

J.J. Kang et al. (Eds.): ISAAC 2023, AACL 22, 2023

© The International Promotion Agency of Culture Technology 2023

Measuring Software Complexity of Other Similar Structured Softwares

through Learning the Characteristics of a Single High Level Language

*Chansol Park, **Jinmo Yang, ***JiHoon Kong, ****R. Young Chul Kim

*Dept. of Software and Communication Engineering, Hongik University, Republic of Korea

**Dept. of Physics, Korea University, Republic of Korea

***Toonsquare

****Dept. of Software and Communication Engineering, Hongik University, Republic of Korea

*c2193102@g.hongik.ac.kr, **yjmd2222@gmail.com,

john.tooning@toonsquare.co, *bob@hongik.ac.kr

Abstract

As various platforms and devices continue to be developed, the number of programming languages is also

increasing. Software developed using these new technologies requires quality assessment. However, to

measure the quality of new types of software using traditional software engineering methods, new parsers and

quality measurement tools for new programming languages must be developed. This approach presents a

problem as it demands significant costs and effort. In this study, we propose a complexity measurement method

for software written in similar languages through the learning of characteristics of a specific high-level

language, thereby measuring complexity, which is one of the quality indicators in software. We collect datasets

through an existing rule-based visualization tool. We train a large language model using the collected dataset,

allowing the trained model to measure quality indicators for languages with similar structures.

Keywords: Software Engineering, Software Quality, Software Complexity, Artificial Intelligence, Large Language

Models

1. Introduction

As technology advances, various devices and platforms are continuously being developed. Consequently,

the variety of new programming languages suitable for these platforms and devices is also on the rise. Software

designed for these new platforms and devices requires quality assessment like conventional software. To

measure the quality of software using traditional software engineering methods, a parser for the programming

language must be implemented to perform parsing. Subsequently, rules for quality measurement must be set

to assess the quality. The challenge is that implementing new parsers and analysis tools requires substantial

effort and costs. To address this issue, we propose a method for measuring the complexity of software written

in structurally similar but different languages through the learning of characteristics of a high-level language.

We collect quality datasets through already implemented quality measurement tools. Using the gathered

quality datasets, we train a large language model. This trained model can measure the quality of software

written in other structurally similar programming languages. This approach allows the measurement of

software quality without the overhead of implementing parsers and measurement tools.

2. Related works

2.1 Code Visualization-Based Software Data Collection Toolchain

mailto:c2193102@g.hongik.ac.kr
mailto:yjmd2222@gmail.com
mailto:john.tooning@toonsquare.co

Measuring Software Complexity of Other Similar Structured Softwares through Learning the Characteristics of a Single High

Level Language 97

Figure 1. Code Visualization-Based Software Data Collection Toolchain

Figure 1 shows the structure of the code visualization-based software data collection toolchain[1]. The

toolchain analyzes the code, detects code complexity and vulnerabilities, visualizes them, and creates a dataset.

Bad Code Collector stores complexity, code, and vulnerability information as datasets for complex code.

Complex code is more likely to contain vulnerabilities. Therefore, only complex code is stored to reduce the

impact of false positives detected by the tool.

2.2 Identifying bad codes through supervised learning with bad code patterns

Figure 2. Sequence for Learning CWE Items in CodeBERT model

98 Chansol Park, Jinmo Yang, JiHoon Kong, R. Young Chul Kim

Figure 2 is a flowchart illustrating how the CodeBERT model[2] learns the patterns of Bad Code to identify

Common Weakness Enumeration (CWE)[3] entries[4]. The training process of CWE entries for the

CodeBERT model consists of three stages: Create Dataset, Data Preprocessing, and Transfer Learning. In the

Create Dataset stage, the Programming Mistake Detector (PMD) tool [5] is used to collect labeled data for

CWE vulnerabilities. Vulnerabilities detected by the PMD tool are converted into CWE vulnerabilities through

a mapping table and labeled accordingly. In the Data Preprocessing stage, code lines are tokenized, and the

detection status of a single CWE entry to be learned by the model is labeled. The transfer-learned CodeBERT

model identifies CWE vulnerabilities in code lines.

3. High level language complexity measurement large language model

Figure 3. Sequence for Learning Complexity in CodeBERT model

To train the complexity of high level languages, CodeBERT is used as a large language model. Figure 3

represents the flowchart of training high-level language complexity to a large language model. The stages for

training are divided into Create Dataset, Data Preprocessing, and Transfer Learning.

In the Create Dataset stage, JSON-format data collected using code visualization-based software data

Measuring Software Complexity of Other Similar Structured Softwares through Learning the Characteristics of a Single High

Level Language 99

collection tool is transformed into a dataset consisting of source code and complexity. During this process,

irrelevant annotations, packages, import information, and comments are removed.

In the Data Preprocessing stage, the source codes of classes are tokenized, and the complexity for training

is labeled. In the transfer learning stage, the CodeBERT model is trained using mean squared error as the loss

function to solve the regression problem. The CodeBERT model utilizes a vocabulary dictionary that maps

tokens during the tokenization process of source code. This vocabulary dictionary is used across different

programming languages. Therefore, the model can be applied to software written in structurally similar

languages, even if the language used for model training is different.

