

Session 5—D (Sw Visualization (SE Center)) Chair Seung Yeob Yu(Namseoul Univ,)

o 14:30~15:50 Tuesday June 30, 2015

01. W-07-06_Computer Simulation on HPDC Process by Filling and Solidification Analysis / 360
Tae—Hoon Yoon(Namseoul Univ., Korea), Hong—Kyu Kwon(Namseoul Univ., Korea)

99' W-13-09_FExtracting Software Architecture based on Reverse Engineering / 362
Woo Sung Jang(Hongik Univ., Korea), Chae Yun SEQ(Hormil Imiv Knaras) B Vaima Chif Kim(Hongik Univ., Korea),

Woo Yeol Kim(Daegu National Univ. of Education, Korea,

@ W-13-10_Internal Code Visualizat' ~= £~ *~~"="=~ 7~~~ “-—yplexity / 3064
So Young Moon(Hongik Univ., Korea 2. Youngchul Kim(Hongik Univ., Korea)

@2&, W-13-11_Replacing Source Navigator with Abstract Syntax Tree Metamodel (ASTM) on the open source
oriented tool chains for SW Visualization / 366
Limim @rnimm @anllnnsils Hinic - Korea), So Young Moon(Hongik Univ., Korea), R, Young Chul Kim(Hongik Univ., Korea),

@, W-13-12_Requirement Tracking Visualization for Validating Recmiremant Qaticfactinn / 241
Bokyung Park(Hongik Univ., Korea), Haeun Kwon{Hongik Univ., Korea)
R. Young Chul Kim(Hongik Univ., Korea)

,’b@_ W-13-13_Mobile Based Testing with Code Visualization / 370
Keunsang Yi(Hongik Univ., Korea), Hyeoseok Yang(Hongik Univ., Korea), R, Young Chul Kim(Hongik Univ., Korea)

07. W-33-06_Content Analysis of Green Advertisements in Korea / 372
Mi—Jeong Kim(Hanyang Univ,, Korea), Sangpil Han{(Hanyang Univ., Korea)

08. W-33-09_Online Public Opinion Dissonance between Korean and Chinese Netizens: its Causes, Functions
and Solutions / 374
JiHye Lee(Namseoul Univ., Korea), SeungYeobYu(Namseoul Univ., Korea)

-5 =

The 5" International Conference on Convergence Technology 2015
June 29 - July 2, 2015, Chateraise Gateaux Kingdom Sapporo Hotel, Hokkaido, Japan

Internal Code Visualization for Analyzing Code Complexity

'So Young Moon, . Sang Eun Lee, *R. Youngchul Kim,
" Dept. Computer and Information Communication, Hongik University,
Sejong Campus, Korea, {msy, bob*}@selab.hongik.ac.kr
? NIPA, Korea, selee@nipa.kr

Abstract The challenging issues of software
quality remains rarely addressed, e. g,
invisibility, increasing complexity and
unfavorable development environment in small
businesses, which impedes proper software
quality management. Mostly, existing legacy
systems fail to preserve their original design,
while increasing their code complexity due to
more patching of the original codes. To solve
such problems, we adopt a code visualization
technique which substantially reduces the code
complexity between modules. For this, we
suggest a tool chaining method based on the
existing open source software tools, which
extends NIPA’s Software Visualization
techniques.

Keywords: Reverse Engineering, Tool-Chain,
SW Visualization

1. Introduction

Software has been widely used across diverse
fields, serving as a key to add values to final
products to ensure their competitive edge. In
contrast to the increasing importance of software,
its invisibility and complexity as well as
domestic SME (Small and medium enterprise) s’
software development environment have
thwarted software quality management [1].

This paper intends to contribute to high-
quality software development by focusing on
visualization of core domains of software,
namely, visibility of development process,
reduction of complexity, and the absence of
documentation about development and design.
In addition, source codes underpinning software
need be updated in time to reflect up-to-date
information for the operability of software,
whilst the quality must be kept at the highest
level, as software can be explained by its source
codes only [2]. Thus, this paper applies the
Software Visualization Technique developed by
the NIPA(National IT Industry Promotion
Agency) with a view to: 1) detecting, altering
and modifying the problems of legacy codes:; 2)

364

providing a guideline for rectifying software
developers’ bad habits by applying a reverse
engineering technique via code visualization;
and 3) coping with the absence of developers or
relevant documentation to help maintain legacy
systems. To visualize the internal structure of
codes, this paper constructs a tool-chain by
connecting a range of open sources.

This paper mentions the following chapters.
Chapter 2 describes software visualization and
reverse engineering with related studies. Chapter
3 presents complexity of inner structure. Finally,
chapter 4 describes a discussion and a future
work.

