ISSN 1343-4500 (print)
ISSN 1344-8994 (electronic)

iNFORMATION

An International Interdisciplinary Journal

Printed in Japan

Volume 16 Number 1(B), January 2013

Published by International Information Institute
www.information-iii.org

INFORMATION : An International Interdisciplinary Journal
Volume 16, Number 1(B), 2013

CONTENTS

Mathematical and Natural Sciences
A Novel Soft Decision Decoding Algorithm with Exploration of Candidate Code

Words Yong-Geol Shim 541
Management and Social Sciences

Framework of Populace Survey-enabled Design Patent Map Systems

Rain Chen and Chao-Chun Chen 549
A New Patent Analysis Using Association Rule Mining and Box-Jenkins Modeling
for Technology Forecasting Sunghae Jun 555
Effects of Educational Game on the Intrinsic Motivation by Learner’s Traits
Hyung-sung Park, Jung-hwan Park, Young-Tae Kim and Young-sik Kang 563

A Study of the Effects of a Wine Critic’s Evaluation on the Retail Prices in
Korea; with On-line Evaluation Basis
YoonJung Nam, Youngsik Kwak and Yoonsik Kwak 569
Agriculture and Engineering
A Study on Applying Extreme Value Distribution to NHPP-based SRM
Xiao XIAO and Tadashi DOHI 575
A Study on Security Grade Assignment Model for Mobile Users in Urban
Computing Hoon Ko, Goreti Marreiros, Sang Heon Kim,
Carlos Ramos and Tai-hoon Kim 581
Light Weight Thin Client Session Isolation and Efficient Session Management
for Multi-Platform Mobile Thin Client System
Biao Song, Wei Tang, Tien-Dung Nguyen,
Mohammad Mehedi Hassan and Eui-Nam Huh 587
An Implementation of a Multi-carrier Ad-hoc Routing (MAR) Protocol for
Maritime Data Communication Networks
Seong Mi Mun, Joo Young Son, ChiaSyan Lim,
Won Boo Lee, Hun Ki Kim and Byung Wook Lee 593
Revised Model Transformation for Model Convergence
Woo Yeol Kim, Hyun Seung Son and Robert Young Chul Kim 603
Rule Extraction Method for Model Transformations in Heterogeneous

- 537 -

Smartphone Applications
Woo Yeol Kim, Hyun Seung Son and Robert Young Chul Kim
A Study on a Statistical Analysis of Proposed Dynamic Signature Verification
Algorithm Jin Whan Kim
An Efficient Online Hierarchical Mediator System for Adaptive Query
Optimization based on Evaluation Cost Nam Hun Park and Kil Hong Joo
Schedulability Analysis of Large-Scale Real-Time Systems with Hierarchically
Profiled Petri Nets
Hyunsang Youn, Jeongmin Park, Ingeol Chun and Eunseok Lee
Process Assessment Framework to be concerned Software Safety
Hyun-Sug Cho and Sun-Myung Hwang
Composite Kernelbased Relation Extraction using Predicate-Argument
Structure Hong-Woo Chun, Chang-Hoo Jeong, Sa-Kwang Song,
Yun-Soo Choi, Sung-Pil Choi and Won-Kyung Sung
The Distributed Pub-Sub System with Privacy Protection in Smart Home
Environments
Yuan Tian, Biao Song, Mohammad Mehedi Hassan and Eui-Nam Huh
Hybrid Artificial Neural Network for Abnormal Brain Image Classification
D.Jude Hemanth, C.Kezi Selva Vijila,
A.Immanuel Selvakumar and J.Anitha
image Content Detection Method Using Correlation Coefficient between
Pixel Value Histograms
Kousuke Imamura, Hideo Kuroda and Makoto Fujimura
Watermarking Representation for Adaptive Image Classification with RBF
Network Chi-Man Pun
OntoURIResolver: Resolution and Recommendation of URIs Published
in LOD Taehong Kim, Seungwoo Lee, Hanmin Jung,
Won-Kyung Sung and Pyung Kim
InSciTe Advanced: Strategic Decision-Making Support Service based
on Technology Opportunity Discovery Model
Mikyoung Lee, Seungwoo Lee, Jinhee Lee, Hanmin Jung,
Jinhyung Kim, Dongmin Seo, Pyung Kim, Taehong Kim,
Hee Kwan Koo and Won-Kyung Sung
==~.2nt Mobile RFID Code Translation and Filtering in a User-Created
~+5maton Management System
Jae Kwoen Lee, SungHo Chin, Joon-Min Gil,