4. Application

As an application, the complexity of the JAVA language is measured and trained in CodeBERT. For the

application of cohesion, LCOM[6] is trained in the model. LCOM represents the number of method pairs

within a class that do not use common attributes. For the application of coupling, RFC[7] is trained in the

model. RFC represents the number of methods that can potentially be executed by responding to messages

received by objects of a class. The trained model is then applied to examples in object-oriented programming

languages like C++, C#, Python, and Kotlin, in addition to JAVA, to measure complexity.

Table 1. Comparison table of complexity measured by rule-based tools for code written in

JAVA and complexity measured by CodeBERT model for code written in JAVA and similar

object-oriented languages(C++, C#, Python, Kotlin)

 Chansol Park, Jinmo Yang, JiHoon Kong, R. Young Chul Kim

Table 1 presents the complexity of the classes in the JAVA code and those in the code translated to C++,

C#, Python, and Kotlin measured by the CodeBERT model. In the case of LCOM complexity, the model

produced exactly the same values for all the code. This implies that the model did not learn LCOM complexity

accurately. For RFC complexity, the correct answer measured by rule-based code visualization tools is 8. The

results obtained through the CodeBERT model were the most accurate for C# code, with approximately 7.57.

Following that, the results for JAVA, C++, and Kotlin were similar to the correct answer. The measurement

for Python code was the least accurate, with a result of 10.507485.

The CodeBERT model trained on data labeled with complexity for JAVA classes can provide a reasonable

approximation of complexity. However, for metrics like LCOM, which involve complex rules, the model may

not learn well. Additionally, when measuring code written in other similarly structured languages, it is

observed that the measurement accuracy is higher for programming languages with structures more similar to

JAVA.

4. Conclusion and future works

In this paper, we have proposed a method for measuring the complexity of high-level languages using a

large language model. The large language model trained on the complexity of high-level languages can

measure the complexity of software written in structurally similar languages. This allows the measurement of

complexity for software written in new types of languages without implementing parsers and quality

measurement tools. As future work, we plan to perform multi-regression using large language models to

measure a broader range of complexity and quality metrics with a single trained model.

Acknowledgement

This research was supported by Culture, Sports and Tourism R&D Program through the Korea Creative

Content Agency(KOCCA) grant funded by the Ministry of Culture, Sports and Tourism(MCST) in

2023(Project Name: Development of AI-based user interactive multi-modal interactive storytelling 3D scene

authoring technology, Project Number: RS-2023-00227917, Contribution Rate: 100%).

References

[1] C.S. Park, W.S. Jang, and R.Y.C. Kim, “Tool Chain Mechanism with Identifying and Collecting High

Quality Data for Learning Bad Code based on Code Visualization,” 2023 Conference, Korean Institute of

Smart Media, Vol. 12, No. 1, pp. 52-53, 2023.

[2] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, et al. "Codebert: A pre-trained model for

programming and natural languages," arXiv preprint arXiv:2002.08155, 2020.

[3] Common Weakness Enumeration, http://cwe.mitre.org.

[4] C.S. Park, S.Y. Moon, R.Y.C. Kim, “Detecting Common Weakness Enumeration(CWE) Based on the

Transfer Learning of CodeBERT Model,” KIPS Transactions on Software and DATA Engineering, Vol.

12, No. 10, pp. 431-436, 2023.

[5] PMD, https://pmd.github.io/.

[6] S.R. Chidamber and C.F. Kemerer, “Towards a metrics suite for object oriented design,” SIGPLAN, Vol. 26, No. 11,

pp. 197-211, 1991.

[7] B. Henderson-Sellers, “Object-oriented metrics: Measures of complexity,” Prentice-Hall, pp.142-147,

1996.

100

	pdf
	01. 판권지
	03. Forword
	04. Organization
	05. Contents
	06. 논문합본
	01_오프라인 구두_임채영
	02_오프라인구두_박은총
	꾸엉교수님_ISAAC 2023_Full paper_TTHuyen
	01_오프라인포스터_왕태수
	02_오프라인포스터_김기태
	04_오프라인포스터_임채영1
	05_오프라인포스터_박세환
	01_온라인포스터_이신복
	02_온라인포스터_홍연란_카페인
	03_온라인포스터_홍연란1_수면
	04_온라인포스터_김필교
	05_온라인포스터_전세원
	06_온라인포스터_이진호
	07_온라인포스터_김영광
	08_온라인포스터_Aristarchus P Kuntjara_박홍식_
	09_온라인포스터_김현석
	10_온라인포스터_이준영,류기환
	11_온라인포스터_에란다루_박홍식
	12_온라인포스터_박종현
	13_온라인포스터_윤채연
	14_온라인포스터_장세인
	15_온라인포스터_김수연
	16_온라인포스터_김종배
	17_온라인포스터_김형택
	18_김준호
	19_배명진
	20_배명진1
	21_이명구
	22_박찬솔
	23_김장환
	24_김현태
	25_진예진
	26_에드워드
	27_임용순
	28_에드
	29_박종열
	30_김정래, 강정진
	31_차재상
	32_차재상
	33_장엔성
	34_레시나
	35_장엔성2
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47

