

Session 5—D (Sw Visualization (SE Center)) Chair Seung Yeob Yu(Namseoul Univ,)

o 14:30~15:50 Tuesday June 30, 2015

01. W-07-06_Computer Simulation on HPDC Process by Filling and Solidification Analysis / 360
Tae—Hoon Yoon(Namseoul Univ., Korea), Hong—Kyu Kwon(Namseoul Univ., Korea)

99' W-13-09_FExtracting Software Architecture based on Reverse Engineering / 362
Woo Sung Jang(Hongik Univ., Korea), Chae Yun SEQ(Hormil Imiv Knaras) B Vaima Chif Kim(Hongik Univ., Korea),

Woo Yeol Kim(Daegu National Univ. of Education, Korea,

@ W-13-10_Internal Code Visualizat' ~= £~ *~~"="=~ 7~~~ “-—yplexity / 3064
So Young Moon(Hongik Univ., Korea 2. Youngchul Kim(Hongik Univ., Korea)

@2&, W-13-11_Replacing Source Navigator with Abstract Syntax Tree Metamodel (ASTM) on the open source
oriented tool chains for SW Visualization / 366
Limim @rnimm @anllnnsils Hinic - Korea), So Young Moon(Hongik Univ., Korea), R, Young Chul Kim(Hongik Univ., Korea),

@, W-13-12_Requirement Tracking Visualization for Validating Recmiremant Qaticfactinn / 241
Bokyung Park(Hongik Univ., Korea), Haeun Kwon{Hongik Univ., Korea)
R. Young Chul Kim(Hongik Univ., Korea)

,’b@_ W-13-13_Mobile Based Testing with Code Visualization / 370
Keunsang Yi(Hongik Univ., Korea), Hyeoseok Yang(Hongik Univ., Korea), R, Young Chul Kim(Hongik Univ., Korea)

07. W-33-06_Content Analysis of Green Advertisements in Korea / 372
Mi—Jeong Kim(Hanyang Univ,, Korea), Sangpil Han{(Hanyang Univ., Korea)

08. W-33-09_Online Public Opinion Dissonance between Korean and Chinese Netizens: its Causes, Functions
and Solutions / 374
JiHye Lee(Namseoul Univ., Korea), SeungYeobYu(Namseoul Univ., Korea)

-5 =

The 5" International Conference on Convergence Technology 2015
June 29 - July 2, 2015, Chateraise Gateaux Kingdom Sapporo Hotel, Hokkaido, Japan

Replacing Source Navigator with Abstract Syntax Tree Metamodel
(ASTM) on the open source oriented tool chains for SW Visualization

'Hyun Seung Son, *So Young Moon, *'R. Young Chul Kim, ‘Sang Eun Lee
1.2.Corresponding Author3. pr,, ik University, Korea, {son, msy, bob }@selab.hongik.ac.kr
* NIPA, Korea, selee@nipa.kr

Abstract In the previous approaches, we
constructed a tool chains based on open source
such as source navigator, SQLite, DOT, which
can visualize source code to check code
complexity. But we can’t customize to get more
data from the too-chain. At this time, we replace
source navigator with ASTM on it. Then we
suggest a whole procedure for SW visualization
with the ASTM. Actually AST has a role to
analyze the expressions of functions and classes,
and also the definition and declaration of
variables through static analysis of the program
code with the AST. But the existing ASTs are
not compatible with other AST due on the
specific parser. For this reason, we implemented
OMG’s standard Abstract Syntax Tree
Metamodel (ASTM), which defined metamodel
of the AST within any compiler. That is, we can
represent diverse programing languages with
just an ASTM.

Keywords: Abstract Syntax Tree (AST), Meta-
model, Visualization, Reverse Engineering

1. Introduction

Most companies and ventures develop the
software code without any design due on time
and cost. They just release SW product quickly,
but may spend more cost at the maintenance
stage. This approach may be the low quality of
SW product. Therefore, the companies need to
show inside of the developing code for the SW
visualization. The visualization is able to trace
requirements from a program code through
reverse engineering [1]. For the SW visualiza-
tion, diverse tools are required such as Source
Navigator (2], Graphviz [3], and a parser. The
parser generates Abstract Syntax Tree (AST)
during compiling the program code. But the
existing ASTs are not compatible with other
AST due on the specific parser. Figure 1 shows
the previous tool chain mechanism for Nipa's
SW visualization. But it is hard to customize
Source Navigation because of Open source in
A* in figure 1. We are deeply considering to
make our own parser for whatever we analyze.