538

615

627

639

645

651

657

663

669

675

681

687

693

TR

INFORMATION
Volume 16, Number 1(B), pp.615-625

Rule Extraction Method for Model Transformations in
Heterogeneous Smartphone Applications

Woo Yeol Kim*, Hyun Seung Son**, and Robert Young Chul Kim**
* Dept. of Computer Education, Daegu National University of Education
Daegu, 705-715, Korea
E-mail: john@hongik.ac.kr
#*Dept. Of CIC(Computer and Information Communication), Hongik University

Sejong Campus, 339-701, Korea
E-mail: son@selab.hongik.ac.kr, bob@hongik.ac.kr

Abstract

Recently, intense competition has emerged among smart phone providers, each offering its own
unique operating platform. Since smart phone applications are largely dependent upon the platform for
which they are designed, this has made it extremely difficult to develop heterogeneous versions able to
run on a variety of platforms. In response to this concern, we propose applying a mode-to-model
transformation technique. This involves first analyzing platform differences and similarities, then
classifying them into independent and dependent models. Each classification, or category, is used to
create an API Matrix which in turn allows for model transformation rules to be generated. Once
extracted, a given smart phone application may be adjusted to meet the parameters of a selected
platform. To illustrate the proposed model-to-model transformation technique, this paper provides
transformation rules extracted for the Android platform, itemized by ATL and adaptable to Android-
based smart phone applications.
Key Words: Model Transformation, Android, Smart Phone, Model Transformation Rule, ATL,

Meta-model

1. Introduction

Intensified competition among smart phone providers has recently raised concerns over
application and platform compatibility. At present, the primary platforms include i-Phone for
Apple, Android for Google, and Windows Mobile for Microsoft. This in turn has generated
greater interest in and demand for heterogeneous applications able to accommodate a variety
of platforms. For such applications to be properly developed, a reusable software system
must first be created, capable of integrating and maximizing previously formed resources.
Unfortunately, this type of software is difficult to produce since smart phone applications are
dependent both on the system being used and the source code selected [1].

In response to this concern, researchers have begun examining the Model Driven
Development (MDD) method as a means of achieving heterogeneous versatility. Essentially,

this method uses an auto-management process from model to code formation. This involves

~015—

ISSN 1343-4500
©2013 International Information Institute

WOO YEOL KIM, HYUN SEUNG SON AND ROBERT YOUNG CHUL KIM

designing a platform independent meta-model which is turned into a platform dependent
model, thereby allowing code to be formed through the model itself. This transformation
process permits a selected platform application to be adapted to another platform
environment by re-creating code from within the virtual model. In this manner, the model
automatically becomes a heterogeneous platform capable of transforming codes for a given
smart phone application. Thus, neither the original platform nor the application program need
to be changed for a heterogeneous result to occur. Consequently, the re-usability of the model
and the auto-formation process of generating codes can potentially increase smart phone
development, productivity, and adaptability [2-4].

To illustrate, this paper examines a model transformation technique for the Android
platform capable of producing heterogeneous smart phone applications. To begin, model
transformation rules must first be developed in order to create a reliable model
transformation technique. Unfortunately, such rules are difficult to achieve without first
analyzing the differences and similarities between independent and dependent models. To
address this concern, an extraction method for model transformation rules is presented,
consisting of three stages: first, the platform analysis phase during which model differences
and similarities are identified and closely examined; second, the API Matrix writing phase
where extracted independent/dependent categories are used to design a graph of the
transformation relationship within the APT; and third the model transformation writing phase
in which the API Matrix is observed as it creates the model transformation rule language.

