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Abstract 

 

Decision Transformer (DT) successfully reframed the offline reinforcement learning problem as a 

sequence modeling task. However, DTs are designed to take fixed-length input sequences, and it 

remains unclear whether this design represents the optimal history length for decision-making, primarily 

due to the model's black-box nature, which makes validating their underlying policies computationally 

expensive. Our probing study provides a lightweight diagnostic tool for these strategies, while prior 

work has explored adaptive history lengths for performance; however, no study has systematically 

investigated the effect of progressively shortening history on action consistency across different model 

qualities. In this paper, we propose an analytical approach that systematically varies the input sequence 

length to examine how the decisions of DT change. Specifically, we compare the original baseline result, 

which uses the full, fixed history length (𝐾 = 20), with results from progressively shorter history 

lengths, denoted as 𝑘 (ranging from 1 to 19). By applying this method to three different models—

Expert, Medium, and Medium-Replay—and quantifying consistency using L2 Norm and Cosine 

Similarity, we provide new insights into each model's dependency on past information and its 

underlying decision-making behavior. 

 

 

Keywords: Decision Transformer, Offline Reinforcement Learning, The Previous State Dependency 

(History Dependency) 

 

1. Introduction 

Offline reinforcement learning (RL) focuses on 

learning policies from pre-collected datasets. 

Recently, Transformer-based approaches have 

emerged in this domain, with the Decision 

Transformer (DT) achieving notable success by 

reframing RL as a sequence modeling task [1,2]. 

However, DT relies on a fixed input history 

length (𝐾 = 20) , a design choice whose 

optimality remains unexamined due to the black-

box nature of deep models [3]. Prior work has 

explored DT's internal mechanisms through 

attention pattern analysis or studies on token 

importance [3]. Recent variants, such as Long-

Short DT [4] and Elastic DT [5], include ablation 

studies on history length—but primarily to 
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validate their own architectural improvements, 

rather than to systematically probe how action 

consistency in the original DT evolves as history 

varies from k to K. 

 

This paper fills this gap with a dedicated probing 

study. Understanding the previous state 

dependency is critical for enabling efficient, real-

time inference in DT-based agents [4]. 

Furthermore, it provides a lightweight method to 

diagnose a model's strategy, offering a potential 

pathway to reducing the number of costly RL 

validation cycles. We introduce a systematic 

methodology that controls the observed input 

sequence length and quantifies changes in 

decision-making behavior via L2 norm and 

cosine similarity of predicted actions. Applied to 

three DT variants (Medium, Expert, Medium-

Replay) on the Hopper-Expert-v2 dataset [1], our 

analysis reveals stark differences in history 

dependency (previous state dependency)—

suggesting that training data quality 

fundamentally shapes decision patterns. 

 

The remainder of this paper is organized as 

follows. Section 2 reviews the related work on 

the Decision Transformer and Transformer 

interpretability—Section 3 details our proposed 

probing methodology, including the attention 

masking technique and evaluation metrics. 

Section 4 presents experimental results from 

applying our method to the three different models. 

Section 5 provides an in-depth discussion of 

these results, interpreting the models' distinct 

decision-making strategies. Finally, Section 6 

concludes the paper by summarizing our findings, 

acknowledging limitations, and highlighting the 

practical implications for reducing RL validation. 

2. Related Work 

2.1 Decision Transformer 

 
Fig. 1. DT architecture (Source: [1]) 

 

DT takes Return-to-Go (RTG), state, and action 

tokens as input and predicts the following action 

in an auto-regressive manner, similar to GPT. 

When a user sets a target reward as input, DT 

predicts the optimal action from the sequence 

data to achieve this target [1]. Various follow-up 

studies are currently underway, such as 

improving DT's performance or adapting its 

architecture for online RL environments [4, 5, 7]. 

2.2 Transformer Interpretability 

Deep learning neural networks, such as 

Transformers, have a 'black-box' characteristic, 

making it difficult to understand the basis for 

their outputs [2,3] clearly. Various studies have 

been conducted to analyze Transformers in 

different ways, aiming to understand their 

characteristics. Representative techniques 

include methods that measure importance by 

masking parts of the input or methods that 

directly analyze the model's internal attention 

weights [2]. Furthermore, specific to DT, some 

studies have examined which inputs—such as 

RTG or state tokens—have a more significant 

impact on the model's decision-making [3]. 

3. Methodology 

This chapter outlines the proposed probing to 

analyze the history dependency (or previous state 

dependency) of DT. 

3.1 Target Models and Data 

This study analyzes pre-trained DT models based 

on the D4RL benchmark's Hopper-v2 

environment. Following the original DT paper 

[1], we use models trained with a history length 

of 𝐾 = 20. To compare how history dependency 

(previous state dependency) varies with the 

quality of training data, we use three models 

available on HuggingFace [6]: Expert, Medium, 

and Medium-Replay. 
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3.2 Probing: Attention Masking 

 

Fig. 2. Proposed Probing Methodology 

 

Calculate Baseline Action (𝑎𝑃) : First, we 

establish a baseline using the action predicted 

with the full history length of 𝐾 = 20. As shown 

in the top row of Fig. 2(baseline), all information 

from 𝑡 − 19 to 𝑡 (note: 𝑠, 𝑎, 𝑅 for past steps, 𝑠, 𝑅 

for the current step) is fed into the model. The 

resulting action predicted at the final timestep 𝑡 
is defined as the baseline action 𝑎𝑃 = 𝑎𝐾=20. 