2. Software Visualization

NIPA’s software visualization may be fit for
high-quality software development of IT venture
startups, SMEs and even established entities
constrained by a lack of personnel and financial
resources [3]. SW visualization aims to manage
source codes and development processes,
specifically involving visualization and
documentation as a means of managing the
quality of SW development. An entire process of
software development needs to be efficiently
managed to produce valuable software. It takes
clear-cut goal setting, efficient fulfillment, on-
going monitoring and control activities to
successfully manage software development.

3. Complexity of Inner Structure

1) Definition of Module

The module definition step defines a module
unit suitable for the target software code to be
visualized. This paper defines classes as
modules.

2) Definition of Quality Indicator

In designing software, inter-module coupling
needs minimizing whereas inter-module
cohesion needs in-creasing to develop high-
quality software. Thus, quantitative
measurement indicators for coupling and
cohesion need to be set [4]. Here, coupling refers
to inter-dependence or inter-relation between
two modules. High inter-module coupling means

The 5" International Conference on Convergence Technology 2015
June 29 - July 2, 2015, Chateraise Gateaux Kingdom Sapporo Hotel, Hokkaido, Japan

InspectTolalAction Du':=.'o HierachvAction InspectProgess Achon b‘:‘.':u InspectStopLunt Action AuthAchon TnspectSpecualction).\'.'=o'v
\ |
(1202=24) (2 2=\ (1§ 2=)0) ~(2'2=d) \(J'.’=8| (2702=54) J4'2=5) (21'2=42) (4'2=8) 115 2=30) (1542=
™ —
StneUtl 2*2=4) | NMLUH
SystemDeleteAction SystemlnputAction TestAjx AnthAddAchan AuthDelete Achon AuthDetalDelete Achan ValnationMomtonnzActior
/',,
w.‘(}\l‘.“.‘ﬂ%‘:ﬂsv (0°2=12) (942=18) 6'2=12) ©'2=12) (2'2=4) /(5".'-IIN
e
DMethodCall
1=y
il
DAOManages

Figure 1. Internal Code Visualization from Analyzing Code Complexity

strong inter-dependence between modules,
which has adverse effects on transformation,
maintenance and reuse of modules. Independent
modules require low inter-module coupling and
dependence. Coupling is sub-divided into data,
stamp, control, external, common, and content
couplings. Inter-module dependence increases in
the direction of the content coupling, while
decreasing in the direction of the data coupling.

Figure 1 shows internal visualization from
analyzing code complexity. Coupling of between
Valuation MonitoringActions and DMethodCall
is 144. This is a high coupling, but others are not
too high. We use this internal visualization
method, and we see the internal structure from
source code.

4. Conclusion

For the purpose of developing high-quality
software, this paper focuses on detecting and
altering problems of existing codes, and
rectifying software developers’ bad habits.
Because a means of delivering high-quality
software even with highlighting development/
testing and maturity measurement leads
developers to additional workloads other than
development, it cannot be an alternative for
enhancing the quality of legacy systems. To
address this issue, the proposed tool-chain
method defines modules, quantifies the
complexity of codes based on software
structures & the frequency of inter-module
relations, and shows the quality of codes with
quality indicators for inter-module coupling as

365

part of software visualization. The proposed
method enables even developers of bad habits to
lessen the code complexity with refactoring.

Future research will deal with the
visualization of software quality in terms of
cohesion & coupling.

Acknowledgements. This research was
supported by Basic Science Research Program
through the National Research Foundation of
Korea (NRF) funded by the Ministry of
Education (NRF-2013R1A1A2011601) and
Research and Development Service through the
Telecommunications. This work was supported
by the National Research Foundation of KOREA
(NRF) and Center for Women In Science,
Engineering and Technology (WISET).

References

[1] NIPA SW Engineering Center, “SW
Development Quality Management Manual (SW
Visualization)”, 2013, pp. 3-4.

Steve McConnell, Code Complete (2nd ed.),
Microsoft Press, 2001.

Geon-Hee Kang, R. Youngchul Kim, Geun Sang
Yi, Young Soo Kim, Yong B. Park, Hyun Seung
Son, “A practical Study on Code Static Analysis
through Open Source based Tool Chains,” KIISE
Transactions on Computing Practices, vol. 21, no.
2, pp. 148-153, February 2015.

Bokyung Park, Hacun Kwon, Hyeoseok Yang,
Soyoung Moon, Youngsoo Kim, R. Youngchul
Kim, "A Study on Tool-Chain for statically
analyzing Object Oriented Code", KCC2014,
pp.463-465, 2014.

(2]
)

(4]