To execute a sample model transformation, model transformation rules were specifically
created by ATLAS Transformation Language (ATL) [5]. For the purpose of this research, the
transformation rules applied are for an Android-based platform. In this case, an independent
model is created using an Android application, and ATL is used in eclipse to execute the
model transformation.

This paper is organized as follows: Chapter 2 presents related work, including the basic
concept of MDD; Chapter 3 describes the method for forming model transformation rules;
Chapter 4 specifies model transformation rules and describes the model transformation
process for Android applications; and Chapter 5 provides concluding comments and

suggestions for further research.

2. Related work
As the center of software development has shifted from code to architecture, analysis, and

design, the necessity of automating repetitive and cumulative software functions has

-616—

RULE EXTRACTION METHOD FOR MODEL TRANSFORMATIONS

increased. In response, MDD has emerged as a method for solving problems related to

development period and quality [6, 7, 8, 9].

MDD is a cumulative software development process that transforms a design model into a
workable system. It also is capable of re-using models that are repeatedly re-defined. In
addition, model transformation can be partially or completely automated. Furthermore, when
using Unified Modeling Language (UML) as part of the development process, problems may
arise if the developer changes the program code during the execution period [10]. Such
problems can, however, be solved by using MDD based automation tools [4]. The model
transformation methods for supporting MDD include the UML Model Transformation Tool
(UMT) [11], Model Transformation Language (MTL) [12], ATLAS Transformation
Language (ATL) [5], and Query/View/Transformation (QVT) [13].

Table 1. Evaluation of existing model transformation languages

Evaluation items UMT MTL ATL QVT
Expansibility Y Y N Y
Accuracy Y N Y N
Bi-directional model transformation Y N N Y
UML meta-model Y N Y Y
Multi-model N N N N
Abstract level N Y Y Y
Re-use and synthesis N N Y h 4
Complex transformation rules N N Y Y
Heterogeneous model N N Y N

Table 1 presents an evaluation of the existing model transformation languages according to
their respective advantages and disadvantages. This comparison is based on model
transformation language items as provided by OMG MOF2.0 QVT. As noted, although UMT
provides expansibility, accuracy, bi-directional model transformation, and UML meta-
modeling, it does not support multi-models or abstraction. By contrast, MTL only supports
expansibility and abstraction. Although ATL provides accurate UML meta-modeling, abstract
level output, synthesis, and heterogeneous models, it does not support expansibility, bi-
directional model transformation and multi-model facilitation. By comparison, QVT provides
expansibility, bi-directional model transformation, UML meta-models, abstraction, re-use,
and complex transformation rules; however, it lacks performance quality in heterogeneous

models, multi-models, and overall accuracy.
3. Model transformation rule extraction
Model transformation rules must be formed to apply a model transformation technique in

the development of heterogeneous smart phone applications. The most important factors of

-617 -

WOO YEOL KIM, HYUN SEUNG SON AND ROBERT YOUNG CHUL KIM

this model transformation process are the extraction of the independent model and the writing
of model transformation rules. The steps presented in figure 1 illustrate the manner in which
these two factors are achieved. First, independent model and dependent model categories are
extracted through platform analysis. In this case, category refers to information regarding
class, method, and parameter for executing a model transformation. Next, extracted
categories are organized using the independent/dependent model API Matrix. The data

formed in the extraction of the independent model categories is then used to create the

independent model.
Extraction of a Model Transformation Rule
Analyzing Platform
1
i
700 e o dmmmmmme
v v
Category of of
Independent Specific Model
] !
¥
Writing AP Matrix
;3
M
Target s Rude of Target Target
Independent Writing . Specific ndent
i :r::d Model Transformation Model De’é:de

Fig. 1. Extraction method of a model transformation rule

3.1. Platform analysis

The primary smart phone platforms currently used are iPhone of Apple, Android of Google,
and Windows Mobile of Microsoft. Each of these 3 each platforms possesses a different
operating system, language, Ul code, and development environment. To unite these different
platforms into one model, careful analysis is required to identify their similarities and
differences. For each platform, common factors are classified as Target Independent Model
(TIM) items, while differing factors are classified as Target Specific Model (TSM) items. It
should be noted that system resources, such as UI component, view, Handler, and Timer, are
classified as TIM while the application structure is classified as TSM.