 

Calculate Probed Action (𝑎𝑄(𝑘)): Next, we vary 

the 'available recent history length' 𝑘 from 1 to 

19. As shown in the middle and bottom rows of 

Fig. 2 (illustrating 𝑘 = 19  and 𝑘 = 1 , 

respectively), for each 𝑘 , we calculate the 

number of past steps to mask (𝑚 = 𝐾 − 𝑘)and 

set the attention mask values for the oldest 𝑚 

steps to 0 (visualized as faded nodes). The action 

predicted using this modified mask is defined as 

the probed action 𝑎𝑄(𝑘). 

3.3 Evaluation Metrics 

In this study, to quantify the difference between 

the baseline action 𝑎𝑝  and the probed action 

𝑎𝑄(𝑘), we use the following two metrics. (The 

variable 𝑝𝑎𝑠𝑡_𝑁 in the code corresponds to 𝑘 in 

this text.) L2 Norm (Euclidean Distance): 

Measures the magnitude of the difference 

between the two action vectors. Calculated as 

𝐷(𝑘) = ||𝑎𝑝 − 𝑎𝑄(𝑘)||
2

, a value closer to 0 

indicates identical actions, while a larger value 

signifies a greater error. Cosine Similarity: 

Measures the directional agreement between the 

two action vectors. A value closer to 1 indicates 

that both actions point in the same direction, 

while values near 0  or −1  signify higher 

divergent directions. 

4. Experiments and Results 

This section presents the results of applying our 

Section 3 methodology to the three DT models. 

 

Fig. 3. State Parameter Trends of Average Expert 

Trajectories in Hopper-v2 
 

This graph visualizes the changes in key state 

parameters (e.g., torso height, joint angles, 

velocities) over 1000 timesteps, averaged across 

all episodes from the Expert dataset. The periodic 

fluctuations observed in parameters correspond 

to the distinct phases of the Hopper agent's 

locomotion (e.g., jumping and landing cycles). 

4.1 L2 Norm (Error) Analysis 

The analysis results for the L2 Norm (Error) are 

shown in Fig. 4. These graphs illustrate the mean 

deviation from the baseline (𝐾 = 20), calculated 

by averaging the L2 Norm (Error) across all 

episodes for each corresponding timestep. For 

clear illustration, we plot the trends only for 

representative 𝑘∗ values (𝑘∗ = 1, 5, 10, 19) 
 
(a) Expert model 

 

(b) Medium model 
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(c) Medium-Replay model 

 

Fig. 4. L2 Norm (Error) Analysis by Model 

 

Expert model (Fig. 4(a)): For 𝑘 = 1  (purple 

lines), periodic spikes in the L2 Error are clearly 

observed, peaking at 0.35. This trend aligns with 

the periodic state changes (e.g., jumping, landing) 

observed in Fig. 3. As k increases to 5 (green line) 

and 10 (orange line), the error amplitude 

decreases significantly. At 𝑘 = 19  (blue line), 

the error converges close to 0. 

 

Medium Model (Fig. 4(b)): Even at 𝑘 = 1, the 

L2 Error is markedly lower (around 0.15 to 0.18) 

and more stable than the Expert model, with very 

small spike amplitudes. The trend of error 

decreasing with larger 𝑘 remains consistent. 

 

Medium-Replay Model (Fig. 4(c)): This model 

exhibits the most significant error of all three 

models, spiking above 0.55 at 𝑘 = 1 in the 𝑡 <
200 region. Subsequently, it shows an irregular 

pattern with lower amplitudes than the Expert 

model. 

4.2 Cosine Similarity Analysis 

While the L2 Norm in Section 4.1 measured the 

error magnitude, it cannot capture directional 

differences. Therefore, to analyze the directional 

agreement of the action vectors, Cosine 

Similarity was measured for the same 𝑘∗ samples. 

This provides a complementary perspective on 

action consistency. 

 

 

 

 

 

 

 

 

 

 

(a) Expert model 

 

(b) Medium model 

 

(c) Medium-Replay model 

 

Fig. 5. Cosine Similarity Analysis by Model 

 

The findings from the L2 Norm analysis are 

consistently mirrored in the Cosine Similarity 

results (Fig. 5). 

 

Expert model (Fig. 5(a)): Exactly coinciding 

with the L2 Norm spikes, the similarity for 𝑘 =
1 (purple line) shows periodic dips down to 0.83. 

This implies that when past information is 

insufficient, the model predicts an action in a 

completely different direction. 