366

Therefore, Industry companies defines
OMG’s standard named Abstract Syntax Tree
Metamodel (ASTM) [4], which is metamodel of
abstract syntax tree with the existing compiler.
The main purpose of the ASTM easily
exchanges the metadata repository between the
software in such as software modernization,
platforms, and distributed heterogeneous
environment. The ASTM consists of the defined
elements to represent the AST from the existing
programming languages such as C, C++, C#,
Java, Ada, VB/.Net, COBOL, FORTRAN, Jovial,
and so on.

)

(" BatchFile

. Source L #p

Navigator |
Step §

Figure 1. The previous tool chain mechanism [1]

But OMG’s ASTM has defined and
complicated with 193 elements of metamodel,
but just specifications without any
implementation.

2. SW Visualization Mechanism

For SW visualization mechanism, it is
required that 1) the parser generates the abstract
syntax tree and 2) the visualizer needs to
generate a graph. The figure 2 shows B* area of
a whole structure for SW visualization dislike
A* part in figure 1. The parser generates ASTM
from a program code such as C, C++, or Java.
The visualizer generates the graph from the

The 5" International Conference on Convergence Technology 2015
June 29 - July 2, 2015, Chateraise Gateaux Kingdom Sapporo Hotel, Hokkaido, Japan

ASTM. Through this process, we can extract
requirements via design from the program code.
We will use the existing parsers as C/C++
Development Tooling (CDT) [5] and Java
Development Tools (JDT) [6]. The CDT is a tool
in Eclipse platform to develop C/C++
application. It supports to create the project, to
build the program, to edit the C/C++ code, to
analyze the static code, and to debug & refactor
functions. The JDT is a tool to develop Java
application. It supports the same function like

the CDT.
Metamodel /
consist nl
input
oo —) C Parser _output
[X ASIM }> Create DB
imput Java
Java output
Parser p lmpul
Dot output Generate —> |
Py SQLite

Dot Script

Figure 2. The new SW visualization mechanism

3. A Case study with new mechanism

Figure 3. Target Simulator

We use target simulator (500 KLOC) into New
SW visualization mechanism. Figure 3 shows
target simulator for robot Modeling& simulation
development tool. We apply this program to
analyze how to check code complexity. After
inserting this code in Figure 2, we get a graph to
have a relationship among classes and modules
like figure 4. We also get the calling & called
graph to recognize some complexity parts of
source code. Therefore, we can easily do fixing
bad code or refactoring for improving code.
Figure 4 shows the analyzed result of the
program code, that is, robot Modeling &

& simulation.

367

Figure 4. The analyzed result of the program
code

4. Conclusions

In this previous mechanism, we can’t
customize to get more data from the too-
chain. At this time, we replace source
navigator with ASTM on it. The Abstract
Syntax Tree Metamodel (ASTM) is useful to
convert from the diverse program codes to
Abstract Syntax Tree (AST). Then we suggest a
whole procedure for SW visualization with the
ASTM.

In the future, we will apply the existing
parser such as CDT and JDT. Using them, we
will develop new tools for SW visualization.

Acknowledgments. This research was
supported by Basic Science Research Program
through the National Research Foundation of
Korea (NRF) funded by the Ministry of
Education (NRF-2013R1A1A2011601). This
work was supported by the National Research
Foundation of KOREA (NRF) and Center for

Women In Science, Engineering and

Technology (WISET).

References

[1] Sang-Eun Lee, et al., “SW development
quality management manual (SW
Visualization)”, National IT Industry

Promotion Agency (NIPA), Dec. 12, 2013.
Source Navigator,
http://sourcenav.sourceforge.net/

Graphviz, http://www.graphviz.org/

OMG, “Architecture-driven Modernization:
Abstract Syntax Tree Metamodel (ASTM)
Version 1.0°, OMG Document Number:
formal/2011-01-05

[5] CDT, http://www.eclipse.org/cdt/

[6] JDT, http://www.eclipse.org/jdt/