For the Android platform, its architecture is divided into five areas: Applications,
Application Framework, Libraries, Android Runtime, and Linux Kernel layers. Of particular
importance in this case is the Application Framework since application development can be

achieved by using only this architectural tool. In addition, subordinate-level Libraries do not

-618—

RULE EXTRACTION METHOD FOR MODEL TRANSFORMATIONS

need to be directly controlled as Android’s Application Framework is already well-defined.
Closer examination of the Application Framework reveals it to consist of Activities, Service,
Broadcast Receivers, and Content Providers. The Activities component is responsible for user
interfacing, as well as determining screen layout, arranging UL and attaching view. Basic
applications can be developed by only using this component. Service is not Ul presented on
screen, but is rather a type of demon executed in the background. In Android, this can be
defined as the items that are repeatedly executed by the program. Broadcast Receivers
provide communication with other application programs. For example, when certain data is
downloaded, a message is sent to related applications to make use of the relevant device.
Lastly, Content Providers facilitate the use of functions provided by other applications. For

example, the database SQLite may be used during file processing.

<Button android:id="@+id/Button01"
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:text="Start">

</Button>
lButton Creation Layout
| rce L final Button btnl = (Button) findViewByldR.id. Button01);

!

" | btnlsetOnClickListener(new Button.OnClickListener();
Event Handler Registration

—————

Click Event

-

public void onClick(View v) {
Intent i = new Intent(Intent. ACTION. VIEW);
i.addFlags(ntent.FLAG ACTIVITY. NEW._ TASK);
i.setData(Uri.parse(htip;//code.google.com));
startActivity(i);

} ™

Event Handler Code
Fig. 2. Process order of a button event in Android

When a button is pressed to execute a certain action, the event handler is required to process
this request. To execute the button handler, the process presented in figure 2 is used in
Android.

In order for an Android button application to be executed, a button must first be formed
through the Layout designer in the development tool. This allows button specific XML code
to be automatically formed. Next, formed Java code is connected to the XML code through
the findViewByld method. Java is then used to connect and register the button with the event
handler before writing and executing the final output.

In analyzing the Android platform, independent model and dependent model categories can
be formed, as presented in Table 2. Type indicates the classes and methods used in the
platform. Independent Model Category refers to the stereotype present during the model

transformation phase. Specific Model Category denotes the dependent class or method to be

-619-

WOO YEOL KIM, HYUN SEUNG SON AND ROBERT YOUNG CHUL KIM

written which represents the Independent Model Category item to be transformed. Lastly,

Comment provides further explanation of each item. In all, these category items are used as

the basis for creating the API Matrix.

Table 2. Example of writing independent model and dependent model categories

Type Independent Model Category Specific Model Category Comment

Class View View View class
Method Draw onDraw Method for drawing screen

Class Controller Activity Control method

Class Button Button Button class
Method Click onClick Metliod geuicentod when

3.2. Independent/dependent model API Matrix

Differences between input and transformation models must first be analyzed to achieve
model transformation. In examining such differences between independent and dependent
models in Android, it can be seen that the primary elements subject to transformation use the
basic structure and library provided in the platform itself. Unfortunately, this underlying
information is only known to the designer. However, since it is designated by a UML-based
design diagram, it is possible to apply a UML-based stereotype to simulate this environment
and to clarify the target independent model.

The UML-based steréotype thus added to the class diagram incorporates results of
independent and dependent model category analysis. For classification, these results can be
divided into class-based and method-based categories. For class-based, there are two
stereotypes: <<view>> and <<controller>>. For method-based, there are two stereotypes as
well: <<view_onDraw>> and <<button_onClick>>. Furthermore, applicable model
transformation rules can be divided into five classifications: basic structure formation, view
formation, view_onDraw formation, controller formation, and button_onClick formation.

