and complexity. During this process, 

irrelevant annotations, packages, import information, and comments are removed.  

In the Data Preprocessing stage, the source codes of classes are tokenized, and the complexity for training 

is labeled. In the transfer learning stage, the CodeBERT model is trained using mean squared error as the loss 

function to solve the regression problem. The CodeBERT model utilizes a vocabulary dictionary that maps 

tokens during the tokenization process of source code. This vocabulary dictionary is used across different 

programming languages. Therefore, the model can be applied to software written in structurally similar 

languages, even if the language used for model training is different. 

 

4. Application 

As an application, the complexity of the JAVA language is measured and trained in CodeBERT. For the 

application of cohesion, LCOM[6] is trained in the model. LCOM represents the number of method pairs 

within a class that do not use common attributes. For the application of coupling, RFC[7] is trained in the 

model. RFC represents the number of methods that can potentially be executed by responding to messages 

received by objects of a class. The trained model is then applied to examples in object-oriented programming 

languages like C++, C#, Python, and Kotlin, in addition to JAVA, to measure complexity. 

 

Table 1. Comparison table of complexity measured by rule-based tools for code written in 

JAVA and complexity measured by CodeBERT model for code written in JAVA and similar 

object-oriented languages(C++, C#, Python, Kotlin) 
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Table 1 presents the complexity of the classes in the JAVA code and those in the code translated to C++, 

C#, Python, and Kotlin measured by the CodeBERT model. In the case of LCOM complexity, the model 

produced exactly the same values for all the code. This implies that the model did not learn LCOM complexity 

accurately. For RFC complexity, the correct answer measured by rule-based code visualization tools is 8. The 

results obtained through the CodeBERT model were the most accurate for C# code, with approximately 7.57. 

Following that, the results for JAVA, C++, and Kotlin were similar to the correct answer. The measurement 

for Python code was the least accurate, with a result of 10.507485. 

The CodeBERT model trained on data labeled with complexity for JAVA classes can provide a reasonable 

approximation of complexity. However, for metrics like LCOM, which involve complex rules, the model may 

not learn well. Additionally, when measuring code written in other similarly structured languages, it is 

observed that the measurement accuracy is higher for programming languages with structures more similar to 

JAVA. 
 

4. Conclusion and future works 

In this paper, we have proposed a method for measuring the complexity of high-level languages using a 

large language model. The large language model trained on the complexity of high-level languages can 

measure the complexity of software written in structurally similar languages. This allows the measurement of 

complexity for software written in new types of languages without implementing parsers and quality 

measurement tools. As future work, we plan to perform multi-regression using large language models to 

measure a broader range of complexity and quality metrics with a single trained model. 
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