 

Medium Model (Fig. 5(b)): This model 

maintains a very high similarity (0.97  to 1.0) 

compared to the Expert model. Slight periodic 

dips are observable at 𝑘 = 1, but the magnitude 

of the drop is minimal. 

 

Medium-Replay Model (Fig. 5(c)): This model 

shows significant directional errors at similar 

points to the Expert model, with similarity 

dropping to 0.88 near 𝑡 = 150 for 𝑘 = 1. 
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5. Discussion 

5.1 Previous State Dependency 

Our probing study revealed a common 

phenomenon across all three models. The points 

where the L2 Norm error spikes and Cosine 

Similarity plummet (Figs. 4, 5) precisely align 

with the periodic state changes of the Hopper 

agent (Fig. 3). This suggests that these moments 

of dynamic state transitions—such as landing 

after a jump or preparing for a new one—

represent 'critical decision points' where past 

trajectory information is most urgently required 

to determine the following action. 

5.2 Comparison of Decision-Making 
Strategies by Model 

The Expert model was the most sensitive to 

history length at these junctures (Figs. 4(a), 5(a)). 

When the history was extremely limited to 𝑘 =
1, it predicted an action in a completely different 

direction from the baseline (𝐾 = 20) , causing 

the L2 error to spike to 0.35  and Cosine 

Similarity to plummet to 0.83. This suggests that 

the Expert model, trained on consistent and high-

quality data, is conditioned to rely heavily on a 

long history to assess these dynamic states 

accurately. 

 

Conversely, the Medium model demonstrated 

remarkable stability, remaining almost entirely 

unaffected by history length at these same points 

(Figs. 4(b), 5(b)). Even at 𝑘 = 1 , the Cosine 

Similarity remained high (0.97-1.0) and the L2 

error was minimal. This suggests that, due to 

training on lower-quality data, the model learned 

a robust policy that focused on the current state 

rather than meticulously following a specific 

trajectory. Its dependence on history is, therefore, 

the lowest of the three models. 

 

The Medium-Replay model exhibited a more 

complex pattern (Figs. 4(c), 5(c)). After an initial 

period of instability (𝑡 < 200), it displays a clear 

periodicity like the Expert model. However, 

unlike the Medium model, it also reacts 

sensitively to history length. At 𝑘 = 1, the drop 

in Cosine Similarity (to a low of 0.88) was far 

more significant than that of the Medium model 

(0.97  or higher). This suggests that while the 

Medium-Replay model also identifies these 

states as 'critical decision points' requiring past 

information (much like the Expert), the highly 

diverse and inconsistent trajectories in the 

'Replay' dataset may have resulted in it learning 

a policy that is confused about which past 

experiences to reference. 

 

In summary, we can interpret the models' 

behaviors at these 'critical decision points' as 

follows: the Expert model concludes, "The 

precise past trajectory is essential"; the Medium 

model concludes, "The current state is sufficient"; 

and the Medium-Replay model concludes, "The 

past is necessary, but it is unclear which 

experience to follow." 

6. Conclusions 

This paper proposes a systematic probing 

methodology using attention masking to analyze 

the effect of the DT's fixed history length (K = 

20) on its decision-making. Our study 

dynamically manipulated the available history 

length 𝑘 (from 1 to 19) for models trained with 

𝐾 = 20 . It quantified the deviation from the 

baseline action (𝐾 = 20) using L2 Norm and 

Cosine Similarity metrics. 

 

The experimental results confirmed that, 

regardless of training data quality, the models' 

history dependency (previous state dependency) 

commonly spiked at specific 'critical decision 

points' within the Hopper environment, such as 

'jumping/landing'. However, the response to 

these points differed distinctly between models. 

The Expert model showed a high dependency on 

past trajectories at these junctures. In contrast, 

the Medium model exhibited a robust policy that 

was largely unaffected by history length. The 

Medium-Replay model recognized periodicity 

similarly to the Expert model but displayed a 

confounded dependency pattern, likely due to 

inconsistent training data. These findings suggest 

that the DT's decision-making mechanism, 

beyond mere performance, is fundamentally 

shaped by the quality and composition of its 

training data. 

 

This study, however, has several limitations. 

First, our experiments were confined to the single 

Hopper-v2 dataset; different environments may 

yield different patterns of history dependency (or 

previous state dependency). Second, as a 

'probing study', this work observes and quantifies 
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phenomena rather than fully elucidating the 

causal mechanisms within the transformer 

'black-box'. 

 

Despite these limitations, we hope this research 

contributes foundational data for future work on 

'adaptive history selection' mechanisms, which 

could dynamically adjust 𝑘 based on the agent's 

current state or uncertainty. Such advancements 

could lead to future research on reducing 

unnecessary computations from 𝑂(𝐾2) to 𝑂(𝑘2), 
potentially improving the viability of real-time 

deployment for DT-based agents. Furthermore, 

understanding the strategic importance of past 

states, as demonstrated vividly in this study, is 

also crucial for potentially and significantly 

reducing the number of costly RL validation 

cases. 
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