Table 3 below illustrates the independent/dependent model API Matrix.
Table 3. Independent/dependent model APT Matrix

No (Type Stereotype Target Model
class method parameter

1 S - - - N

2 C R<view>> Context - -
AttributeSet - -
View - -
<<view>> <<create>> c¢:Context, a:

AttributeSet
3| M K<view_ondDraw>> [Canvas - -
<<view onDraw>> onDraw ¢ : Canvas

4 | C k<controller>> Activity - -

5 | M [<<button_onClick>> [Bundle - -
Button - -
<<controller>> onCreate s : Bundle
Button.OnClickListener - -
<<button_onClick>> onClick v : View

-620—

RULE EXTRACTION METHOD FOR MODEL TRANSFORMATIONS

The API Matrix organizes categories formed during the platform analysis process to use for
model transformation rule extraction. It consists of type, stereotype, and target model. Type
refers to the current transformation type where S=structure, C=class, and M=method.
Stereotype refers to the independent item extracted during the platform analysis phase and is
vital to the UML model. Although 4 examples are presented herein, additional stereotypes
can be formed. Lastly, target model refers to the information that must be transformed when
combined with an independent model stereotype. The target model can further be classified
into class, method, and parameter.

To illustrate, table 3 notes that example 2 is a class type that forms a context, attribute-set,
and view when it encounters the <<view>> stereotype. In this case, the <<view>> class
indicates its inclusion of view with parameters given as context and attribute-set. In this
regard, the API Matrix essentially becomes the fundamental means by which model

transformation rules may be written.

4. Writing model transformation rules
Model transformation rules can be written using the independent/dependent model API
Matrix extracted through the platform analysis process. This paper presents 5 model

transformation rules.

4.1. Rule 1: Formation of a basic structure

The formation of a basic structure in this case refers to the minimum structure required to
execute an Android application. Since data types are fundamentally required for a UML class
diagram to be formed, it is therefore necessary to first copy the data type class when forming
a basic structure. The activity class which is fundamentally formed in Android executes
control during this step. Since this procedure occurs during the formation of the controller

itself, it is not a necessary provision of the basic structure formation process.

4.2. Rule 2: Transformation of <<view>>

<<View>> is used to process and present images on screen. Therefore, a view class is
required in the Android platform. The view formation process involves creating a view class
first, then forming a general relationship between the view and LinkView classes. In Android,
the sub-classification class must include the former. Thus, the view class and relevant

parameters are added to the LinkView class. From this, both context and attribute-set classes

—~BaL=

WOO YEOL KIM, HYUN SEUNG SON AND ROBERT YOUNG CHUL KIM

related to the parameter are created as well. Figure 3 presents the expression of this rule. It is

vital to note that only classes with the <<view>> stereotype are transformed for execution.

i :
i & view I: Clcontext [l AttributeSet |
B tinkview i 5 e A
oot @ e Lr--——————~-|l-"¢"---""» ----- -———d
% OnDraw() : void
gmeﬂedl) ~Void » & inkview
. m“e (‘)A e I_Q_Lip_k\ﬁew(context : Context, attrs : AttributeSet) |
™ @ #onDrawl Canvas : Canvas L
& DrawRect()
& DrawCircle()
TSM

Fig. 3. Transformation of <<view>>

4.3. Rule 3: Transformation of <<view_ondraw>>

To form an image on screen, OVer-writing of the onDraw method, as previously defined in
the view class, must be achieved. Also, a canvas class must be added as a parameter. T hus, to
execute these dependent characteristics, first the canvas class should be formed, next the
OnDraw method must be changed to the onDraw method, and finally a parameter is added to
the OnDraw method. Figure 4 presents the expression of this rule. It is important to note that

only the <<view_onDraw>> stereotype will be transformed.

i
|
: Eeanvas | Bview
1
I ! I
Dltinkview sl el I
" @ orbran 1 Tad | i R
e _ g LinkView(contex : Context, 3t AtributeSel).
umf ,"c e« : ,Vo,‘u ‘ ’ L" #onDraw(canvas : Canvas) : Void i
. o — S m— ===
TIM 4 DrawCircle()
TSM

Fig. 4. Transformation of <<view_onDraw>>

4.4. Rule 4: Transformation of <<controller>>

While <<view>> refers to actions presented on screen, <<controller>> is used for
processing generated events. In Android, one form of an activity class is required to achieve
controller processing. Thus, the controller class must inherit a given activity class. Formation
is achieved as an activity class appears, and a general relationship between the activity class
and the controller is established. As this occurs, an onCreate method is added and a
parameter-related bundle class is formed. Figure 5 presents the expression of this rule. It is

important to note that only the <<controller>> stereotype will be transformed.

-622-

RULE EXTRACTION METHOD FOR MODEL TRANSFORMATIONS

. BuinkviewControfler ; = f
" 4 Btnl_onClickl) : Void d> vt relivatioul-wiiuir-te ettt
& Bin2_onClick() : Void Lt onCmite(save'fnstancesme ‘Bundle) : de:

™ SM

Fig. 5. Transformation of <<controller>>

4.5. Rule 5: Transformation of <<button_onclick>>

In Android, the button function uses a Java-based class to register the event handler while
simultaneously writing a command. However, since this class is already present in the
proposed method, it does not affect the overall class diagram. For this reason, an interface
class can be used instead to create two button classes, thereby allowing certain problems in

the design phase to be solved. Once the Button and Button.OnClickListener classes are

formed, a correlation between the LinkView Controller class and the Button.OnClickListener
class may be established. This in turn allows the Btnl_onClick and Button2_onClick classes
to be created, providing ‘substantiation’ relationship to also be established between the
Button.OnClickListener, Btnl_onClick, and Button2_onClick classes. Figure 6 shows the
expression of this rule. The execution conditions include the formation and transformation of

classes relevant to the <<button_onClick>> stereotype.

& tinkviewController

' «. onCreate(savédhsténceéiaté :Bun&le) i Void
Pt 1l S
i button.onclicklistener}

:' & Button.OnClickListener

, A

: T S
1 E 8tn2_onclck
.
’

@ onClick(v: View) : Void & onClick v: View) : Void

[- £ Btn1_onClick
@ Bini_onClick{) - void
I @ Bt2_onClickl } Vod

Fig. 6. Transformation of <<button_onClick>>

S. Conclusion

Model Driven Development (MDD) is an effective means in creating heterogeneous smart
phone applications. The use of a model transformation technique is vital to this process as
transformation rules, generated from an analysis of independent and dependent models, allow

for the potential of competing platforms to be bridged.

—623 -

WOO YEOL KIM, HYUN SEUNG SON AND ROBERT YOUNG CHUL KIM

Since model transformation rules are essential to achieving proper model transformation
techniques in MDD, this paper proposed adopting the following steps when writing model
transformation rules: first, conducting a platform analysis; second, constructing an API
Matrix; and third, writing transformation rules for a heterogeneous application. To illustrate,
this paper examined the Android application structure during the platform analysis phase.
Each characteristic was extracted and then categorized into either independent or dependent
model categories. Next, these extracted categories were used to create a transformed API
relationship as part of the API Matrix construction phase. Once completed, the API Matrix
was used to specify the intended model transformation rules, effectively acting as a model
transformation language.

The model transformation rules created can be divided into two types: class formation-
based and method formation-based. Within these types, five detailed rules were generated
using the model transformation language ATL. These five rules include <<basic structure>>
transformation, <<view>> transformation, <<view_onDraw>> transformation,
<<controller>> transformation, and <<button_onClick>> transformation. Also, it should be
noted that transformations from the independent model to the dependent model were verified
by executing the written ATL details in eclipse. Furthermore, a successful application of the
model transformation technique to a smart phone environment was provided.

Although this paper focused on the Android platform, additional applications of the model
transformation technique may be achievable for iPhone and Windows Mobile based
platforms. Further research is therefore suggested as the demand for heterogeneous smart

applications continues to increase.

6. Acknowledgments

This research was supported by the MKE(The Ministry of Knowledge Economy), Korea,
under the ITRC(Information Technology Research Center) support program supervised by
the NIPA(National IT Industry Promotion Agency)(NIPA—ZOlZ-(H0301-12-3004)) and the
Ministry of Education, Science Technology (MEST) and National Research Foundation of
Korea(NRF) through the Human Resource Training Project for Regional Innovation.

References
[1] Axel Jantsch, Modeling Embedded System and SOCs. Mogan Kaufmann, 2004.
[2] Woo Yeol Kim, Hyun S. Son, Young B. Park, Byung H. Park, C. R. Carlson, R. Young
Chul Kim, The Automatic MDA (Model Driven Architecture)Transformations ~ for

—624—

gf
.
|
S
¢
|

RULE EXTRACTION METHOD FOR MODEL TRANSFORMATIONS

Heterogeneous Embedded Systems. Proceedings of The 2008 International Conference on
Software Engineering Research and Practice, Vol. 2 (2008), pp. 409-414.

[3] Woo Yeol Kim, R. Young Chul Kim, A Study on Modeling Heterogeneous Embedded
S/W Components based on Model Driven Architecture with Extended xXUML. The KIPS
Transactions, Vol. 14-D, No. 1 (2007), pp. 83-88.

[4] Woo Yeol Kim, Hyun Seung Son, R. Young Chul Kim, C. R. Carlson, MDD based CASE
Tool for Modeling Heterogeneous Multi-Jointed Robots. Proceedings of the 2009 WRI World
Congress on Computer Science and Information Engineering, Vol. 7 (2009), pp. 775-779.

[5] Wikipedia, ATL, http://en.wikipedia.org/wiki/ATLAS_Transformation_Language

[6] B. Selic, The Pragmatics of Model-Driven Development. IEEE Software special issue on
Model-Driven Architecture, 2003.

[7] K. Czarnecki, S. Helsen, Feature-Based Survey of Model Transformation Approaches.

~ IBM Systems Journal, Vol. 45, No. 3 (2006), pp. 621-64.

[8] M. Karanam, A. Rao Akepogu, A Framework for Visualizing Model-Driven Software

Evolution — Its Evaluation. International Journal of Software Engineering and Its

Applications, Vol. 5 No. 2 (2011), pp.135-148.

[9] W. Alouini, O. Guedhami, S. Hammoudi, M.Gammoudi, D. Lopes, Semi-Automatic

Generation of Transformation Rules in Model Driven Engineering : The Challenge and First
Steps. International Journal of Software Engineering and Its Applications, Vol. 5 No. 1

(2011), pp. 73- 88.

[10] S. M. Ghosh, H. R. Sharma, V. Mohabay, Analysis and Modeling of Change

Management Process Model. International Journal of Software Engineering and Its

Applications. Vol. 5 No. 2 (2011), pp. 123-134. .

[11] Roy Grenmo and Jon Oldevik, An Empirical Study of the UML Model Transformation
Tool(UMT). In The First International Conference on Interoperability of Enterprise
Software and Applications (INTEROP-ESA), Geneva, Switzerland, 2005.

[12] D. Vojtisek and J.-M. Je'ze'quel, MTL and Umlaut NG : Engine and Framework for
Model Transformation. http://www.ercim.org,/publication/Ercim_News/ enw58/vojtisek.html
[13] OMG, Documents associated with Meta Object Facility (MOF) 2.0
Query/V ijew/Transformation, Version 1.0, 2008.

*Corresponding author: Robert Young Chul Kim, Prof.

Department of Computer and Information Communication,

Hongik University Sejong Campus,

300 Jochiwon-eup, Yeonki-gun, Choongchungnam—do 339-701, Korea
E-mail: bob@hongik.ac.kr

-625—

